A novel hierarchical prognostic model of AML solely based on molecular mutations

Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 2963-2972 ◽  
Author(s):  
Vera Grossmann ◽  
Susanne Schnittger ◽  
Alexander Kohlmann ◽  
Christiane Eder ◽  
Andreas Roller ◽  
...  

Abstract The karyotype is so far the most important prognostic parameter in acute myeloid leukemia (AML). Molecular mutations have been analyzed to subdivide AML with normal karyotype into prognostic subsets. The aim of this study was to develop a prognostic model for the entire AML cohort solely based on molecular markers. One thousand patients with cytogenetic data were investigated for the following molecular alterations: PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11, FLT3-ITD, and MLL-PTD, as well as mutations in NPM1, CEPBA, RUNX1, ASXL1, and TP53. Clinical data were available in 841 patients. Based on Cox regression and Kaplan-Meier analyses, 5 distinct prognostic subgroups were identified: (1) very favorable: PML-RARA rearrangement (n = 29) or CEPBA double mutations (n = 42; overall survival [OS] at 3 years: 82.9%); (2) favorable: RUNX1-RUNX1T1 (n = 35), CBFB-MYH11 (n = 31), or NPM1 mutation without FLT3-ITD (n = 186; OS at 3 years: 62.6%); (3) intermediate: none of the mutations leading to assignment into groups 1, 2, 4, or 5 (n = 235; OS at 3 years: 44.2%); (4) unfavorable: MLL-PTD and/or RUNX1 mutation and/or ASXL1 mutation (n = 203; OS at 3 years: 21.9%); and (5) very unfavorable: TP53 mutation (n = 80; OS at 3 years: 0%; P < .001). This comprehensive molecular characterization provides a more powerful model for prognostication than cytogenetics.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-4
Author(s):  
Ashley Zhang ◽  
Yuntao Liu ◽  
Shuning Wei ◽  
Benfa Gong ◽  
Chunlin Zhou ◽  
...  

Background BCOR gene is a transcription repressor that may influence normal hematopoiesis and is associated with poor prognosis in acute myeloid leukemia (AML) with normal karyotype. However, due to the rare mutation frequency in AML (3.8%-5%), clinical characteristics and prognosis of AML patients with BCOR mutation including abnormal karyotype are still unknown. In addition, the clonal evolution of AML patients with BCOR mutation has not been fully investigated. Methods By means of next generation of sequencing, we performed sequencing of 114 genes related to hematological diseases including BCOR on 509 newly diagnosed AML patients (except for acute promyelocytic leukemia) from March 2017 to April 2019. The 2017 European Leukemia Net (ELN) genetic risk stratification was used to evaluate prognosis. Overall survival (OS) was defined as the time from diagnosis to death or last follow-up. Relapse-free survival (RFS) was measured from remission to relapse or death. Clonal evolution was investigated through analyzing bone marrow samples at diagnosis, complete remission (CR) and relapse from the same patient. Result Among 509 AML patients, we found BCOR mutations in 23 patients (4.5%). BCOR mutations were enriched in patients with mutations of RUNX1 (p = 0.008) and BCORL1 (p = 0.0003). Patients with BCOR mutation were more at adverse ELN risk category compared to patients without BCOR mutation (p = 0.007). Besides, there was a larger proportion of patients with normal karyotype in BCOR mutation group but it had not reached statistical difference (62.5% vs 45.5%, p = 0.064). The abnormal karyotype in patients with BCOR mutations included trisomy 8, t(9;11), inv(3), -7 and complex karyotype.There were no significant differences in age, sex, white blood cell count, hemoglobin or platelet count between the two groups. More patients died during induction (13.0% vs 3.5%, p = 0.56) and fewer patients achieved CR after 2 cycles of chemotherapy when patients had BCOR mutations (69.6% vs 82.5%, p = 0.115) but the difference had not reached statistical difference . Patients with BCOR mutations had inferior 2-year OS (52.1% vs 70.7%, p = 0.0094) and 2-year RFS (29.8% vs 61.1%, p = 0.0090). After adjustment for ELN risk stratification, BCOR mutation was still remain a poor prognostic factor. However, the adverse prognostic impact of BCOR mutation is overcome by hematopoietic stem cell transplantation (HSCT), in which there was no difference between BCOR mutation group and wild type group (p = 0.474) (Figure 1). Through analysis of paired bone marrow sample at diagnosis, remission and relapse, we revealed the clonal evolution that BCOR mutation was only detected at diagnosis sample as a subclone and diminished at CR and relapse while TP53 mutation was only detected at relapse with a variant allele frequency (VAF) of 25.5%. We also found BCOR mutation at another patient's diagnosis and relapse sample while TP53 mutation was detected at relapse with VAF of 11.8%. Conclusion BCOR is associated with RUNX1 mutation and higher ELN risk. AML patients with BCOR mutation including normal and abnormal karyotype conferred a worse impact on OS that can be overcome by HSCT. BCOR mutation is a subclone at diagnosis or relapse in some patients, in which TP53 mutation clone occurred at relapse. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2368-2368
Author(s):  
Tatsuya Suzuki ◽  
Hitoshi Kiyoi ◽  
Kazutaka Ozeki ◽  
Akihiro Tomita ◽  
Ritsuro Suzuki ◽  
...  

