An adult uterine hemangioblast: evidence for extramedullary self-renewal and clonal bilineage potential

Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 2932-2941 ◽  
Author(s):  
Zhuo Sun ◽  
Yuemei Zhang ◽  
Keith R. Brunt ◽  
Jun Wu ◽  
Shu-Hong Li ◽  
...  

Abstract Stem cells exhibit long-term self-renewal by asymmetric division and multipotent differentiation. During embryonic development, cell fate is determined with predictable orientation, differentiation, and partitioning to form the organism. This includes the formation of a hemangioblast from which 2 derivative cell clusters commit to either a hematopoietic or an endothelial lineage. Frequently, it is not clear whether tissue resident stem cells in the adult originate from the bone marrow. Here, we show that blast colony-forming cells exhibiting bilineage (hematopoietic and vascular) potential and long-term self-renewal originate from the uterus in the mouse. This is the first in vitro and in vivo evidence of an adult hemangioblast retained from development in the uterus. Our findings offer new understanding of uterine cell renewal and turnover and may provide insights and opportunities for the study of stem cell maintenance.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1885-1885
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Nicholas J. Goulden ◽  
Allison Blair

Abstract The cell of origin of childhood acute lymphoblastic leukaemia (ALL) has been the subject of conflicting reports in recent years. One model suggests that many haemopoietic cell types are susceptible to transformation and the level of commitment of the target cell influences the characteristics of the resulting blast cell population. A second model suggests that primitive haemopoietic cells are the targets for transformation, with some differentiation occurring subsequent to the transformation event. This model suggests a hierarchy of progenitors may exist in ALL. In support of this latter model, we have demonstrated that leukaemic stem cells in B-ALL have a primitive CD34+/CD10−/CD19− phenotype and T-ALL cells with NOD/SCID engrafting capacity are CD34+/CD4−. In this investigation we have attempted to further purify and characterise leukaemic stem cells from children with T-ALL. Cells from 7 patients were sorted for expression of CD34 and CD7 and the sorted subfractions evaluated for long-term proliferative ability in vitro using a serum free suspension culture assay and in the NOD/SCID mouse model. In this group of patients, the CD34+/CD7+ fraction represented 7±6% of cells at sorting, 6±4% were CD34+/CD7− and the majority were CD34−/CD7+ (60±12%). After 3 weeks in culture, the majority of proliferating cells were derived from the CD34+/CD7− subfraction (53±16%). By week 6, >70% of proliferating cells were derived from the CD34+/CD7− subfraction. Unsorted ALL cells and the sorted subfractions from 4 of these patients, were evaluated for their ability to engraft sublethally irradiated NOD/SCID mice. In each case, engraftment was achieved using 105–106 unsorted cells (25–80% CD45+) and with the CD34+/CD7− subfraction only (4–84% CD45+ with 3x103–8x104 cells). There was no engraftment with the other subfractions despite injecting up to 100 fold more cells. The engrafted cells had the same karyotype as the patient at diagnosis and expressed high levels of CD2, CD4 and CD7 implying they had differentiated in vivo. The self-renewal capacity of the CD34+/CD7− cells was evaluated by secondary transplantation. CD45+ cells from NOD/SCIDs engrafted with CD34+/CD7− cells successfully engrafted secondary recipients with equivalent levels of human cell engraftment, demonstrating these cells were capable of self-renewal. These findings suggest that cells with a more primitive phenotype may be the targets for transformation in T-ALL, rather than committed lymphocytes. To further investigate this hypothesis, we sorted cells from 4 of these patients for expression of CD133 and CD7 and evaluated their proliferative ability as described above. Results to date indicate that the CD133+/CD7− fraction represents only 0.35% of nucleated cells at sorting. However, after 3 weeks in culture, 48±9% of proliferating cells were derived from this subfraction and by week 6, 58±20% of cells were derived from the CD133+/CD7− subfraction. In vivo analyses completed in 2 patients to date have shown that only the CD133+/CD7− subfraction was capable of engrafting NOD/SCID mice (0.5–54% CD45+ using 3x103–105 cells). These results demonstrate that T-ALL cells with long-term proliferative and NOD/SCID repopulating capacity express the primitive haemopoietic cell antigens CD133 and CD34 and lack expression of T-lineage markers. These findings add further support to the concept of a common cell of origin for acute leukaemias.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 394-394
Author(s):  
Kristin J Hope ◽  
Sonia Cellot ◽  
Stephen Ting ◽  
Guy Sauvageau

