scholarly journals Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia

Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5824-5831 ◽  
Author(s):  
Ana Flávia Tibúrcio Ribeiro ◽  
Marta Pratcorona ◽  
Claudia Erpelinck-Verschueren ◽  
Veronika Rockova ◽  
Mathijs Sanders ◽  
...  

Abstract The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A in 96 of 415 patients with newly diagnosed AML (23.1%). Univariate Cox regression analysis showed that patients with DNMT3Amutant AML show significantly worse overall survival (OS; P = .022; hazard ratio [HR], 1.38; 95% confidence interval [CI], 1.04-1.81), and relapse-free survival (RFS; P = .005; HR, 1.52; 95% CI, 1.13-2.05) than DNMT3Awild-type AMLs. In a multivariable analysis, DNMT3A mutations express independent unfavorable prognostic value for OS (P = .003; HR, 1.82; 95% CI, 1.2-2.7) and RFS (P < .001; HR, 2.2; 95% CI, 1.4-3.3). In a composite genotypic subset of cytogenetic intermediate-risk AML without FLT3-ITD and NPM1 mutations, this association is particularly evident (OS: P = .013; HR, 2.09; 95% CI, 1.16-3.77; RFS: P = .001; HR, 2.65; 95% CI, 1.48-4.89). The effect of DNMT3A mutations in human AML remains elusive, because DNMT3Amutant AMLs did not express a methylation or gene expression signature that discriminates them from patients with DNMT3Awild-type AML. We conclude that DNMT3A mutation status is an important factor to consider for risk stratification of patients with AML.

Chemotherapy ◽  
2016 ◽  
Vol 61 (6) ◽  
pp. 313-318 ◽  
Author(s):  
Myrna Candelaria ◽  
Carmen Corrales-Alfaro ◽  
Olga Gutiérrez-Hernández ◽  
José Díaz-Chavez ◽  
Juan Labardini-Méndez ◽  
...  

Background: Cytarabine (Ara-C) is the primary drug in different treatment schemas for acute myeloid leukemia (AML) and requires the human equilibrative nucleoside transporter (hENT1) to enter cells. The deoxycytidine kinase (dCK) enzyme limits its activation rate. Therefore, decreased expression levels of these genes may influence the response rate to this drug. Methods: AML patients without previous treatment were enrolled. The expression of hENT1 and dCK genes was analyzed using RT-PCR. Clinical parameters were registered. All patients received Ara-C + doxorubicin as an induction regimen (7 + 3 schema). Descriptive statistics were used to analyze data. Uni- and multivariate analyses were performed to determine factors that influenced response and survival. Results: Twenty-eight patients were included from January 2011 until December 2012. Median age was 36.5 years. All patients had an adequate performance status (43% with ECOG 1 and 57% with ECOG 2). Cytogenetic risk was considered unfavorable in 54% of the patients. Complete response was achieved in 53.8%. Cox regression analysis showed that a higher hENT1 expression level was the only factor that influenced response and survival. Conclusions: These results highly suggest that the pharmacogenetic analyses of Ara-C influx may be decisive in AML patients.


2021 ◽  
Author(s):  
xinwen zhang ◽  
Hao Xiong ◽  
Jialin Duan ◽  
Xiaomin Chen ◽  
Yang Liu ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is one of the common malignant diseases of hematopoietic system. Paxillin ( PXN ) is an important part of focal adhesions (FAs), which is related to the poor prognosis of many kinds of malignant tumors. However, no research has focused on the expression of PXN in AML. We aimed to investigate the expression of PXN in AML and its prognostic significance. Methods: Using GEPIA and UALCAN database to analyze the expression of PXN in AML patients and its prognostic significance. Bone marrow samples of newly diagnosed AML patients were collected to extract RNA, and qRT-PCR was used to detect the expression of PXN . The prognosis was followed up. Chi-square test was used to analyze the relationship between PXN expression and clinical laboratory characteristics. Kaplan-Meier analysis was used to draw survival curve, and Cox regression analysis was used to analyze the independent factors affecting the prognosis of patients with AML. The co-expression genes of PXN were analyzed by LinkedOmics to explore its biological significance in AML. Results: Kaplan-Meier analysis showed that the overall survival time of AML patients was related to whether to receive treatment and PXN expression(P<0.05). COX regression analysis showed that whether to receive treatment (HR=0.227,95%CI=0.075-0.689, P =0.009) and high expression of PXN (HR=4.484,95%CI=1.449-13.889, P =0.009) were independent poor prognostic factors in patients with AML. Conclusion: PXN is highly expressed in AML patient, and high PXN expression is an indicator of poor prognosis in AML patient.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2993-2993
Author(s):  
Charles G. Mullighan ◽  
Alyssa L. Kennedy ◽  
Xiaodong Zhou ◽  
Sheila A. Shurtleff ◽  
James R. Downing

