scholarly journals 5-azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand

Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4242-4252 ◽  
Author(s):  
Viviane Ghanim ◽  
Harald Herrmann ◽  
Gerwin Heller ◽  
Barbara Peter ◽  
Emir Hadzijusufovic ◽  
...  

Abstract Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) are advanced hematopoietic neoplasms with poor prognosis. In these patients, neoplastic mast cells (MCs) are resistant against various drugs. We examined the effects of 2 demethylating agents, 5-azacytidine and decitabine on growth and survival of neoplastic MCs and the MC line HMC-1. Two HMC-1 subclones were used, HMC-1.1 lacking KIT D816V and HMC-1.2 exhibiting KIT D816V. Both agents induced apoptosis in HMC-1.1 and HMC-1.2 cells. Decitabine, but not 5-azacytidine, also produced a G2/M cell-cycle arrest in HMC-1 cells. Drug-induced apoptosis was accompanied by cleavage of caspase-8 and caspase-3 as well as FAS-demethylation and FAS–re-expression in neoplastic MCs. Furthermore, both demethylating agents were found to synergize with the FAS-ligand in inducing apoptosis in neoplastic MCs. Correspondingly, siRNA against FAS was found to block drug-induced expression of FAS and drug-induced apoptosis in HMC-1 cells. Neither 5-azacytidine nor decitabine induced substantial apoptosis or growth arrest in normal MCs or normal bone marrow cells. Together, 5-azacytidine and decitabine exert growth-inhibitory and proapoptotic effects in neoplastic MCs. These effects are mediated through “FAS–re-expression” and are augmented by the FAS-ligand. Whether epigenetic drugs produce antineoplastic effects in vivo in patients with ASM and MCL remains to be determined.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3457-3457
Author(s):  
Viviane Ghanim ◽  
Harald Herrmann ◽  
Emir Hadzijusufovic ◽  
Barbara Peter ◽  
Katharina Blatt ◽  
...  

Abstract Abstract 3457 Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) are advanced myeloid neoplasms with a poor prognosis. In these patients, neoplastic mast cells (MC) are resistant against most conventional drugs. Demethylating agents reportedly exert beneficial effects in several advanced myelogenous neoplasms, including myelodysplastic syndromes. We examined the effects of two demethylating agents, 5-Azacytidine and 5-Aza-2`Deoxycytidine (Decitabine) on growth and survival (apoptosis) of neoplastic MC and the human MC line HMC-1. Two HMC-1 subclones were used, HMC-1.1 lacking KIT D816V and HMC-1.2 exhibiting KIT D816V. Both demethylating agents were found to induce apoptosis and growth inhibition in HMC-1.1 cells and HMC-1.2 cells in a dose-dependent manner (IC50: 5-Azacytidine: 5–10 μM, Decitabine: 1–5 μM). Interestingly, only Decitabine but not 5-Azacytidine induced a major G2/M cell cycle arrest in HMC-1 cells. Drug-induced apoptosis in HMC-1 cells was accompanied by cleavage and activation of Caspase-8 and Caspase-3 as well as an increased expression of proapoptotic FAS/CD95, whereas no major effects on expression of other surface antigens were seen. We also found that both demethylating agents synergize with the FAS-ligand in inducing apoptosis in neoplastic MC. Methylation-specific PCR and bisulfite genomic sequencing revealed that the FAS-promoter is hypermethylated in HMC-1 cells. In addition, qPCR demonstrated that exposure to 5-Azacytidine or Decitabine leads to re-expression of FAS in neoplastic MC, which was confirmed by flow cytometry. Correspondingly, a FAS-specific siRNA was found to block drug-induced expression of FAS and drug-induced apoptosis in HMC-1 cells. Although other key regulators and tumor suppressor molecules such as p16 were also found to be hypermethylated in HMC-1 cells, no major demethylating effects of 5-Azacytidine or Decitabine were seen. Neither 5-Azacytidine nor Decitabine induced substantial apoptosis or growth arrest in normal human cord blood progenitor-derived MC or in control bone marrow cells. Together, our data show that 5-Azacytidine and Decitabine exert growth-inhibitory and pro-apoptotic effects in neoplastic MC. These effects are mediated through FAS re-expression and are augmented by the FAS ligand. Whether epigenetic drugs produce anti-neoplastic effects in vivo in patients with advanced SM including MCL, remains to be determined in clinical trials. Disclosures: Valent: Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3217-3217 ◽  
Author(s):  
Erica K. Evans ◽  
Brian L. Hodous ◽  
Alexandra Gardino ◽  
Julia Zhu ◽  
Adam Shutes ◽  
...  

