Intra-Pathway Inhibition of Upstream (PI3K) and Downstream (mTOR) Kinases Synergistically Induces Apoptosis in AML.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2477-2477
Author(s):  
Zhihong Zeng ◽  
Zeev Estrov ◽  
David Harris ◽  
Frank Giles ◽  
Michael Andreeff ◽  
...  

Abstract Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway regulates the growth and survival of acute myeloid leukemia (AML). We hypothesized that targeting this pathway with both PI3K and mTOR inhibitors may greatly enhance the effectiveness of these two inhibitors in the treatment of AML. PI3KI1 is a novel PI3K inhibitor that induced apoptosis in AML cell lines and primary AML cells at an IC50 of 5μM. It directly inhibited AKT at Ser473, however had limited effects on pGSK3b and on the mTOR downstream target p70S6K at Thr389. Colony-forming assays demonstrated that PI3KI1 decreased the viability of primary AML samples but spared normal bone marrow progenitor cells. mTOR inhibitor CCI779 inhibited phosphorylation of downstream mTOR targets p70S6K and 4EBP, however showed only minor cytotoxicity to AML cell lines and primary samples, suggesting that inhibition of mTOR signaling is not sufficient to cause growth inhibition in the majority of AML. Combined use of PI3KI1 and CCI779 synergistically induced apoptosis in U937 cells, with a combination index of 0.061±0.02. Western blot analysis demonstrated enhanced suppression of pP70S6K, pAKT and p4EBP1(Thr70) when PI3KI1 and CCI779 were used in combination. In primary AML samples, combined inhibition of PI3K and mTOR pathways enhanced apoptosis induction in 8/12 samples, with true synergistic responses in 3 samples. Importantly, the combination, but not PI3KI1 or CCI779 alone, was able to overcome the growth advantage conferred to AML cell lines or primary AML samples by adherence to bone marrow stromal cells. Taken together, our results indicate that PI3K and mTOR are relevant molecular targets in AML and that intra-pathway inhibition of both, upstream and downstream proteins may be required for maximal inhibition of leukemia cell growth.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2025-2025
Author(s):  
Francesca Chiarini ◽  
Cecilia Grimaldi ◽  
Francesca Ricci ◽  
Pierluigi Tazzari ◽  
Camilla Evangelisti ◽  
...  