Abstract Recent studies have identified mutations in the nucleophosmin (NPM) gene in up to one-third of cases of acute myeloid leukemia (AML) lacking a recurring cytogenetic abnormality. NPM mutations (NPMm+) result in aberrant cytoplasmic localization of nucleophosmin, which may potentially perturb multiple cellular pathways including cell cycle regulation. However the exact mechanisms by which mutant NPM contributes to leukemogenesis are unclear. Gene expression analysis may identify mediators or pathways in NPMm+ AML that are important in the development of leukemia. We have examined NPM mutation status in a 93 cases of pediatric AML and correlated mutation status with gene expression profile. All major AML subgroups were studied including AML-ETO (n=18), MLL rearranged (n=14) CBFB-MYH11 (n=13), PML-RARA and variants (n=4), acute megakaryoblastic leukemia (n=4), and AML with normal cytogenetics (n=20), or non-recurring cytogenetic abnormalities (n=20). Exon 12 of NPM was PCR amplified, sequenced, and abnormal cases verified by cloning and sequencing. Gene expression profiling was performed using Affymetrix U133A arrays. Six cases with tetranucleotide insertion mutations in NPM exon 12 were identified. Four had normal cytogenetics, and two non-recurring cytogenetic abnormalities. Differential gene expression between NPMm+ and NPMm- AML (either all NPMm- cases, or only those NPMm- cases lacking recurring cytogenetic abnormalities) was assessed by t-test. NPMm+ AML was characterized by upregulation of multiple homeobox genes (e.g. HOXA9, A10, B2, B6) as well as multiple genes with known or potential roles in tumorigenesis, such as MEIS1 and the NPM fusion partner ALK. This pattern of disordered HOX expression is similar to that of MLL-rearranged leukemia; however comparison of the signatures of NPMm+ and MLL-rearranged leukemia identified important differences, such as upregulation of HOXB2, B3, B6 and D4 in NPMm+ AML but not MLL-leukemia. These results confirm a recently published report describing perturbed HOX expression in NPMm+ AML (Alcalay et al. Blood2005;106:899), and provide the first evidence that the NPMm+ signature is similar to but distinct from MLL-rearranged AML. These findings provide important insights into the pathogenesis of NPMm+ leukemia, and support the hypothesis that mutated NPM dysregulates HOX expression via a different mechanism than MLL rearrangement.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 141-141 ◽  
Author(s):  
Bas J. Wouters ◽  
Claudia A.J. Erpelinck-Verschueren ◽  
Bob Lowenberg ◽  
Peter J.M. Valk ◽  
Ruud Delwel

