scholarly journals Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment

Blood ◽  
2012 ◽  
Vol 120 (13) ◽  
pp. 2679-2689 ◽  
Author(s):  
Zhihong Zeng ◽  
Yue Xi Shi ◽  
Twee Tsao ◽  
YiHua Qiu ◽  
Steven M. Kornblau ◽  
...  

Abstract The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 778-778
Author(s):  
Zhihong Zeng ◽  
Yuexi Shi ◽  
Twee Tsao ◽  
Yihua Qiu ◽  
Steven M. Kornblau ◽  
...  

Abstract Abstract 778 The prognosis of patients with acute myeloid leukemia (AML) remains poor. Our studies have demonstrated that chemoresistance of AML is not solely due to increased survival signaling in AML cells, but is also enhanced by microenvironment/leukemia interactions. Bone marrow-derived mesenchymal cells (MSC) comprise an essential component of the leukemia bone marrow microenvironment. MSC have the capacity to support normal and malignant hematopoiesis and protect leukemic cells from chemotherapy. We have previously reported that co-culture of AML cells with MSC results in activation of multiple pro-survival signaling pathways in leukemic cells, from which phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling is the key upstream regulator of survival and chemoresistance (Tabe et al., 2007 Cancer Res. 2007). In this study, we investigated the role of mTOR signaling in primary AML cells co-cultured with stroma and in the in vivo leukemia mouse model utilizing a novel TOR kinase inhibitor PP242 (Intellikine, La Jolla, CA). Unlike rapamycin and its analogs, which suppress TORC1 only partially and do not acutely inhibit TORC2, PP242 has been reported to achieve greater inhibition of both TOR complexes, resulting in broader suppression of the PI3K/AKT/TOR signaling in Ph+ B-ALL and T-cell lymphoma (Feldman, et al., PLoS Biol 2009; Janes, et al., Nat Med. 2010). We first employed reverse phase protein array (RPPA) technique profiling of 53 proteins to determine the changes in activation of signaling pathways in leukemic cells from 20 primary AML samples co-cultured with murine stromal line MS-5. Co-culture with stroma resulted in activation of multiple signaling pathways in primary AML cells, inducing upregulation of pAKT(Thr308) in 18, mTOR in 17, pERK(Thr202/204) in 14, and pSTAT3(Ser727) in 12 of the 20 pt samples. This resulted in significant decrease of spontaneous apoptosis in primary AML samples (average 33.7 ± 3.8% annexin V(+) cells in primary AML without co-culture vs. 19.6 ± 3.1% in primary AML co-cultured with MS5, p = 0.027, n = 20). In a next set of experiments, blockade of mTOR signaling with PP242, in a dose dependent fashion, effectively induced apoptosis in primary AML samples (n = 9) cultured with or without stroma: at 60nM, 6.4 ± 1.8% and 8.8 ± 2.4% specific apoptosis (annexin V+), respectively; at 190nM, 10.5% ± 52.8% and 14.9% ± 3.9%; at 560nM, 17.6.9 ± 5.7%; and 21.9 ± 4.9% at 1.67uM, 27.2 ± 6.1% and 27.3 ± 5.8%; at 5uM, 38.8 ± 6.5% and 37.1 ± 7.2%. Importantly, at low nanomolar concentrations, PP242 attenuates the activities of both TORC1 and TORC2, resulting in inhibition of phosphorylation of AKT at S473, S6K at S240/244 and 4EBP1 at T37/46 in both, primary AML cells and most importantly in MSC cultured alone or co-cultured with AML. In the in vivo leukemia mouse model utilizing GFP/luc-labeled Baf3-FLT3/ITD cells, PP242 (60mg/kg/QD gavage) exerted significantly greater anti-leukemia activity compared with TORC1 inhibitor rapamycin (0.1mg/kg/QD IP, p = 0.03). PP242 suppressed leukemia progression as determined by bioluminescence imaging (average luminescence intensity 5.65 ± 1.75 in control vs. average 2.75 ± 0.65 in PP242 group) and significantly extended survival (p = 0.005). In summary, our findings indicate a novel therapeutic strategy to target leukemia within the BM microenvironment through efficient blockade of mTOR/AKT signaling with novel selective TORC kinase inhibitor. This research is funded by Intellikine. Disclosures: Liu: Intellikine: Employment. Rommel:Intellikine: Employment. Fruman:Intellikine: Research Funding. Konopleva:Intellikine: Research Funding.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3138-3147 ◽  
Author(s):  
Thomas Strömberg ◽  
Anna Dimberg ◽  
Anna Hammarberg ◽  
Kristina Carlson ◽  
Anders Österborg ◽  
...  