Abstract Abstract 394 Hematopoietic stem cells (HSC) can not yet be unambiguously prospectively identified, a fact which has made it difficult to determine whether a segregation of cell fate determinants underlies the asymmetric/symmetric self-renewal of these cells or whether deregulation of such determinants could contribute to the pathogenesis of hematopoietic malignancies by inducing constitutive symmetric self-renewal divisions. We have addressed these questions through a functional genetics approach taking advantage of systematic RNAi to evaluate the function of conserved polarity factors and cell fate determinants in HSCs. From a list of 72 of such factors identified in the literature, 30 murine homologues were chosen based on their differentially higher level of expression in HSC-enriched populations as measured by qRT-PCR. For each candidate we designed 3 unique short hairpin RNA (shRNA) encoding retroviral constructs also carrying EGFP for the purposes of following transduced cells. Primitive hematopoietic cells enriched for HSC were infected at high efficiency with the library in an arrayed 96-well format and their in vivo reconstituting potential was then evaluated through competitive repopulating unit assays. Genes for which shRNA vectors altered late transplant EGFP levels below or above thresholds as defined by a control shRNA to luciferase were considered as hits. Using this approach, we identified and comprehensively validated 4 genes, including the RNA binding protein Msi2, for which shRNA-mediated depletion dramatically impairs repopulation but does not induce cell death or a cell cycle block. Importantly, we show that the loss in the repopulating ability of these shRNA transduced cells is mediated at the stem cell level and is not due to progenitor or downstream cell toxicity or to any defect in the process of bone marrow homing. Subsequent expression profiling indicated that Msi2 is also upregulated in HOXB4-overexpressing symmetrically expanding HSC in line with our findings that it functions as a positive HSC regulator and further suggesting that it represents a potential novel HSC marker. As well as finding HSC agonists, the RNAi screen identified the homeodomain containing transcription factor Prox1 as a negative HSC regulator since its shRNA-mediated transcript loss consistently led to the dramatic in vivo accumulation of EGFP+ transduced cells. Grafts comprised of Prox1 shRNA-transduced cells did not exhibit any lineage skewing however, repeatedly contained an average of 10-fold more primitive Lin-Sca+CD150+48- cells as compared to non-transduced donor cells within the same recipient or to control shRNA-luciferase grafts indicating Prox1 knockdown leads to a significant in vivo expansion of phenotypic HSCs. Moreover, following a 7 day in vitro culture, cells infected with shRNAs to Prox1 were both morphologically and immunophenotypically more primitive than control cells and when transplanted at this time yielded a significantly enhanced engraftment level relative to control shRNAs (51+/-6% GFP vs 8+/-3% GFP). These results further suggest that Prox1 reduction by RNAi expands functional HSCs in vitro. Together these findings have identified conserved cell fate determinants as important and novel regulators of murine hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2852-2858 ◽  
Author(s):  
R Pawliuk ◽  
C Eaves ◽  
RK Humphries