Abstract Nucleophosmin (NPM) is a nucleolar protein with multi-functions including centromere duplication, nuclear-cytoplasmic shuttling, ribosomal biogenesis, p53 stability. NPM1 mutations were found in a large number of patients with acute myeloid leukemia (AML) especially with normal karyotype. The mutations lead to the aberrant subcellular localization of NPM protein. However, their impacts on clinical outcome remain controversial. We screened the mutations of NPM1 in 257 AML patients and analyzed the clinical significance. NPM1 mutations were found in 64 of 257 patients (24.9%). Seven types of mutations, including four novel mutations, were identified. NPM1 mutations were associated with normal karyotype, FLT3 mutations (both FLT3-ITD and D835 mutation) but not with other gene alterations such as N-RAS, p53 mutations and partial tandem duplication of the MLL gene. In 190 patients except the M3 subgroup, who were treated according to the protocol of Japan Adult Leukemia Study Group, the multivariate analysis revealed that NPM1 mutation was a favorable factor for achieving complete remission, but significantly associated with relapse. A sequential analysis, using paired samples obtained at diagnosis and relapse in 39 patients, revealed that NPM1 mutations were lost at relapse in 2 of the seventeen patients who had NPM1 mutations at diagnosis and none of the patients, who did not have NPM1 mutations at diagnosis, gained NPM1 mutations at relapse. Our results suggest that NPM-mutated AML should be a distinct subgroup with specific clinical characteristics and outcome. Loss of NPM mutations at relapse implies that NPM mutation is not necessarily a primary genetic alteration and that these leukemic clones could be sensitive to chemotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2518-2518
Author(s):  
Ulrike Bacher ◽  
Susanne Schnittger ◽  
Wolfgang Kern ◽  
Tamara Weiss ◽  
Claudia Haferlach ◽  
...  

Abstract Acute myeloid leukemia with mutated nucleophosmin (AML NPM1mut) represents about one-third of all adult AML and shows distinctive biological and clinical features. For this reason, AML NPM1mut is planned to be included as a separate category in the revised WHO classification. A yet controversial issue, however, is whether AML NPM1mut with or without multilineage dysplasia (MLD) may differ biologically and clinically, as the presence of MLD might confer a negative prognostic impact. A further feature that was suggested to be typical for NPM1 mutated AML is “cup-like” morphology of blasts. We here analyzed 128 pts with AML NPM1mut and normal karyotype at first manifestation (59 females, 69 males; median age 60.5 years; 23.5–79.3 y). We investigated in parallel cytomorphology from bone marrow and/or peripheral blood, chromosome banding analysis, and molecular analyses. Presence of dysplasia was defined by dysplastic features in ≥50% of cells in the respective hematopoietic lineage as defined by the WHO. A 5% cut-off was taken for the presence of “cup-like” morphology of blasts. All cases were additionally analyzed for the FLT3-ITD, and in 122 pts for the FLT3-TKD. Statistical analysis was performed for overall survival (OS), and event-free survival (EFS) according to Kaplan-Meier using the 2-sided log-rank test. Cox regression analysis related OS and EFS with the analyzed parameters. We found a predominance of the FAB M1 (21.3% of all cases), M2 (33.9%), and M4 subtypes (28.3%). Cup-like morphology in ≥5% of all blasts was observed in 39 of 127 evaluable cases (31.3%) confirming previous observations of an association of the NPM1mut and this specific blast appearance. Molecular characterization detected NPM1 mutation subtype A (n=90/122; 73.8%), B (15/122; 12.3%), and D (7/122; 5.7%), which was in accordance to previous studies. In 56 cases (43.8%) there was a coincidence with an FLT3-ITD. Dysplasia of granulopoiesis was detected in 28/126 (22.2%), of erythropoiesis in 28/104 (26.9%), and of megakaryopoiesis in 57/87 (44.5%) cases in which the respective cell lineage could be analyzed. MLD (≥2 dysplastic hematopoietic lineages) was detected in 28 of 105 evaluable cases (21.9%). Clinical follow-up was available in 104 pts. (median follow-up 12,7 months). CR rate was 83.1% in 77 evaluable pts., and median EFS was 42.1 months in 104 evaluable pts (median OS not reached). An additional FLT3-ITD had a significantly inferior OS (p=0.003) and EFS (p=0.007), confirming the present series being representative. However, the presence of MLD was not significantly related to any endpoint such as CR rate, EFS, or OS. There was no association between MLD and the NPM1-subtype. Also, there was no significant correlation of MLD and the presence of a FLT3-ITD. In conclusion, the presence of MLD in AML NPM1mut with normal karyotype had no impact on CR rate and outcome, whereas coincidence of FLT3-ITD significantly worsened prognosis. These results give further evidence that AML with NPM1mut AML is a unique biological entity with clinical course mainly influenced by FLT3-ITD coincidence. These data do not support any additional prognostic influence of MLD in this AML subtype.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4676-4676
Author(s):  
Seo-Jin Park ◽  
Hyun-Sook Chi ◽  
Kyung Ran Jun ◽  
Sook Kyoung Min ◽  
Seongsoo Jang ◽  
...  