Abstract Circumvention of chemoresistance in the B-cell neoplasm multiple myeloma (MM) might be achieved by targeting certain intracellular signaling pathways crucial for survival of the malignant clone. The use of the macrolide rapamycin, selectively inhibiting the phosphoprotein mammalian target of rapamycin (mTOR) downstream of, for example, insulin-like growth factor-I receptor (IGF-IR), possibly represents such a molecular mode of therapy. By using a panel of MM cell lines we showed that rapamycin induced G0/G1 arrest, an effect being associated with an increase of the cyclin-dependent kinase inhibitor p27 and a decrease of cyclins D2 and D3. Interestingly, in primary, mainly noncycling MM cells, rapamycin, at clinically achievable concentrations, induced apoptosis. More important, rapamycin sensitized both MM cell lines and primary MM cells to dexamethasone-induced apoptosis. This effect was associated with a decreased expression of cyclin D2 and survivin. The phosphorylation of the serine/threonine kinase p70S6K at Thr389 and Thr421/Ser424 was down-regulated by rapamycin and/or dexamethasone. Strikingly, the combinatorial treatment with rapamycin and dexamethasone suppressed the antiapoptotic effects of exogenously added IGF-I and interleukin 6 (IL-6) as well as their stimulation of p70S6K phosphorylation. The induction of apoptosis by rapamycin and dexamethasone despite the presence of survival factors was also demonstrated in primary MM cells, thus suggesting this drug combination to be active also in vivo. (Blood. 2004;103:3138-3147)


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1506-1506
Author(s):  
Marika Masselli ◽  
Serena Pillozzi ◽  
Massimo D'Amico ◽  
Luca Gasparoli ◽  
Olivia Crociani ◽  
...  

Abstract Abstract 1506 Although cure rates for children with acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, have markedly improved over the last two decades, chemotherapy resistance remains a major obstacle to successful treatment in a significant proportion of patients (Pui CH et al. N Engl J Med., 360:2730–2741, 2009). Increasing evidence indicates that bone marrow mesenchymal cells (MSCs) contribute to generate drug resistance in leukemic cells (Konopleva M et al., Leukemia, 16:1713–1724, 2002). We contributed to this topic, describing a novel mechanism through which MSCs protect leukemic cells from chemotherapy (Pillozzi S. et al., Blood, 117:902–914, 2011.). This protection depends on the formation of a macromolecular membrane complex, on the plasma membrane of leukemic cells, the major players being i) the human ether-a-gò-gò-related gene 1 (hERG1) K+ channel, ii) the β1integrin subunit and iii) the SDF-1α receptor CXCR4. In leukemic blasts, the formation of this protein complex activates both the ERK 1/2 MAP kinases and the PI3K/Akt signalling pathways triggering antiapoptotic effects. hERG1 exerts a pivotal role in the complex, as clearly indicated by the effect of hERG1 inhibitors to abrogate MSCs protection against chemotherapeutic drugs. Indeed, E4031, a class III antiarrhythmic that specifically blocks hERG1, enhances the cytotoxicity of drugs commonly used to treat leukemia, both in vitro and in vivo. The latter was tested in a human ALL mouse model, consisting of NOD/SCID mice injected with REH cells, which are relatively resistant to corticosteroids. Mice were treated for 2 weeks with dexamethasone, E4031, or both. Treatment with dexamethasone and E4031 in combination nearly abolished bone marrow engraftment while producing marked apoptosis, and strongly reducing the proportion of leukemic cells in peripheral blood and leukemia infiltration of extramedullary sites. These effects were significantly superior to those obtained by treatment with either dexamethasone alone or E4031 alone. This model corroborated the idea that hERG1 blockers significantly increase the rate of leukemic cell apoptosis in bone marrow and reduced leukemic infiltration of peripheral organs. From a therapeutic viewpoint, to develop a pharmacological strategy based on hERG1 targeting we must consider to circumvent the side effects exerted by hERG1 blockers. Indeed, hERG1 blockers are known to retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, an effect that in some cases leads to life threatening ventricular arrhythmias (torsades de points). On the whole, it is mandatory to design and test non-cardiotoxic hERG1 blockers as a new strategy to overcome chemoresistance in ALL. On these bases, we tested compounds with potent anti-hERG1 effects, besides E4031, but devoid of cardiotoxicity (e.g. non-torsadogenic hERG1 blockers). Such compounds comprise erythromycin, sertindole and CD160130 (a newly developed drug by BlackSwanPharma GmbH, Leipzig, Germany). We found that such compounds exert a strong anti-leukemic activity both in vitro and in vivo, in the ALL mouse model described above. This is the first study describing the chemotherapeutic effects of non-torsadogenic hERG1 blockers in mouse models of human ALL. This work was supported by grants from the Associazione Genitori contro le Leucemie e Tumori Infantili Noi per Voi, Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Toscano Tumori. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 640-640
Author(s):  
Karin Vanderkerken ◽  
Eline Menu ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Kewal Asosingh ◽  
...  