Recent assessment of the long-term repopulating activity of defined subsets of hematopoietic cells has offered new insights into the characteristics of the transplantable stem cells of this system; however, as yet, there is very little known about mechanisms that regulate their self-renewal in vivo. We have now exploited the ability to quantitate these cells using the competitive repopulating unit (CRU) assay to identify the role of both intrinsic (ontological) and extrinsic (transplanted dose-related) variables that may contribute to the regulation of CRU recovery in vivo. Ly5.1 donor cells derived from day-14.5 fetal liver (FL) or the bone marrow (BM) of adult mice injected 4 days previously with 5-fluorouracil were transplanted at doses estimated to contain 10, 100, or 1,000 long-term CRU into irradiated congenic Ly5.2 adult recipient mice. Eight to 12 months after transplantation, there was a complete recovery of BM cellularity and in vitro clonogenic progenitor numbers and a nearly full recovery of day-12 colony-forming unit-spleen numbers irrespective of the number or origin of cells initially transplanted. In contrast, regeneration of Ly5.1+ donor-derived CRU was incomplete in all cases and was dependent on both the origin and dose of the transplant, with FL being markedly superior to that of adult BM. As a result, the final recovery of the adult marrow CRU compartment ranged from 15% to 62% and from 1% to 18% of the normal value in recipients of FL and adult BM transplantation, respectively, with an accompanying maximum CRU amplification of 150-fold for recipients of FL cells and 15-fold for recipients of adult BM cells. Interestingly, the extent of CRU expansion from either source was inversely related to the number of CRU transplanted. These data suggest that recovery of mature blood cell production in vivo may activate negative feedback regulatory mechanisms to prematurely limit stem cell self-renewal ability. Proviral integration analysis of mice receiving retrovirally transduced BM cells confirmed regeneration of totipotent lymphomyeloid repopulating cells and provided evidence for a greater than 300-fold clonal amplification of a single transduced stem cell. These results highlight the differential regenerative capacities of CRU from fetal and adult sources that likely reflect intrinsic, genetically defined determinants of CRU expansion but whose contribution to the magnitude of stem cell amplification ultimately obtained in vivo is also strongly influenced by the initial number of CRU transplanted. Such findings set the stage for attempts to enhance CRU regeneration by administration of agents that may enable full expression of regenerative potential or through the expression of intracellular gene products that may alter intrinsic regenerative capacity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 502-502
Author(s):  
Marisa M. Juntilla ◽  
Vineet Patil ◽  
Rohan Joshi ◽  
Gary A. Koretzky

Abstract Murine hematopoietic stem cells (HSCs) rely on components of the Akt signaling pathway, such as FOXO family members and PTEN, for efficient self-renewal and continued survival. However, it is unknown whether Akt is also required for murine HSC function. We hypothesized that Akt would be required for HSC self-renewal, and that the absence of Akt would lead to hematopoietic failure resulting in developmental defects in multiple lineages. To address the effect of Akt loss in HSCs we used competitive and noncompetitive murine fetal liver-bone marrow chimeras. In short-term assays, Akt1−/−Akt2−/− fetal liver cells reconstituted the LSK compartment of an irradiated host as well or better than wildtype cells, although failed to generate wildtype levels of more differentiated cells in multiple lineages. When placed in a competitive environment, Akt1−/−Akt2−/− HSCs were outcompeted by wildtype HSCs in serial bone marrow transplant assays, indicating a requirement for Akt1 and Akt2 in the maintainance of long-term hematopoietic stem cells. Akt1−/−Akt2−/− LSKs tend to remain in the G0 phase of the cell cycle compared to wildtype LSKs, suggesting the failure in serial transplant assays may be due to increased quiesence in the absence of Akt1 and Akt2. Additionally, the intracellular content of reactive oxygen species (ROS) in HSCs is dependent on Akt signaling because Akt1−/−Akt2−/− HSCs have decreased ROS levels. Furthermore, pharmacologic augmentation of ROS in the absence of Akt1 and Akt2 results in an exit from quiescence and rescue of differentiation both in vivo and in vitro. Together, these data implicate Akt1 and Akt2 as critical regulators of long-term HSC function and suggest that defective ROS homeostasis may contribute to failed hematopoiesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 732-732 ◽  
Author(s):  
Stephen Ting ◽  
Eric Deneault ◽  
Melanie Frechette ◽  
Jalila Chagraoui ◽  
Guy Sauvageau