Abstract Abstract 2025 Poster Board II-2 Introduction: Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL) where it strongly influences cell proliferation and survival. Pathway activation could be due to several reasons which include Notch1 activation leading to HES1-mediated transcriptional suppression of PTEN gene, PTEN phosphorylation or oxidation, and inactivation of SHIP1 phosphatase. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. Rapamycin and its analogues have shown some promising effects in pre-clinical models of T-ALL. However, mTOR inhibitors are mainly cytostatic and could hyperactivate Akt due to the existence of feedback loops between mTOR, p70 S6 kinase, PI3K, and Akt. Recently, dual PI3K/mTOR inhibitors have been synthesized. Here, we have analyzed the therapeutic potential of the novel, dual PI3K/mTOR inhibitor, NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. Methods and Patients: We employed a panel of cell lines with up-regulated PI3K/Akt/mTOR signaling, including CEM-R cells [which overexpress high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp)], MOLT-4 and CEM-S cells (which lack PTEN expression), Jurkat cells (which do not express both PTEN and SHIP1), and RPMI-8402 and BE-13 cells. MOLT-4, CEM, and Jurkat cells have a non-functional p53 pathway. Moreover, both Jurkat and MOLT-4 cells have aberrant Notch1 signaling. Patients samples displayed pathway activation as documented by increased levels of p-Akt, p-4E-BP1, and p-S6 ribosomal protein, as well as low/absent PTEN expression. Results: NVP-BEZ235 was cytotoxic to the panel of cell lines as documented by MTT assays. NVP-BEZ235 IC50 ranged from 80 to 280 nM at 24 h. A comparison between NVP-BEZ235 and the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class with the same targets, demonstrated that NVP-BEZ235 was more effective than PI-103 when employed at equimolar concentrations. NVP-BEZ235 did not significantly affect the proliferation of peripheral blood T-lymphocytes from healthy donors stimulated with phytohemagglutinin and interleukin-2, whereas it blocked leukemic cells in the G1 phase of the cell cycle, and this was accompanied by decreased levels of phosphorylated Retinoblastoma protein. NVP-BEZ235 treatment also resulted in apoptotic cell death (about 20-30% at 6 h of exposure, when employed at 200 nM), as documented by Annexin V/propidium iodide staining and cytofluorimetric analysis. Moreover, NVP-BEZ235 activated caspase-8 and caspase-3, as demonstrated by western blot. Western blot documented a dose- and time-dependent dephosphorylation of Akt and its downstream target, GSK-3β, in response to NVP-BEZ235. mTOR downstream targets were also efficiently dephosphorylated, including p70S6 kinase, S6 ribosomal protein, and 4E-BP1. Remarkably, NVP-BEZ235 targeted the side population (SP, identified by Hoechst 33342 staining and ABCG2 expression) of T-ALL cell lines, which might correspond to leukemia initiating cells, and synergized with several chemotherapeutic agents (dexamethasone, vincristine, cyclophosphamide, Ara-C) currently employed for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by co-culturing with MS-5 stromal cells which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic (IC50: 10-15 nM at 96 h) to primary lymphoblasts from patients with T-ALL, where the drug dephosphorylated 4E-BP1, at variance with rapamycin. Of note, NVP-BEZ235 targeted the SP also in T-ALL patient samples. Conclusions: NVP-BEZ235 was cytotoxic to T-ALL cell lines and patient lymphoblasts (including SP cells) at concentrations that have been previously reported to be achievable in vivo. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with other drugs, may serve as an efficient treatment towards T-ALL cells (including those overexpressing P-gp and independently from p53 status) which require upregulation of this signaling pathway for their survival and growth. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5622-5630 ◽  
Author(s):  
Jennifer B. Dennison ◽  
Mala Shanmugam ◽  
Mary L. Ayres ◽  
Jun Qian ◽  
Nancy L. Krett ◽  
...  

Abstract 8-Aminoadenosine (8-NH2-Ado), a ribosyl nucleoside analog, in preclinical models of multiple myeloma inhibits phosphorylation of proteins in multiple growth and survival pathways, including Akt. Given that Akt controls the activity of mammalian target of rapamycin (mTOR), we hypothesized that 8-NH2-Ado would be active in mantle cell lymphoma (MCL), a hematological malignancy clinically responsive to mTOR inhibitors. In the current study, the preclinical efficacy of 8-NH2-Ado and its resulting effects on Akt/mTOR and extracellular-signal–regulated kinase signaling were evaluated using 4 MCL cell lines, primary MCL cells, and normal lymphocytes from healthy donors. For all MCL cell lines, 8-NH2-Ado inhibited growth and promoted cell death as shown by reduction of thymidine incorporation, loss of mitochondrial membrane potential, and poly (adenosine diphosphate-ribose) polymerase cleavage. The efficacy of 8-NH2-Ado was highly associated with intracellular accumulation of 8-NH2-adenosine triphosphate (ATP) and loss of endogenous ATP. Formation of 8-NH2-ATP was also associated with inhibition of transcription and translation accompanied by loss of phosphorylated (p-)Akt, p-mTOR, p-Erk1/2, p-phosphoprotein (p)38, p-S6, and p-4E-binding protein 1. While normal lymphocytes accumulated 8-NH2-ATP but maintained their viability with 8-NH2-Ado treatment, primary lymphoma cells accumulated higher concentrations of 8-NH2-ATP, had increased loss of ATP, and underwent apoptosis. We conclude that 8-NH2-Ado is efficacious in preclinical models of MCL and inhibits signaling of Akt/mTOR and Erk pathways.