Abstract Multiple myeloma (MM) represents a B-cell malignancy, characterized by monoclonal proliferation of plasma cells in the bone marrow (BM) and is associated with osteolysis and angiogenesis. Insulin-like growth factor-1 (IGF-1), produced by the BM stromal cells, has been described as an important factor in the survival, proliferation and migration of MM cells. The latter process is involved in the homing of the MM cells to the BM. IGF-1 also induces VEGF secretion by the MM cells, thus stimulating angiogenesis in the BM. As IGF-1 is a pleiotropic factor in MM, therapeutic strategies targeting the IGF-1R may be effective as anti-tumor treatments. In this work we investigated the effect of an IGF-1 receptor tyrosine kinase inhibitor (picropodophyllin or PPP1) in the murine, syngeneic 5T33MM model of multiple myeloma. This mouse model is representative for the human disease and can combine in vitro and in vivo studies. We first investigated the effects of PPP on the MM cells in vitro. We and others have previously demonstrated that IGF-1 induced ERK activation, involved in VEGF secretion and proliferation. When the 5T33MM cells were preincubated with 1microM PPP, Western blot analysis demonstrated the blocking of this activation. Furthermore, when the 5T33MM cells were preincubated with PPP for 30 min, IGF-1 induced VEGF secretion and proliferation of the 5T33MM cells were completely blocked. Next, we used the tyrosine kinase inhibitor PPP in vivo. 5T33MM cells were injected intravenously in C57BLKaLwRij mice and the development of the disease was monitored by measuring the serum paraprotein concentration. Mice were either treated with a low (17mM, IP, twice a day) or a high dose of PPP (50mM, IP, twice a day) or with the vehicle (DMSO/oil 9/1) from the day of injection with 5T33MM onward. At week 3, vehicle controls showed signs of morbidity and were sacrificed. The presence of tumor was measured by assessing serum paraprotein concentrations and determining the proportion of idiotype positive cells in the BM by flow cytometry. Angiogenesis was assessed by measuring the microvessel density on CD31 stained paraffin sections. The tumor burden in the bone marrow in the PPP treated mice was 77% lower than in vehicle treated animals (p< 0,0001) and the serum paraprotein concentration was 90% lower (p< 0,0001). The microvessel density in the BM of the PPP treated group was reduced by 60% (p< 0,02). In a separate survival experiment the mice were either treated with the vehicle or with the high dose (50mM) of PPP, from the time of tumor injection. Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with PPP when compared with vehicle (28 vs. 18 days, p<0,001). These data demonstrate that the IGF-1RTK inhibitor PPP possesses strong anti-tumor activity, as demonstrated both in vitro and in vivo in a syngeneic model of multiple myeloma, and may therefore be an effective therapeutic candidate for MM treatment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2446-2446
Author(s):  
Anna Staffas ◽  
Edith Schneider ◽  
Linda Fogelstrand ◽  
Linda Röhner ◽  
Michael Heuser ◽  
...  