Abstract Systemic mastocytosis is a disease characterized by the abnormal proliferation and accumulation of mast cells. In aggressive cases, these mast cells accumulate in organs such as bone marrow, liver and spleen and result in compromised organ function with average patient survival only 3 to 5 years after diagnosis. The mast cells of nearly all systemic mastocytosis patients harbor a heterozygous D816V mutation in the activation loop of KIT conferring constitutive, ligand-independent activation of this receptor tyrosine kinase, suggesting this mutation is a driver of disease. While KIT D816V can be targeted by small molecules such as dasatinib and midostaurin, these agents have activity against many human kinases resulting in dose limiting toxicities in the clinic that prevent complete suppression of KIT D816V activity in vivo. In vitro, their potent activity against multiple kinases leads to uncertainties regarding their mechanism of action. Thus far, selective inhibition of the KIT D816V mutation has not been achieved. However starting with a novel chemical library optimized for kinase selectivity, we have identified BLU-285, a small molecule inhibitor targeting KIT exon 17 mutants including the activated KIT D816V kinase. BLU-285 potently disrupts KIT D816V oncogenic signaling as measured by inhibition of both KIT D816V autophosphorylation and phosphorylation of the downstream substrates Akt and Stat3 in the human mast cell leukemia cell line HMC1.2. In vitro, BLU-285 inhibits proliferation and induces apoptosis in the mouse mastocytoma cell line P815. In vivo, BLU-285 is a well-tolerated, orally bioavailable agent that achieves dose dependent tumor growth inhibition in a P815 mouse xenograft model with tumor regression observed at 30 mg/kg once daily dosing. Tumor growth inhibition correlates with inhibition of KIT autophosphorylation; greater than 80% target suppression throughout the 24-hour dosing period is required for effective tumor growth inhibition. Prolonged target suppression is achievable with BLU-285 but not dasatinib, even when dosed at the MTD in mouse. Furthermore, to more closely mimic the nature of systemic mastocytosis, we have developed a disseminated model of disease whereby the in vivo growth of P815-luciferase expressing cells inoculated intravenously can be measured by whole body bioluminescence. Treatment of mice with systemic disease leads to dose dependent inhibition of disease, with a 3-fold increase in survival time when dosed 30 mg/kg QD. In addition, as anticipated by its selectivity profile, BLU-285 is very well tolerated in vivo with no impact on body weight at efficacious doses. Our data demonstrate that selective inhibition of KIT D816V with BLU-285 achieves complete and prolonged inactivation of the disease-driving kinase and suggests that BLU-285 may provide a compelling new therapy for patients with systemic mastocytosis. Disclosures Evans: Blueprint Medicines: Employment, Equity Ownership. Hodous:Blueprint Medicines: Employment, Equity Ownership. Gardino:Blueprint Medicines: Employment, Equity Ownership. Zhu:Blueprint Medicines: Employment, Equity Ownership. Shutes:Blueprint Medicines: Employment, Equity Ownership. Davis:Blueprint Medicines: Employment, Equity Ownership. Kim:Blueprint Medicines: Employment, Equity Ownership. Wilson:Blueprint Medicines: Employment, Equity Ownership. Wilson:Blueprint Medicines: Employment, Equity Ownership. Zhang:Blueprint Medicines: Employment, Equity Ownership. Kohl:Blueprint Medicines: Employment, Equity Ownership. Guzi:Blueprint Medicines: Employment, Equity Ownership. Lengauer:Blueprint Medicines: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2538-2538
Author(s):  
Anne Kaiser ◽  
Renier Myburgh ◽  
Laura Volta ◽  
Christian Edoardo Pellegrino ◽  
Markus G Manz