Blood ◽  
2012 ◽  
Vol 120 (13) ◽  
pp. 2679-2689 ◽  
Author(s):  
Zhihong Zeng ◽  
Yue Xi Shi ◽  
Twee Tsao ◽  
YiHua Qiu ◽  
Steven M. Kornblau ◽  
...  

Abstract The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5364-5364
Author(s):  
Andreas Guenther ◽  
Renate Burger ◽  
Wolfram Klapper ◽  
Matthias Staudinger ◽  
Martin Gramatzki

Abstract Introduction Both, the phosphoinositide-3kinase (PI3K)/AKT pathway as well as its nutrient-dependent downstream target, the mToR (mammalian target of rapamycin) kinase, are essential for the growth and survival of malignant plasma cells. PI3K exists in four isotypes (α - δ), the role of each of these isotypes in multiple myeloma (MM), however, is not defined. Therefore, we evaluated systematically the in vitroanti-myeloma activity of NVP-BYL719 (Novartis), a newly developed inhibitor highly selective for the PI3K α isoform, and compared it with the activity of other inhibitors targeting the PI3K/AKT/mToR signaling network at different sites. Since inhibition of mToRC1 may lead to PI3K activation by a feedback loop, we looked also at combinations of NVP-BYL719 and rapalogs. Materials and Methods An MTS based growth assay was used to measure growth inhibition of NVP-BYL719 in comparison to different inhibitors (the pan-PI3K inhibitors Ly294002 and NVP-BKM120, the dual PI3K/mToR inhibitor NVP-BEZ235, and the allosteric mToR inhibitors rapamycin and everolimus) on six human malignant plasma cell lines and two non-myeloma cell lines, K562 and Raji. Western blot analysis was used to confirm inhibitor activity and specificity. In addition, combinations of PI3K and mToR inhibitors were tested and antagonistic/synergistic activity was calculated with the CalcuSynTM (Biosoft) software. Results The selective PI3K alpha inhibitor NVP-BYL719 inhibited myeloma cell growth at a dose level (IC50 < 10 µM in 5/6 cell lines), where non-MM cell lines were not affected. Only cell line U266 was showed moderate sensitivity. The levels of the PI3K isoforms αwere comparable in all tested MM cell , as shown by Western blot. NVP-BYL719 blocked phosphorylation of AKT and of protein S6, an mToR downstream target. Of note, whenever rapamycin was combined with a PI3K inhibitor including NVP-BYL719, synergistic growth inhibition was seen, even in combination with the dual PI3K/mToR inhibitor NVP-BEZ235. Conclusions Here, the PI3Kα isoform is reported as being essential for the growth of myeloma cells. This provides the rationale for the therapeutic exploration of such isoform specific PI3K inhibitors in MM allowing dose intensification with less toxicity. Allosteric mToR inhibitors, already active in early clinical trials in MM patients may provide interesting combination partners for these PI3K-inhibitors. Disclosures: Guenther: Novartis: Consultancy. Gramatzki:Novartis: Consultancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 474-474 ◽  
Author(s):  
Zhihong Zeng ◽  
Marina Konopleva ◽  
Billie J. Nowak ◽  
William Plunkett ◽  
Gautam Borthakur ◽  
...  

