scholarly journals Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti–human DEC205 monoclonal antibody

Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3828-3838 ◽  
Author(s):  
Cheolho Cheong ◽  
Jae-Hoon Choi ◽  
Laura Vitale ◽  
Li-Zhen He ◽  
Christine Trumpfheller ◽  
...  

Abstract Protein vaccines for T-cell immunity are not being prioritized because of poor immunogenicity. To overcome this hurdle, proteins are being targeted to maturing dendritic cells (DCs) within monoclonal antibodies (mAbs) to DC receptors. To extend the concept to humans, we immunized human immunoglobulin-expressing mice with human DEC205 (hDEC205) extracellular domain. 3D6 and 3G9 mAbs were selected for high-affinity binding to hDEC205. In addition, CD11c promoter hDEC205 transgenic mice were generated, and 3G9 was selectively targeted to DCs in these animals. When mAb heavy chain was engineered to express HIV Gag p24, the fusion mAb induced interferon-γ– and interleukin-2–producing CD4+ T cells in hDEC205 transgenic mice, if polynocinic polycytidylic acid was coadministered as an adjuvant. The T-cell response was broad, recognizing at least 3 Gag peptides, and high titers of anti-human immunoglobulin G antibody were made. Anti-hDEC205 also improved the cross-presentation of Gag to primed CD8+ T cells from HIV-infected individuals. In all tests, 3D6 and 3G9 targeting greatly enhanced immunization relative to nonbinding control mAb. These results provide preclinical evidence that in vivo hDEC205 targeting increases the efficiency with which proteins elicit specific immunity, setting the stage for proof-of-concept studies of these new protein vaccines in human subjects.

2021 ◽  
Vol 9 (6) ◽  
pp. e002544
Author(s):  
Eugene Shenderov ◽  
Matheswaran Kandasamy ◽  
Uzi Gileadi ◽  
Jili Chen ◽  
Dawn Shepherd ◽  
...  

BackgroundNY-ESO-1 is a tumor-specific, highly immunogenic, human germ cell antigen of the MAGE-1 family that is a promising vaccine and cell therapy candidate in clinical trial development. The mouse genome does not encode an NY-ESO-1 homolog thereby not subjecting transgenic T-cells to thymic tolerance mechanisms that might impair in-vivo studies. We hypothesized that an NY-ESO-1 T cell receptor (TCR) transgenic mouse would provide the unique opportunity to study avidity of TCR response against NY-ESO-1 for tumor vaccine and cellular therapy development against this clinically relevant and physiological human antigen.MethodsTo study in vitro and in vivo the requirements for shaping an effective T cell response against the clinically relevant NY-ESO-1, we generated a C57BL/6 HLA-A*0201 background TCR transgenic mouse encoding the 1G4 TCR specific for the human HLA-A2 restricted, NY-ESO-1157-165 SLLMWITQC (9C), initially identified in an NY-ESO-1 positive melanoma patient.ResultsThe HLA-A*0201 restricted TCR was positively selected on both CD4+ and CD8+ cells. Mouse 1G4 T cells were not activated by endogenous autoimmune targets or a large library of non-cognate viral antigens. In contrast, their activation by HLA-A2 NY-ESO-1157-165 complexes was evident by proliferation, CD69 upregulation, interferon-γ production, and interleukin-2 production, and could be tuned using a twofold higher affinity altered peptide ligand, NY-ESO-1157-165V. NY-ESO-1157-165V recombinant vaccination of syngeneic mice adoptively transferred with m1G4 CD8+ T cells controlled tumor growth in vivo. 1G4 transgenic mice suppressed growth of syngeneic methylcholanthrene (MCA) induced HHD tumor cells expressing the full-length human NY-ESO-1 protein but not MCA HHD tumor cells lacking NY-ESO-1.ConclusionsThe 1G4 TCR mouse model for the physiological human TCR against the clinically relevant antigen, NY-ESO-1, is a valuable tool with the potential to accelerate clinical development of NY-ESO-1-targeted T-cell and vaccine therapies.