Abstract The molecular details governing self-renewal in tissue stem cells of the invertebrate systems of Drosophila Melanogaster and C. Elegans have been instructive for equivalent tissues in vertebrates. In the aforementioned invertebrates, an integral group of genes involved in cell polarity seem able to intrinsically act as or affect cell fate determinants (CFDs) during the process of stem cell asymmetric cell division (ACD). On this premise, we focused on potential polarity genes that may act as CFD during HSC self-renewal. 72 CFD candidates were chosen from a literature review that addressed mechanisms of ACD. Gene expression profiles were performed on both highly purified Long Term Repopulating-HSC populations and primary Leukemia Stem Cells. A significant number of these candidates were highly and differentially expressed. The highest ranking 60% of candidates (42 of the initial 72 genes) was then chosen for a functional in vitro to in vivo over-expression screen. The underlying theory of this screen is based on the ability of Hoxb4-induced HSCs, as compared to control vector-induced HSCs, to expand during a short in vitro culture period, together with their ability to provide significant long-term reconstitution upon transplantation after this in vitro expansion. Therefore, a positive candidate would be one that has a Hoxb4-like expansion effect on HSCs. In brief, using a 96 well plate format, 1500 CD150+48-Lin-Ly5.1+ donor derived HSCs were infected independently with each candidate, together with negative (vector alone) and positive (Hoxb4 and Nup98-Hoxa10 fusion) controls, for a total of 12 days and equal proportions of HSCs were transplanted after 5 and 12 days of in vitro culture into recipient Ly5.2+ mice. The read out measurement was donor Ly5.1+ peripheral blood reconstitution performed at monthly intervals for 5 months. At day 5 transplantations, 12 of the 42 genes had donor reconstitution above the empty vector control at 16 weeks. Of these 12 genes, only 4 retained positive long-term transplant donor reconstitution after the extra week of infection to 12 days. These 4 genes were: Ap2a2, Gpsm2, Tmod1 and Kif3a. Of these, the first 2 genes are robust candidates, having been replicated in 4 independent experiments. Interestingly, both these CFD candidates, Ap2a2 (as part of the endocytic machinery that interacts with membrane receptors) and Gpsm2 (as a G-protein signaling modulator that also influences mitotic spindle orientation) potentially provide mechanisms that allow the HSC to communicate with the niche. Ap2a2 induced HSCs in particular are able to reconstitute to levels beyond and equivalent to Hoxb4 and Nup98-HoxA10-induction, respectively. Oligoclonality (ruling out insertional mutagenesis) and multipotency from donor-derived Ly5-1+ HSCs in recipients at 20 plus weeks post-transplantation has also been performed. Endogenous Ap2a2 is localized predominantly asymmetrically in purified LTR-HSCs, as opposed to a predominant symmetrical distribution in E14 fetal liver HSCs. Initial live cell microscopy of LTR-HSCs infected with Ap2a2 fluorescent fusion proteins confirms the asymmetrical distribution, and further mechanistic insights should follow with prolonged video microscopy.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4102-4109 ◽  
Author(s):  
CI Civin ◽  
G Almeida-Porada ◽  
MJ Lee ◽  
J Olweus ◽  
LW Terstappen ◽  
...  

Abstract Data from many laboratory and clinical investigations indicate that CD34+ cells comprise approximately 1% of human bone marrow (BM) mononuclear cells, including the progenitor cells of all the lymphohematopoietic lineages and lymphohematopoietic stem cells (stem cells). Because stem cells are an important but rare cell type in the CD34+ cell population, investigators have subdivided the CD34+ cell population to further enrich stem cells. The CD34+/CD38-cell subset comprises less than 10% of human CD34+ adult BM cells (equivalent to < 0.1% of marrow mononuclear cells), lacks lineage (lin) antigens, contains cells with in vitro replating capacity, and is predicted to be highly enriched for stem cells. The present investigation tested whether the CD34+/CD38-subset of adult human marrow generates human hematopoiesis after transfer to preimmune fetal sheep. CD34+/ CD38- cells purified from marrow using immunomagnetic microspheres or fluorescence-activated cell sorting generated easily detectable, long- term, multilineage human hematopoiesis in the human-fetal sheep in vivo model. In contrast, transfer of CD34+/CD38+ cells to preimmune fetal sheep generated only short-term human hematopoiesis, possibly suggesting that the CD34+/CD38+ cell population contains relatively early multipotent hematopoletic progenitor cells, but not stem cells. This work extends the prior in vitro evidence that the earliest cells in fetal and adult human marrow lack CD38 expression. In summary, the CD34+/ CD38-cell population has a high capacity for long-term multilineage hematopoietic engraftment, suggesting the presence of stem cells in this minor adult human marrow cell subset.


Sign in / Sign up

Export Citation Format

Share Document