Abstract Background: Genetic rearrangements that fuse the mixed lineage leukemia (MLL) gene, now termed KMT2A, to one of a variety of partners are seen in 5% - 20% of acute myeloid leukemia (AML). MLL -fusions are especially common in childhood AML and many of them are associated with poor prognosis. The MLL -fusions perturb transcription through different mechanisms and they are often associated with high expression of the transcription factors HOXA9 and MEIS1. Based on a micro-RNA screen in an AML mouse model mimicking the step-wise development of aggressive AML we have found that concurrent Hoxa9 and Meis1 overexpression is associated with upregulation of micro-RNA-155 (miR-155). Expression of miR-155 was also found to be higher in bone marrow samples from patients with MLL- AML compared with bone marrow from healthy donors (p <0.001), as were the expression of HOXA9 and MEIS1 (p <0.05). In lymphomas, miR-155 plays a pivotal role as an oncogene. It is frequently upregulated in samples from lymphoma patients and a mouse model of lymphoma showed a certain degree of miR-155-addiction which could be targeted by miR-155 inhibitors. Despite the differences in the pathobiology of AML and lymphoma, the upregulation of miR-155 in AML with high HOXA9 and MEIS1 expression may indicate miR-155 as a relevant therapeutic target also in MLL -AML. Methods: To test the importance of miR-155 and its potency as a drug target in MLL -AML we used a miR-155 knock-out mouse model (miR-155-/-) (Thai et al, Science, 2007). MLL -fusion genes of varying leukemic potential; MLL-AF5 (KMT2A-AFF4), MLL-ENL (KMT2A-MLLT1), MLL-AF9 (KMT2A-MLLT3) were retrovirally expressed in miR-155-/- mouse bone marrow (mbm) cells and in wild-type mbm cells (miR-155+/+). Results: In concordance with the previous findings in human AML patient samples, miR-155+/+ cells expressing MLL-AF5, MLL-ENL, or MLL-AF9 showed upregulation of miR-155 (p < 0.05). Also, Hoxa9 and Meis1 transcripts were increased (p<0.05). Interestingly, the magnitude of upregulation of both miR-155 and Meis1 correlated with the degree of aggressiveness based on disease latency and survival observed in these leukemia models with highest upregulation in MLL-ENL and MLL-AF9 and lowest in MLL-AF5 (p<0.05). Expression of the MLL-fusion genes in miR-155-/- mbm cells resulted in similar induction of Hoxa9 and Meis1 expression as in miR-155+/+ mbm cells, indicating that miR-155 is downstream of the Hoxa9/Meis1 axis. To determine the leukemic potential in vivo, we transplanted recipient mice with miR-155+/+ mbm cells and miR-155-/- mbm cells expressing MLL-ENL or MLL-AF9. Engraftment of leukemic cells, based on peripheral blood analysis, did not differ between mice transplanted with miR-155+/+ mbm cells and miR-155-/- mbm cells expressing MLL-fusions. Also, disease development induced by MLL-AF9 and MLL-ENL (4-8 weeks and 10-32 weeks, respectively) was similar in mice transplanted with miR-155-/- mbm cells and mice transplanted with miR-155+/+ mbm cells. In accordance with the in vivo results, functional studies in vitro showed that the proliferative capacity and colony forming ability of MLL -fusion expressing cells were similar in miR-155+/+ mbm cells and miR-155-/- mbm cells, indicating that miR-155 is not essential for MLL-ENL- or MLL-AF9-induced leukemic transformation. Conclusions: In summary, miR-155 is upregulated in MLL-AML in both mice and man, seemingly through an MLL>HOXA9/MEIS1>miR-155 axis. Since absence of miR-155 does not alter the leukemic potential induced by MLL-AF9 or MLL-ENL, miR-155 may contribute to, but is not pivotal for MLL leukemogenesis. We therefore conclude that miR-155 is not a therapeutic target in MLL- AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2477-2477
Author(s):  
Zhihong Zeng ◽  
Zeev Estrov ◽  
David Harris ◽  
Frank Giles ◽  
Michael Andreeff ◽  
...  