2005 ◽  
Vol 73 (10) ◽  
pp. 6620-6628 ◽  
Author(s):  
Sylvie Bertholet ◽  
Alain Debrabant ◽  
Farhat Afrin ◽  
Elisabeth Caler ◽  
Susana Mendez ◽  
...  

ABSTRACT CD4+ and CD8+ T-cell responses have been shown to be critical for the development and maintenance of acquired resistance to infections with the protozoan parasite Leishmania major. Monitoring the development of immunodominant or clonally restricted T-cell subsets in response to infection has been difficult, however, due to the paucity of known epitopes. We have analyzed the potential of L. major transgenic parasites, expressing the model antigen ovalbumin (OVA), to be presented by antigen-presenting cells to OVA-specific OT-II CD4+ or OT-I CD8+ T cells. Truncated OVA was expressed in L. major as part of a secreted or nonsecreted chimeric protein with L. donovani 3′ nucleotidase (NT-OVA). Dendritic cells (DC) but not macrophages infected with L. major that secreted NT-OVA could prime OT-I T cells to proliferate and release gamma interferon. A diminished T-cell response was observed when DC were infected with parasites expressing nonsecreted NT-OVA or with heat-killed parasites. Inoculation of mice with transgenic parasites elicited the proliferation of adoptively transferred OT-I T cells and their recruitment to the site of infection in the skin. Together, these results demonstrate the possibility of targeting heterologous antigens to specific cellular compartments in L. major and suggest that proteins secreted or released by L. major in infected DC are a major source of peptides for the generation of parasite-specific CD8+ T cells. The ability of L. major transgenic parasites to activate OT-I CD8+ T cells in vivo will permit the analysis of parasite-driven T-cell expansion, differentiation, and recruitment at the clonal level.


2021 ◽  
Vol 9 (5) ◽  
pp. e002155
Author(s):  
Zining Wang ◽  
Feifei Xu ◽  
Jie Hu ◽  
Hongxia Zhang ◽  
Lei Cui ◽  
...  

BackgroundDendritic cells (DCs) play a critical role in antitumor immunity, but the therapeutic efficacy of DC-mediated cancer vaccine remains low, partly due to unsustainable DC function in tumor antigen presentation. Thus, identifying drugs that could enhance DC-based antitumor immunity and uncovering the underlying mechanism may provide new therapeutic options for cancer immunotherapy.MethodsIn vitro antigen presentation assay was used for DC-modulating drug screening. The function of DC and T cells was measured by flow cytometry, ELISA, or qPCR. B16, MC38, CT26 tumor models and C57BL/6, Balb/c, nude, and Batf3−/− mice were used to analyze the in vivo therapy efficacy and impact on tumor immune microenvironment by clotrimazole treatment.ResultsBy screening a group of small molecule inhibitors and the US Food and Drug Administration (FDA)-approved drugs, we identified that clotrimazole, an antifungal drug, could promote DC-mediated antigen presentation and enhance T cell response. Mechanistically, clotrimazole acted on hexokinase 2 to regulate lactate metabolic production and enhanced the lysosome pathway and Chop expression in DCs subsequently induced DC maturation and T cell activation. Importantly, in vivo clotrimazole administration induced intratumor immune infiltration and inhibited tumor growth depending on both DCs and CD8+ T cells and potentiated the antitumor efficacy of anti-PD1 antibody.ConclusionsOur findings showed that clotrimazole could trigger DC activation via the lactate-lysosome axis to promote antigen cross-presentation and could be used as a potential combination therapy approach to improving the therapeutic efficacy of anti-PD1 immunotherapy.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2655-2661 ◽  
Author(s):  
Devi K. Banerjee ◽  
Madhav V. Dhodapkar ◽  
Elyana Matayeva ◽  
Ralph M. Steinman ◽  
Kavita M. Dhodapkar