Abstract Mastocytosis is a malignant disease resulting from oncogenic transformed mast cells. Up to 80% of malignant cells harbor a D816V mutation in the KIT-receptor (CD117), leading to constitutive kinase activation and proliferation and survival of mast cells. Advanced forms of mastocytosis (aggressive systemic mastocytosis: ASM, systemic mastocytosis with associated hematological disease: SM-AHN, mast cell leukemia: MCL) present as a therapeutic challenge. Although the recently approved poly tyrosine kinase inhibitor Midostaurin provides some improvement, the median overall survival ranges from 3.5 years (ASM) to less than six months (MCL). The reduced life expectancy is frequently due to mast cell infiltration resulting in multi organ failure. Additionally, there are patients who do not benefit from the treatment with Midostaurin (overall response 60%) or suffer from side effects, which lead to reduction or termination of therapy. Currently, the only available curative approach is conditioning poly-chemotherapy followed by allogenic stem cell transplantation (allo-HSCT). However, allo-HSCT is associated with substantial side-effects and, also due to high rates of relapse, only leads to an overall survival of 43% for ASM and 17% for MCL after three years. Thus, better therapeutic options are needed. Recently, we demonstrated that CD117 (KIT-receptor) positive human AML can be efficiently eradicated by anti-CD117 CAR T-cells in vitro and in vivo (Myburgh et al., Leukemia 2020). As mast cells, and also transformed mast cells, highly express CD117, we here tested if anti-CD117 CAR T-cells would equally efficiently eliminate this malignant cell population. We thus co-cultured various established mast cell lines (partly harboring the oncogenic driver mutation KIT D816V) with anti-CD117-CAR T-cells in a 1:1 effector to target ratio in vitro. After 24 hours of co-culturing, the tumor cells were effectively killed, and this was still observed despite increasing the effector to target ratio to 1:4. Also, within 28 days of co-culture, the longest time followed in vitro, tumor cells were controlled and did not outgrow. Increased proliferation of anti-CD117-CAR T-cells in the presence of mast cells was observed and tracked throughout the 28-day experiment. In conclusion, we demonstrate that the human mast cell lines HMC-1.1 KIT V560G, HMC-1.2 KIT V560G, KIT D816V, ROSA KIT WT, ROSA KIT D816V, LAD2 and MCPV-1 can be efficiently targeted and killed in vitro by allogeneic anti-CD117-CAR T-cells. Given that CD117 is expressed on healthy hematopoietic stem and progenitor cells (HSPCs) on a substantially lower level, there might be a therapeutic window for anti-CD117 immunotherapy in advanced forms of mastocytosis. However, as CAR T-cells are highly efficient, collateral damage on healthy HSPCs will likely need to be compensated by subsequent HSC transplantation. We are currently translating these promising in vitro immunotherapeutic settings into surrogate xenogeneic in vivo models. Disclosures Myburgh: University of Zurich: Patents & Royalties: CD117xCD3 TEA. Manz: CDR-Life Inc: Consultancy, Current holder of stock options in a privately-held company; University of Zurich: Patents & Royalties: CD117xCD3 TEA.


2021 ◽  
Author(s):  
Jiapan Gao ◽  
Delu Che ◽  
Xueshan Du ◽  
Yi Zheng ◽  
Huiling Jing ◽  
...  

Abstract Imidazolidinyl urea (IU) is used as an antimicrobial preservative in cosmetic and pharmaceutical products. IU induces allergic contact dermatitis, however, the mechanism has not yet been elucidated. Mas-related G protein-coupled receptor-X2 (MRGPRX2) triggers drug-induced pseudo-allergic reactions. The aims of this study were to determine whether IU activated mast cells through MRGPRX2 to further trigger contact dermatitis. Wild-type (WT) and KitW-sh/HNihrJaeBsmJNju (MUT) mice were treated with IU to observe its effects on local inflammation and mast cells degranulation in vivo. Laboratory of allergic disease 2 cells were used to detect calcium mobilization and release of inflammatory mediators in vitro. WT mice showed a severe local inflammatory response and contact dermatitis, whereas only slight inflammatory infiltration was observed in MUT mice. Thus, MRGPRX2 mediated the IU-induced activation of mast cells. However, histamine, a typical allergen, was not involved in this process. Tryptase expressed by mast cells was the major non-histaminergic inflammatory mediator of contact dermatitis. IU induced anaphylactic reaction via MRGPRX2 and further triggering non-histaminergic contact dermatitis, which explained why antihistamines are clinically ineffective against some chronic dermatitis.


Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 752-759 ◽  
Author(s):  
Karoline V. Gleixner ◽  
Matthias Mayerhofer ◽  
Karl J. Aichberger ◽  
Sophia Derdak ◽  
Karoline Sonneck ◽  
...  

AbstractIn most patients with systemic mastocytosis (SM), including aggressive SM and mast cell leukemia (MCL), neoplastic cells express the oncogenic KIT mutation D816V. KIT D816V is associated with constitutive tyrosine kinase (TK) activity and thus represents an attractive drug target. However, imatinib and most other TK inhibitors fail to block the TK activity of KIT D816V. We show that the novel TK-targeting drugs PKC412 and AMN107 counteract TK activity of D816V KIT and inhibit the growth of Ba/F3 cells with doxycycline-inducible expression of KIT D816V as well as the growth of primary neoplastic mast cells and HMC-1 cells harboring this KIT mutation. PKC412 was a superior agent with median inhibitory concentration (IC50) values of 50 to 250 nM without differences seen between HMC-1 cells exhibiting or lacking KIT D816V. By contrast, AMN107 exhibited more potent effects in KIT D816V- HMC-1 cells. Corresponding results were obtained with Ba/F3 cells exhibiting wild-type or D816V-mutated KIT. The growth-inhibitory effects of PKC412 and AMN107 on HMC-1 cells were associated with induction of apoptosis and down-regulation of CD2 and CD63. PKC412 was found to cooperate with AMN107, imatinib, and cladribine (2CdA) in producing growth inhibition in HMC-1, but synergistic drug interactions were observed only in cells lacking KIT D816V. Together, PKC412 and AMN107 represent promising novel agents for targeted therapy of SM. (Blood. 2006;107: 752-759)


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Keisuke Kimura ◽  
Masahiko Ishida ◽  
Haruka Kohara ◽  
Masako Yoshimatsu ◽  
...  