Abstract Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway regulates the growth and survival of acute myeloid leukemia (AML). We hypothesized that targeting this pathway with both PI3K and mTOR inhibitors may greatly enhance the effectiveness of these two inhibitors in the treatment of AML. PI3KI1 is a novel PI3K inhibitor that induced apoptosis in AML cell lines and primary AML cells at an IC50 of 5μM. It directly inhibited AKT at Ser473, however had limited effects on pGSK3b and on the mTOR downstream target p70S6K at Thr389. Colony-forming assays demonstrated that PI3KI1 decreased the viability of primary AML samples but spared normal bone marrow progenitor cells. mTOR inhibitor CCI779 inhibited phosphorylation of downstream mTOR targets p70S6K and 4EBP, however showed only minor cytotoxicity to AML cell lines and primary samples, suggesting that inhibition of mTOR signaling is not sufficient to cause growth inhibition in the majority of AML. Combined use of PI3KI1 and CCI779 synergistically induced apoptosis in U937 cells, with a combination index of 0.061±0.02. Western blot analysis demonstrated enhanced suppression of pP70S6K, pAKT and p4EBP1(Thr70) when PI3KI1 and CCI779 were used in combination. In primary AML samples, combined inhibition of PI3K and mTOR pathways enhanced apoptosis induction in 8/12 samples, with true synergistic responses in 3 samples. Importantly, the combination, but not PI3KI1 or CCI779 alone, was able to overcome the growth advantage conferred to AML cell lines or primary AML samples by adherence to bone marrow stromal cells. Taken together, our results indicate that PI3K and mTOR are relevant molecular targets in AML and that intra-pathway inhibition of both, upstream and downstream proteins may be required for maximal inhibition of leukemia cell growth.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 568-568 ◽  
Author(s):  
Michael Andreeff ◽  
Sergej Konoplev ◽  
Rui-Yu Wang ◽  
Zhihong Zeng ◽  
Teresa McQueen ◽  
...  

Abstract The chemokine receptor CXCR4 is critically involved in migration of hematopoietic cells to the stromal derived factor (SDF-1α)-producing bone marrow microenvironment. CXCR4 is regulated in part by mutant FLT3 signaling, but in a series of 122 AML samples with diploid karyotype and lack of FLT3 mutation (ITD), high CXCR4 expression negatively correlated with DFS and OS (p=0.03 and p=0.04, respectively), after multivariate analysis (Konoplev, ASH 2006). We hypothesized that inhibition of SDF-1α-/CXCR4 interactions would result in mobilization of leukemic blasts from the bone marrow into circulation. The in vivo effect of the CXCR4 antagonist AMD3100 was studied in three patients with AML, who had insufficient mobilization of CD34+ cells for autologous stem cell transplantation with G-CSF and/or cytoxan. The combination of G-CSF (10 μg/kg QD) and AMD3100 (240 μg/kg QD SC starting on d4 and repeated for 3–4 days) resulted in massive mobilization of leukemic cells into the circulation in a time-dependent fashion, as determined by flow cytometry and interphase FISH analysis of their respective cytogenetic abnormalities. Patient # Cytogenetics % (+) cells % (+) cells Apheresis FCM Day 2 Day 4/5 CD34x106/kg 1 Trisomy 21 22.6 57.0 FCM CD7/33 22.0 2 Trisomy 9 28.6 68.6 Inv 16 29.0 75.8 4.8 FCM CD13/33 74.0 3 Mono 17 40.4 53.4 5q31 37.5 49.6 8.7 FCM CD13/33 50.0 We and others have previously demonstrated that stroma/leukemia interactions mediate protection of leukemic cells from chemotherapy-induced apoptosis (Konopleva et al, Leukemia2002:1713). We then tested the hypothesis that CXCR4 inhibition would result in increased sensitivity to chemotherapy, using AMD3465, the second generation small-molecule CXCR4 inhibitor with greater potency than AMD3100. Results demonstrate inhibition of surface expression of CXCR4 and of SDF-1α-, and stroma(MS-5)-induced migration of AML cells. In vitro co-culture systems with stromal cells significantly protected leukemic cells (p < 0.01), while AMD3465 decreased stroma-mediated protection from AraC and Busulfan apoptosis and downregulated AKT signaling in AML cells. In a murine model of luciferase labeled Baf-FLT3ITD leukemias, AMD3465 induced massive dissemination of leukemia, which was abrogated by treatment with Sorafenib, a potent FLT3ITD inhibitor (Zhang, ASH 2006). Taken together, our data suggest that SDF-1α/CXCR4 interactions contribute to the resistance of leukemic cells to chemotherapy-induced apoptosis. Disruption of these interactions by CXCR4 inhibition results in leukemia dissemination and chemosensitization. Our results in leukemia patients provide first in man proof-of principle for a novel strategy of targeting the leukemia cell/bone marrow microenvironment interactions. A clinical trial testing this concept in patients with AML is under development.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3598-3598 ◽  
Author(s):  
Anuhar Chaturvedi ◽  
Michelle Maria Araujo Cruz ◽  
Ramya Goparaju ◽  
Nidhi Jyotsana ◽  
Heike Baehre ◽  
...  