AbstractCD4+CD25+FOXP3+ regulatory T cells (Treg's) play an important role in the maintenance of immune tolerance. The mechanisms controlling the induction and maintenance of Treg's in humans need to be defined. We find that human myeloid dendritic cells (DCs) are superior to other antigen presenting cells for the maintenance of FOXP3+ Treg's in culture. Coculture of DCs with autologous T cells leads to an increase in both the number of Treg's, as well as the expression of FOXP3 protein per cell both in healthy donors and myeloma patients. DC-mediated expansion of FOXP3high Treg's is enhanced by endogenous but not exogenous interleukin-2 (IL-2), and DC-T-cell contact, including the CD80/CD86 membrane costimulatory molecules. DCs also stimulate the formation of Treg's from CD25- T cells. The efficacy of induction of Treg's by DCs depends on the nature of the DC maturation stimulus, with inflammatory cytokine-treated DCs (Cyt-DCs) being the most effective Treg inducers. DC-induced Treg's from both healthy donors and patients with myeloma are functional and effectively suppress T-cell responses. A single injection of cytokine-matured DCs led to rapid enhancement of FOXP3+ Treg's in vivo in 3 of 3 myeloma patients. These data reveal a role for DCs in increasing the number of functional FOXP3high Treg's in humans.


2010 ◽  
Vol 207 (9) ◽  
pp. 1891-1905 ◽  
Author(s):  
Magali Irla ◽  
Natalia Küpfer ◽  
Tobias Suter ◽  
Rami Lissilaa ◽  
Mahdia Benkhoucha ◽  
...  

Although plasmacytoid dendritic cells (pDCs) express major histocompatibility complex class II (MHCII) molecules, and can capture, process, and present antigens (Ags), direct demonstrations that they function as professional Ag-presenting cells (APCs) in vivo during ongoing immune responses remain lacking. We demonstrate that mice exhibiting a selective abrogation of MHCII expression by pDCs develop exacerbated experimental autoimmune encephalomyelitis (EAE) as a consequence of enhanced priming of encephalitogenic CD4+ T cell responses in secondary lymphoid tissues. After EAE induction, pDCs are recruited to lymph nodes and establish MHCII-dependent myelin-Ag–specific contacts with CD4+ T cells. These interactions promote the selective expansion of myelin-Ag–specific natural regulatory T cells that dampen the autoimmune T cell response. pDCs thus function as APCs during the course of EAE and confer a natural protection against autoimmune disease development that is mediated directly by their ability to present of Ags to CD4+ T cells in vivo.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A38.1-A38
Author(s):  
S Schmitt ◽  
A Lohner ◽  
K Deiser ◽  
A Maiser ◽  
M Rothe ◽  
...  

BackgroundDendritic cells (DCs) are antigen-presenting cells that induce antigen-specific T-cell responses. Therefore, they are used as tools and targets for anti-tumor vaccination. In contrast to T-cell based immunotherapies, that are often limited to surface antigens, DC-based vaccination strategies open up new therapeutic options by utilizing highly abundant intracellular tumor antigens as a target source. Among those, recent interest has been focused on the identification of neoantigens derived from tumor-specific mutations. Especially mutated Nucleophosmin 1 (ΔNPM1) is a considered candidate for targeted therapy in acute myeloid leukemia (AML). We developed a multifunctional antibody construct consisting of a peptide domain including a variable T-cell epitope that is fused to an αCD40 single chain variable fragment (scFv) with agonistic function to target and activate dendritic cells in vivo. To potentiate therapeutic efficacy, toll-like receptor (TLR) agonists can be attached as co-stimulatory domains, thereby aiming to enhance cross-presentation of conjugated (neo)antigens to CD8+ T cells.Materials and MethodsFlow cytometry and microscopy-based binding and internalization experiments were performed using monocyte-derived dendritic cells (moDCs). Upregulation of surface markers (CD80, CD83, CD86, HLA-DR) as well as cytokine secretion (IL-6 and IL-12) indicated DC maturation. To validate peptide processing and presentation, moDCs were co-cultured with autologous as well as allogeneic T cells. IFN-γ and TNF-α secretion served as a readout for T-cell activation, peptide-MHC multimer staining for T-cell proliferation.ResultsFor proof-of-principle experiments, the multispecific antibody derivative was developed by fusing the αCD40 scFv to a cytomegalovirus (CMV)-specific peptide. The αCD40.CMV construct bound CD40 agonistically and showed efficient internalization into early endosomal compartments on immature moDCs. In co-cultures of immature and mature moDCs with autologous or allogeneic T cells, αCD40.CMV induced a significantly increased T-cell activation and proliferation compared to the control. The co-administration of αCD40.CMV with various TLR agonists as vaccine adjuvants resulted in a significant upregulation of DC maturation markers in comparison to αCD40.CMV only. Interestingly, not all adjuvants were able to enhance the T-cell response. To translate this principle to the AML setting, the CMV peptide sequence was replaced with the ΔNPM1-derived and HLA-A*02:01-binding neoantigen CLAVEEVSL. Cross-presentation to CD8+ T cells transduced with a ΔNPM1-specific T-cell receptor was proven by IFN-γ and TNF-α secretion in co-cultures with moDCs that have been pre-incubated with αCD40.ΔNPM1. The optimal vaccine adjuvant has yet to be identified.ConclusionsWe successfully demonstrated the development of a multifunctional antibody construct that specifically targets and stimulates DCs by an agonistic αCD40 scFv. It simultaneously delivers a T cell-specific peptide with a vaccine adjuvant to induce an efficient T-cell response. As neoantigens are promising targets and under intense investigaton, the αCD40.ΔNPM1 fusion protein is of high therapeutic interest. Thus, our approach displays a promising DC vaccination option for the treatment of AML.Disclosure InformationS. Schmitt: None. A. Lohner: None. K. Deiser: None. A. Maiser: None. M. Rothe: None. C. Augsberger: None. A. Moosmann: None. H. Leonhardt: None. N. Fenn: None. M. Griffioen: None. K. Hopfner: None. M. Subklewe: None.