Abstract Chemokine receptor CXCR4 is critically involved in the migration of hematopoietic cells to the stromal derived factor (SDF-1α)-producing bone marrow microenvironment. We and others have previously demonstrated that stroma/leukemia interactions mediate protection of leukemic cells from chemotherapy-induced apoptosis (Konopleva, Leukemia2002:1713; Burger Blood2000: 2655). Using AMD3465, the second-generation small-molecule CXCR4 inhibitor with a greater potency than AMD3100, we tested the hypothesis that CXCR4 inhibition interferes with stromal/leukemia cell interactions resulting in increased sensitivity to chemotherapy. Our results showed that AMD3465 inhibited surface expression of CXCR4 on AML cell lines in a dose dependent manner. AMD3465 (1μM) significantly inhibited SDF-1α and stromal (MS-5)-induced migration of OCI-AML2 cells (78% and 54% inhibition, respectively), U937 cells (71% and 41.3%) and diminished SDF-1α- or stromal-induced migration of leukemic blasts from four primary AML samples tested (SDF-1α, 43.4 ± 8.6%, MS-5, 38.4 ± 8.5% inhibition). In in vitro co-culture systems, stromal cells significantly protected leukemic cell lines and primary AML cells from spontaneous and chemotherapy induced apoptosis (p<0.01; p<0.001). Measurements of intracellular Ara-CTP levels determined by HPLC showed that stromal cells diminished incorporation of Ara-C into leukemic cells by 20%. AMD3465 enhanced AraC- and Busulfan-induced apoptosis by 44% and 69%, respectively. Western blot revealed that AMD3465 downregulated AKT signaling in AML cells. Most importantly, it decreased stroma-mediated protection from AraC-induced apoptosis in five out of ten primary AML samples with surface expression of functional CXCR4 (mean increase, 29.9±19.5% compared to chemotherapy alone). Curiously, the highest sensitization was observed in a sample from AML patient harboring Flt3/ITD mutation (Ara-C, 30.3% annexinV(+); Ara-C+AMD, 62.8%), confirming recently documented role for Flt3/ITD in modulation of CXCR4 signaling (Fukuda, Blood2005:3117). Taken together, our data suggest that SDF-1α/ CXCR4 interactions contribute to the resistance of leukemic cells to chemotherapy-induced apoptosis. Disruption of these interactions by the potent CXCR4 inhibitor AMD3465 represents a novel strategy for targeting leukemia cell/bone marrow microenvironment interactions. A clinical trial testing this concept in patients with AML is in preparation.


2016 ◽  
Vol 94 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Ruiting Li ◽  
Yinghui Li ◽  
Xin Hu ◽  
Haiwei Lian ◽  
Lei Wang ◽  
...  

Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase–Akt and MAPK–Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2094-2097 ◽  
Author(s):  
Dali Cai ◽  
Ying Wang ◽  
Oliver G. Ottmann ◽  
Peter J. Barth ◽  
Andreas Neubauer ◽  
...  

Leukemias are differentially sensitive to histone deacytelase inhibitor (HDI)–induced apoptosis, but molecular reasons for this remain unclear. We here show that BCR/ABL-, but not FMS-like tyrosine kinase 3 (FLT3)–internal tandem duplication (ITD)–transformed 32D cells or primary acute myeloid leukemia (AML) blasts undergo apoptosis after treatment with the HDI valproic acid (VPA) plus all-trans retinoic acid (VPA/ATRA). A particular VPA/ATRA responsiveness of Philadelphia chromosome–positive (Ph+) acute lymphatic leukemia (ALL) was confirmed in a therapy-refractory patient in vivo. HDI-stimulated apoptosis in Ph+ cells was caspase dependent, but independent from Akt pathway inhibition. Conversely, separate blockage of the Akt/mTor-signaling pathway was a prerequisite for overcoming apoptosis resistance to VPA/ATRA in FLT3-ITD cells, and primary AML blasts (n = 9). In conclusion, constitutive Akt activation causes apoptosis resistance to VPA/ATRA in AML, but not in Ph+ leukemia. This warrants the application of HDI-based therapies in poor-risk Ph+ ALL, and the use of Akt/mTor inhibitors to overcome HDI resistance in AML.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3138-3147 ◽  
Author(s):  
Thomas Strömberg ◽  
Anna Dimberg ◽  
Anna Hammarberg ◽  
Kristina Carlson ◽  
Anders Österborg ◽  
...  