Abstract Mutations in the metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are frequently found in patients with glioma, acute myeloid leukemia (AML), melanoma, thyroid cancer, cholangiocellular carcinoma and chondrosarcoma. Mutant IDH produces R-2-hydroxyglutarate (R2HG), which induces histone- and DNA-hypermethylation through inhibition of epigenetic regulators, thus linking metabolism to tumorigenesis. We recently established an in vivo mouse model and investigated the function of mutant IDH1. By computational drug screening, we identified an inhibitor of mutant IDH1 (HMS-101), which inhibits mutant IDH1 cell proliferation, decreases R2HG levels in vitro, and efficiently blocks colony formation of AML cells from IDH1 mutated patients but not of normal CD34+ bone marrow cells. In the present study we investigated the effect of the inhibitor in our IDH1/HoxA9-induced mouse model of leukemia in vivo. To identify the maximally tolerated dose of HMS-101, we treated normal C57BL/6 mice with variable doses of HMS-101 for 9 days and measured the serum concentration. Mice receiving 0.5 mg and 1mg intraperitoneally once a day tolerated the drug well with mean plasma concentrations of 0.1 to 0.3 µM. To evaluate the effect of HMS-101 in the IDH1 mouse model, we transduced IDH1 R132C in HoxA9-immortalized murine bone marrow cells. Sorted transgene positive cells were then transplanted into lethally irradiated mice. After 5 days of transplantation, mice were treated with HMS-101 intraperitoneally for 5 days/week. The R/S-2HG ratio in serum was reduced 3-fold in HMS-101 treated mice after 8 weeks of treatment compared to control treated mice. HMS-101 or PBS treated mice had similar levels of transduced leukemic cells in peripheral blood at 2 and 6 weeks after transplantation. However, from week 6 to week 15 leukemic cells in peripheral blood decreased from 76% to 58, 63% to 29%, 67% to 7%, and 74% to 38% in 4/6 mice treated with HMS-101. In one mouse the percentage of leukemic cells was constant, and in one mouse it increased from week 6 to week 15 after transplantation. Leukemic cells increased constantly in peripheral blood until death in control treated mice. While the control cohort developed severe leukocytosis, anemia and thrombocytopenia around 8 to 10 weeks post transplantation, mice treated with HMS-101 still had normal WBC, RBC and platelet counts at 15 weeks after transplantation. Moreover, the HMS-101 treated mice had significantly more differentiated Gr1+CD11b+ cells in peripheral blood than control mice at 6 weeks and 15 weeks after transplantation and at death (P=.01). Morphologic evaluation of blood cells at 15 weeks or death from HMS-101 treated mice revealed a high proportion of mature neutrophils that were GFP positive and thus derived from IDH1 transduced cells, whereas control treated mice had monocytic morphology with a high proportion of immature cells. Importantly, HMS-101 treated mice survived significantly longer with a median latency of 87 days (range 80-118), whereas PBS-treated mice died with a median latency of 66 days (range 64-69) after transplantation (P<.001). Of note, HMS-101 was found to be specific for mutant IDH1, as mutant IDH2 cells were not preferentially inhibited over IDH2 wildtype cells in vitro. This data demonstrates that HMS-101 specifically inhibits R2HG-production of mutant IDH1 in vivo, inhibits proliferation, induces differentiation in leukemic cells, and thus prolongs survival of IDH1mutant leukemic mice. Therefore, HMS-101 - a novel inhibitor of mutant IDH1 - shows promising activity in vivo and warrants further development towards clinical use in IDH1 mutated patients. Disclosures Chaturvedi: Hannover Medical School: Patents & Royalties. Preller:Hannover Medical School: Patents & Royalties. Heuser:Hannover Medical School: Patents & Royalties.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6215-6224 ◽  
Author(s):  
Zhihong Zeng ◽  
Yue Xi Shi ◽  
Ismael J. Samudio ◽  
Rui-Yu Wang ◽  
Xiaoyang Ling ◽  
...  