Abstract Acute myeloid leukemia (AML) is a heterogeneous disease characterized by various cytogenetic and molecular abnormalities, some of which can be used as prognostic markers. Mutations in the transcription factor CCAAT/enhancer binding protein alpha (CEBPA) occur in 5–10% of AML and have consistently been associated with a favorable outcome. Three types of mutations have been described: N-terminal out-of-frame mutations, inframe mutations in the basic leucine zipper (bZIP) region, and a small variable group of remaining aberrations. Most CEBPA mutant AML cases carry two mutations, usually on different alleles (double mutant). However, there are also cases that only express a single heterozygous mutation, and thus retain a wild type allele (single mutant). It is not known whether single and double CEBPA mutations should be considered of equal biological and/or clinical importance. We applied dHPLC WAVE technology in combination with nucleotide sequencing of the entire CEBPA gene in a cohort of 598 cases of adult de novo AML. After exclusion of previously described polymorphisms, we identified 41 cases (6.9%) with at least one mutation. Of these cases, 28 carried double mutations, i.e. two different heterozygous mutations or one homozygous mutation, whereas the remaining cases carried a single heterozygous mutation. To investigate whether CEBPA mutations were associated with specific transcriptional signatures, we examined genome-wide gene expression (GEP) data of 525/598 AMLs, including 38/41 CEBPA mutant cases. Class prediction of total CEBPA mutation status based on GEP data resulted in a relatively large number of false negatives in cross-validation using the PAM algorithm (sensitivity 68%, specificity 99%). Strikingly however, all these missed cases appeared to be of the single mutant group, while the double mutants were recognized with high accuracy. In agreement, unsupervised cluster analysis of the 525 AMLs led to distinct grouping of cases with double mutations, while cases with a single heterozygous mutation did not. These observations suggested that double and single CEBPA mutant AMLs represent distinct biological entities. We next assessed the clinical relevance of this finding. In concordance with previous studies, total CEBPA mutation status associated with favorable overall survival (OS) and event-free survival (EFS) (P=0.023 and P=0.042, log rank test), which was maintained in multivariable Cox’s proportional hazards models with cytogenetic risk group, FLT3-ITD and NPM1 mutation status, age and white blood cell count (hazard ratio [HR] 0.47, 95% confidence interval [CI] 0.29–0.77; P=0.002 and HR 0.52, 95% CI 0.33–0.82; P=0.004). Surprisingly, when the double and single CEBPA mutant cases were separately analyzed, only the double mutants showed a highly favorable outcome, while the single mutants could not be distinguished from CEBPA wild type AMLs (P=0.003 versus P=0.51 (OS) and P=0.004 versus P=0.18 (EFS)). In multivariable analysis, CEBPA double mutation status remained associated with favorable outcome (OS HR 0.31, 95% CI 0.16–0.59; P&lt;0.001, and EFS HR 0.34; 95% CI 0.19–0.61; P&lt;0.001), contrasting with the single mutants (HR 1.18, 95% CI 0.58–2.41; P=0.64 and HR 1.65, 95% CI 0.84–3.23; P=0.15). Similarly, in multivariable analysis in the selected normal karyotype subset (n=193), CEBPA double mutations, but not single mutations, were significantly associated with OS (P=0.026 versus P=0.24) and EFS (P=0.013 versus P=0.42). In conclusion, these data demonstrate the existence of distinct transcriptional and clinical characteristics of AML cases with double CEBPA mutations and imply that it is crucial to discriminate them from single mutants to identify those patients with a favorable prognosis.


2015 ◽  
Vol 134 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Umit Yavuz Malkan ◽  
Gursel Gunes ◽  
Ayse Isik ◽  
Eylem Eliacik ◽  
Sezgin Etgul ◽  
...  

There are very few data about the relationship between acute myeloid leukemia (AML) prognosis and bone marrow recovery kinetics following chemotherapy. In this study, we aimed to assess the prognostic importance and clinical associations of neutrophil and platelet recovery rates and rebound thrombocytosis (RT) or neutrophilia (RN) in the postchemotherapy period for newly diagnosed AML patients. De novo AML patients diagnosed between October 2002 and December 2013 were evaluated retrospectively. One hundred patients were suitable for inclusion. Cox regression analysis using need for reinduction chemotherapy as a stratification parameter revealed RT as the only parameter predictive of OS, with borderline statistical significance (p = 0.06, OR = 7; 95% CI 0.92-53), and it was the only parameter predictive of DFS (p = 0.024, OR = 10; 95% CI 1.3-75). In order to understand whether RT or RN was related to a better marrow capacity or late consolidation, we considered neutrophil recovery time and platelet recovery time and nadir-first consolidation durations in all patients in the cohort. Both the marrow recovery duration and the time between marrow aplasia and first consolidation were shorter in RT and RN patients. To our knowledge, this is the first study to report a correlation between RT/RN and prognosis in AML.


2021 ◽  
Author(s):  
Fangmin Zhong ◽  
Fangyi Yao ◽  
Ying Cheng ◽  
Jing Liu ◽  
Nan Zhang ◽  
...  