Tumor necrosis factor-α(TNF-α) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-αmay play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL) to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-αon bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-αis considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL-) 12, IL-18, and interferon-γ(IFN-γ) strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γinduce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesisin vitroandin vivo.


2021 ◽  
Author(s):  
Simone Marcella ◽  
Angelica Petraroli ◽  
Mariantonia Braile ◽  
Roberta Parente ◽  
Anne Lise Ferrara ◽  
...  

Abstract Mastocytosis is a disorder characterized by the abnormal proliferation and/or accumulation of mast cells in different organs. More than 90% of patients with systemic mastocytosis have a gain-of-function mutation in codon 816 of the KIT receptor on mast cells (MCs). The symptoms of mastocytosis patients are related to the MC-derived mediators that exert local and distant effects. MCs produce angiogenic and lymphangiogenic factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (ANGPTs). Serum concentrations of VEGF-A, VEGF-C, VEGF-D, ANGPT1 and ANGPT2 were determined in 64 mastocytosis patients and 64 healthy controls. Intracellular concentrations and spontaneous release of these mediators were evaluated in the mast cell lines ROSAKIT WT and ROSA KIT D816V and in human lung mast cells (HLMCs). VEGF-A, ANGPT1, ANGPT2 and VEGF-C concentrations were higher in mastocytosis patients compared to controls. The VEGF-A, ANGPT2 and VEGF-C concentrations were correlated with the symptom severity. ANGPT1 concentrations were increased in all patients compared to controls. ANGPT2 levels were correlated with severity of clinical variants and with tryptase levels. VEGF-A, ANGPT1 and VEGF-C did not differ between indolent and advanced mastocytosis. ROSAKIT WT, ROSAKIT D816V and HLMCs contained and spontaneously released VEGFs and ANGPTs. Serum concentrations of VEGFs and ANGPTs are altered in mastocytosis patients.


1999 ◽  
Vol 277 (3) ◽  
pp. G702-G708 ◽  
Author(s):  
Alix de la Coste ◽  
Monique Fabre ◽  
Nathalie McDonell ◽  
Arlette Porteu ◽  
Helène Gilgenkrantz ◽  
...  

Fas ligand (CD95L) and tumor necrosis factor-α (TNF-α) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-α-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing[Formula: see text]in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous[Formula: see text]or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-α caused massive apoptosis and death only when transcription was inhibited. Under these conditions,[Formula: see text]mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-α receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3515-3515 ◽  
Author(s):  
Karoline Sonneck ◽  
Matthias Mayerhofer ◽  
Karoline V. Gleixner ◽  
Marc Kerenyi ◽  
Maria-Theresa Krauth ◽  
...  

Abstract Recent data suggest that activated STAT5 contributes to growth and differentiation of mast cells (MC) and that STAT5-knock out mice are MC-deficient. We have recently shown that constitutively activated STAT5 acts as a potent oncogenic signaling molecule in hematopoietic progenitor cells (Cancer Cell2005;7:87–99). In the present study, we examined the expression of activated STAT5 in neoplastic MC in systemic mastocytosis (SM) and asked whether the SM-related oncogene c-kit D816V is involved in STAT5-activation. For the immunohistochemical detection of activated tyrosine phosphorylated STAT5 (P-Y-STAT5), we used the specific monoclonal antibody AX1 (Advantex) which does not react with inactive STAT5. In all patients with SM tested (indolent SM, n=11; smouldering SM, n=2; aggressive SM, n=1; mast cell leukemia, n=1; all exhibiting c-kit D816V), MC were found to display P-Y-STAT5. Expression of activated STAT5 was also demonstrable in the c-kit D816V-positive mast cell leukemia-derived cell line HMC-1. The reactivity of HMC-1 cells with AX1 antibody was abrogated by a STAT5-specific blocking-peptide. To define the role of c-kit D816V in STAT5-activation, Ba/F3 cells with doxycycline-inducible expression of c-kit D816V (Ton.kit) were employed. In these cells, induction of c-kit D816V was followed by a massive increase in phosphorylated STAT5 as determined by a specific DNA-binding assay, whereas the total amounts of STAT5-mRNA and of the STAT5-protein showed only a slight increase or remained unchanged. In summary, these data show that neoplastic MC in SM express activated STAT5 (P-Y-STAT5), and that the transforming c-kit mutation D816V leads to persistent activation of STAT5 in these cells.


Sign in / Sign up

Export Citation Format

Share Document