Abstract SDF-1α/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow–derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1α (SDF-1α)–induced and stroma-induced chemotaxis and inhibited SDF-1α–induced activation of prosurvival signaling pathways in leukemic cells. Further, CXCR4 inhibition partially abrogated the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. Fetal liver tyrosine kinase-3 (FLT3) gene mutations activate CXCR4 signaling, and coculture with stromal cells significantly diminished antileukemia effects of FLT3 inhibitors in cells with mutated FLT3. Notably, CXCR4 inhibition increased the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib. In vivo studies demonstrated that AMD3465, alone or in combination with granulocyte colony-stimulating factor, induced mobilization of AML cells and progenitor cells into circulation and enhanced antileukemic effects of chemotherapy and sorafenib, resulting in markedly reduced leukemia burden and prolonged survival of the animals. These findings indicate that SDF-1α/CXCR4 interactions contribute to the resistance of leukemic cells to signal transduction inhibitor– and chemotherapy-induced apoptosis in systems mimicking the physiologic microenvironment. Disruption of these interactions with CXCR4 inhibitors represents a novel strategy of sensitizing leukemic cells by targeting their protective bone marrow microenvironment.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1737
Author(s):  
Bo-Reum Kim ◽  
Seung-Hyun Jung ◽  
A-Reum Han ◽  
Gyeongsin Park ◽  
Hee-Je Kim ◽  
...  

Given the proven importance of the CXCL12/CXCR4 axis in the stroma–acute myeloid leukemia (AML) interactions and the rapid emergence of resistance to FLT3 inhibitors, we investigated the efficacy and safety of a novel CXCR4 inhibitor, LY2510924, in combination with FLT3 inhibitors in preclinical models of AML with FLT3-ITD mutations (FLT3-ITD-AML). Quizartinib, a potent FLT3 inhibitor, induced apoptosis in FLT3-ITD-AML, while LY2510924 blocked surface CXCR4 without inducing apoptosis. LY2510924 significantly reversed stroma-mediated resistance against quizartinib mainly through the MAPK pathway. In mice with established FLT3-ITD-AML, LY2510924 induced durable mobilization and differentiation of leukemia cells, resulting in enhanced anti-leukemia effects when combined with quizartinib, whereas transient effects were seen on non-leukemic blood cells in immune-competent mice. Sequencing of the transcriptome of the leukemic cells surviving in vivo treatment with quizartinib and LY2510924 revealed that genes related to TGF-β signaling may confer resistance against the drug combination. In co-culture experiments of FLT3-ITD-AML and stromal cells, both silencing of TGF-β in stromal cells or TGF-β-receptor kinase inhibitor enhanced apoptosis by combined treatment. Disruption of the CXCL12/CXCR4 axis in FLT3-ITD-AML by LY2510924 and its negligible effects on normal immunocytes could safely enhance the potency of quizartinib, which may be further improved by blockade of TGF-β signaling.


Sign in / Sign up

Export Citation Format

Share Document