Abstract Circumvention of chemoresistance in the B-cell neoplasm multiple myeloma (MM) might be achieved by targeting certain intracellular signaling pathways crucial for survival of the malignant clone. The use of the macrolide rapamycin, selectively inhibiting the phosphoprotein mammalian target of rapamycin (mTOR) downstream of, for example, insulin-like growth factor-I receptor (IGF-IR), possibly represents such a molecular mode of therapy. By using a panel of MM cell lines we showed that rapamycin induced G0/G1 arrest, an effect being associated with an increase of the cyclin-dependent kinase inhibitor p27 and a decrease of cyclins D2 and D3. Interestingly, in primary, mainly noncycling MM cells, rapamycin, at clinically achievable concentrations, induced apoptosis. More important, rapamycin sensitized both MM cell lines and primary MM cells to dexamethasone-induced apoptosis. This effect was associated with a decreased expression of cyclin D2 and survivin. The phosphorylation of the serine/threonine kinase p70S6K at Thr389 and Thr421/Ser424 was down-regulated by rapamycin and/or dexamethasone. Strikingly, the combinatorial treatment with rapamycin and dexamethasone suppressed the antiapoptotic effects of exogenously added IGF-I and interleukin 6 (IL-6) as well as their stimulation of p70S6K phosphorylation. The induction of apoptosis by rapamycin and dexamethasone despite the presence of survival factors was also demonstrated in primary MM cells, thus suggesting this drug combination to be active also in vivo. (Blood. 2004;103:3138-3147)


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1497-1504 ◽  
Author(s):  
Zhu-Gang Wang ◽  
Roberta Rivi ◽  
Laurent Delva ◽  
Andrea König ◽  
David A. Scheinberg ◽  
...  

Abstract Inorganic arsenic trioxide (As2O3) and the organic arsenical, melarsoprol, were recently shown to inhibit growth and induce apoptosis in NB4 acute promyelocytic leukemia (APL) and chronic B-cell leukemia cell lines, respectively. As2O3 has been proposed to principally target PML and PML-RAR proteins in APL cells. We investigated the activity of As2O3 and melarsoprol in a broader context encompassing various myeloid leukemia cell lines, including the APL cell line NB4-306 (a retinoic acid–resistant cell line derived from NB4 that no longer expresses the intact PML-RAR fusion protein), HL60, KG-1, and the myelomonocytic cell line U937. To examine the role of PML in mediating arsenical activity, we also tested these agents using murine embryonic fibroblasts (MEFs) and bone marrow (BM) progenitors in which the PML gene had been inactivated by homologous recombination. Unexpectedly, we found that both compounds inhibited cell growth, induced apoptosis, and downregulated bcl-2 protein in all cell lines tested. Melarsoprol was more potent than As2O3 at equimolar concentrations ranging from 10−7 to 10−5 mol/L. As2O3 relocalized PML and PML-RAR onto nuclear bodies, which was followed by PML degradation in NB4 as well as in HL60 and U937 cell lines. Although melarsoprol was more potent in inhibiting growth and inducing apoptosis, it did not affect PML and/or PML-RAR nuclear localization. Moreover, both As2O3 and melarsoprol comparably inhibited growth and induced apoptosis of PML+/+ and PML−/− MEFs, and inhibited colony-forming unit erythroid (CFU-E) and CFU granulocyte-monocyte formation in BM cultures of PML+/+ and PML−/− progenitors. Together, these results show that As2O3 and melarsoprol inhibit growth and induce apoptosis independent of both PML and PML-RAR expression in a variety of myeloid leukemia cell lines, and suggest that these agents may be more broadly used for treatment of leukemias other than APL. © 1998 by The American Society of Hematology.


2019 ◽  
Vol 20 (22) ◽  
pp. 5567
Author(s):  
Jan Torben Schille ◽  
Ingo Nolte ◽  
Eva-Maria Packeiser ◽  
Laura Wiesner ◽  
Jens Ingo Hein ◽  
...  

Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9′s mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs.


Sign in / Sign up

Export Citation Format

Share Document