Abstract Acute myeloid leukemia (AML) is a complex hematologic malignancy. Survival rate of AML patients is low. N6-methyladenosine (m6A) and long-chain non-coding RNAs (lncRNAs) play important roles in AML tumorigenesis and progression. However, the relationship between lncRNAs and biological characteristics of AML, as well as how lncRNAs influence the prognosis of AML patients, remain unclear. In this study, we identified m6A-related lncRNAs, and analyzed their roles and prognostic values in AML. m6A-related lncRNAs associated with patient prognosis were screened using univariate Cox regression analysis, followed by systematic analysis of the relationship between these genes and AML clinicopathologic and biologic characteristics. Furthermore, we examined the characteristics of tumor immune microenvironment (TIME) using different IncRNA clustering models. Using LASSO regression, we identified the risk signals related to prognosis of AML patients. We then constructed and verified a risk model based on m6A-related lncRNAs for independent prediction of overall survival in AML patients. Our results indicate that risk scores, calculated based on risk-related signaling, were related to the clinicopathologic characteristics of AML and level of immune infiltration. Finally, we examined the expression level of TRAF3IP2-AS1 in patient samples through real-time polymerase chain reaction analysis and in GEO datasets, and we identified SRSF10 as a regulator of TRAF3IP2-AS1 through in vitro assays. Our study shows that m6A-related lncRNAs, evaluated using the risk prediction model, can potentially be used to predict prognosis and design immunotherapy in AML patients.


Author(s):  
Xianbo Huang ◽  
De Zhou ◽  
Xiujin Ye ◽  
Jie Jin

Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy that strongly correlates with poor clinical outcomes. Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death which plays an important role in various human cancers. Nevertheless, the prognostic significance and functions of ferroptosis-related genes (FRGs) in AML have not received sufficient attention. The aim of this article was to evaluate the association between FRGs levels and AML prognosis using publicly available RNA-sequencing datasets. The univariate Cox regression analysis identified 20 FRGs that correlate with patient overall survival. The LASSO Cox regression model was used to construct a prognostic 12-gene risk model using a TCGA cohort, and internal and external validation proved the signature efficient. The 12-FRGs signature was then used to assign patients into high- and low-risk groups, with the former exhibiting markedly reduced overall survival, compared to the low-risk group. ROC curve analysis verified the predictive ability of the risk model. Functional analysis showed that immune status and drug sensitivity differed between the 2 risk groups. In summary, FRGs is a promising candidate biomarker and therapeutic target for AML.


2021 ◽  
Vol 12 ◽  
Author(s):  
Denggang Fu ◽  
Biyu Zhang ◽  
Shiyong Wu ◽  
Yinghua Zhang ◽  
Jingwu Xie ◽  
...  

Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies that has an unfavorable outcome and a high rate of relapse. Autophagy plays a vital role in the development of and therapeutic responses to leukemia. This study identifies a potential autophagy-related signature to monitor the prognoses of patients of AML. Transcriptomic profiles of AML patients (GSE37642) with the relevant clinical information were downloaded from Gene Expression Omnibus (GEO) as the training set while TCGA-AML and GSE12417 were used as validation cohorts. Univariate regression analyses and multivariate stepwise Cox regression analysis were respectively applied to identify the autophagy-related signature. The univariate Cox regression analysis identified 32 autophagy-related genes (ARGs) that were significantly associated with the overall survival (OS) of the patients, and were mainly rich in signaling pathways for autophagy, p53, AMPK, and TNF. A prognostic signature that comprised eight ARGs (BAG3, CALCOCO2, CAMKK2, CANX, DAPK1, P4HB, TSC2, and ULK1) and had good predictive capacity was established by LASSO–Cox stepwise regression analysis. High-risk patients were found to have significantly shorter OS than patients in low-risk group. The signature can be used as an independent prognostic predictor after adjusting for clinicopathological parameters, and was validated on two external AML sets. Differentially expressed genes analyzed in two groups were involved in inflammatory and immune signaling pathways. An analysis of tumor-infiltrating immune cells confirmed that high-risk patients had a strong immunosuppressive microenvironment. Potential druggable OS-related ARGs were then investigated through protein–drug interactions. This study provides a systematic analysis of ARGs and develops an OS-related prognostic predictor for AML patients. Further work is needed to verify its clinical utility and identify the underlying molecular mechanisms in AML.


Sign in / Sign up

Export Citation Format

Share Document