2006 ◽  
Vol 80 (4) ◽  
pp. 1826-1836 ◽  
Author(s):  
Allison T. Thiele ◽  
Tina L. Sumpter ◽  
Joanna A. Walker ◽  
Qi Xu ◽  
Cheong-Hee Chang ◽  
...  

ABSTRACT Adenovirus (Ad) infection has been identified as predisposing hosts to the development of pulmonary disease through unknown mechanisms. Lung dendritic cells (DCs) are vital for initiating pulmonary immune responses; however, the effects of Ad infection on primary lung DC have not been studied. In contrast to the effects on bone marrow- and monocyte-derived DCs, the current study shows that Ad infection of murine BALB/c lung DCs in vitro and in vivo suppresses DC-induced T-cell proliferation. The effect of Ad on DCs was not due to a downregulation of major histocompatibility complex or costimulatory molecules. Analysis of the production of interleukin-12 (IL-12), alpha interferon (IFN-α), and IFN-γ by the Ad-infected DCs shows no significant differences over noninfected control lung DCs. Ad-induced suppression was not due to a deficiency of IL-2 or other DC-secreted factors and was dependent on viral protein synthesis, as UV irradiation of Ad abrogated the suppressive effect. Results suggest that Ad-infected DCs induce T cells to be nonresponsive to IL-2 during primary coculture, as the addition of IL-2 in secondary cultures recovered T-cell proliferation. In vivo studies supported in vitro results showing that Ad infection resulted in lung T cells with decreased proliferative ability. This study demonstrates that Ad infection induces local immunoincompetence by altering DC-T-cell interactions.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Karsten Mahnke ◽  
Yingjie Qian ◽  
Jürgen Knop ◽  
Alexander H. Enk

AbstractCoupling of ovalbumin (OVA) to anti–DEC-205 monoclonal antibody (mAb) (αDEC) induced the proliferation of OVA-specific T cells in vivo. Expansion was short-lived, caused by dendritic cells (DCs), and rendered T cells anergic thereafter. Phenotypic analysis revealed the induction of CD25+/CTLA-4+ T cells suppressing proliferation and interleukin-2 (IL-2) production of effector CD4+ T cells. The findings were supported by 2 disease models: (1) CD4+ T-cell–mediated hypersensitivity reactions were suppressed by the injection of αDEC-OVA and (2) the application of hapten-coupled αDEC-205 reduced CD8+ T-cell–mediated allergic reactions. Thus, targeting of antigens to immature DCs through αDEC antibodies led to the induction of regulatory T cells, providing the basis for novel strategies to induce regulatory T cells in vivo.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


Sign in / Sign up

Export Citation Format

Share Document