Abstract Abstract 4676 INTRODUCTION Mutations of the nucleophosmin gene (NPM1) occur in up to 40-50% of adult acute myeloid leukemia (AML) with a normal karyotype and are associated with a higher frequency of fms-like tyrosine kinase-3 internal tandem duplications (FLT3-ITD) and responsiveness to induction chemotherapy. The incidence of NPM1 mutations in Caucasians have been previously reported in several studies whereas there have been few reports from Asian countries including Japan, China, and Taiwan. The objectives of our study was to determine the prevalence of NPM1 mutations and distribution of AML subtypes in the normal karyotype AML Korean population in addition to establishing an easily applicable yet reliable method to indentify these mutations. We also examined treatment outcomes and survival (relapse-free survival (RFS) and overall survival (OS)) by stratifying them into groups according to NPM1 and FLT3-ITD mutation status. METHODS We retrospectively analyzed the prevalence of NPM1 mutations in 185 patients with normal karyotype AML diagnosed between 2002 and 2009. Genomic DNA extracted from bone marrow aspirate specimens obtained at diagnosis was amplified by PCR, followed by analysis on an ABI 3130 Genetic Analyzer (Applied Biosystems) by capillary electrophoresis. Cases found to have mutation peaks at 174bp by Gene Mapper ID v3.2 software (Applied Biosystems) were further analyzed by direct sequencing of exon 12 of NPM1 gene. Follow-up data was reviewed by retrospective chart review for treatment outcome and survival analyses. Among the 185 AML patients, 18 with less than a 1-month follow-up period were excluded since they could not be sufficiently evaluated. RESULTS Mutations in exon 12 of NPM1 were found in 37 of 185 (20.0%) normal karyotype AML patients and were composed of TCTG duplications (Type A, 32/37, 86.5%), 3 previously reported variants, and 2 new variants previously not reported. Mutations were most frequently seen in AML M1 patients (12/37, 32.4%) and other subtypes such as M2, and M4 were often observed. NPM1 mutations were particularly associated with CD34-negativity (<0.0001) and higher bone marrow blast (%) at diagnosis (p=0.0067). There was a mild trend towards frequent FLT3-ITD mutations in NPM1+ patients in comparison to the NPM1- group (35.1% and 19.6%, p=0.0787). After exclusion of the 18 patients lost during follow-up, no significant differences in RFS (8.5 and 10.8 months, p=0.7922) and OS (11.5 and 13.6 months, p=0.6147) were observed between the NPM1+ and NPM1- groups. Stratification into good (NPM1+/FLT3-ITD-), intermediate (NPM1-/FLT3-ITD- & NPM1+/FLT3-ITD+), and poor (NPM1-/FLT3-ITD+) prognostic groups did not reveal significant differences in median values of RFS and OS (in months; RFS, 16.0 and 13.8 and 7.3, p=0.1872; OS, 16.0 and 10.8 and 7.3, p=0.3661). However, the Kaplan-Meier survival analysis of these stratified prognostic groups showed a trend toward a difference in RFS (p=0.084) and a significantly longer OS in the NPM1+/FLT3-ITD- (good prognostic) group (p=0.031). CONCLUSIONS The prevalence of NPM1 mutations in normal karyotype AML patients in Koreans was lower than those reported in Western studies. In areas with low prevalence, a screening method to detect mutations enables rapid reporting with only selective cases requiring the labor-intensive direct sequencing step. In accordance with previous studies, a significantly longer OS in the NPM1+/FLT3-ITD- group suggests that NPM1+ may be associated with a favorable outcome. However, discordant parameters such as prevalence and RFS may signify that elucidation of the prognostic significance of NPM1 mutations in different ethnic groups may be necessary. Thus, NPM1 mutation studies should be considered in the diagnostic work-up of all AML patients with a normal karyotype given its role as a prognostic marker. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2534-2534
Author(s):  
Yeo-Kyeoung Kim ◽  
Il-Kwon Lee ◽  
Dennis Dong Hwan Kim ◽  
Chul Won Jung ◽  
Jun-Ho Jang ◽  
...  

Abstract Abstract 2534 Background: Acute myeloid leukemia with normal karyotype (AML-NK) is known to be heterogeneous in the molecular level. Accordingly, it has become more critical to dissect this group of patients according to their prognosis using a molecular genetic technology. We attempted to analyze the incidence and prognostic implication of genetic abnormalities on survival in 426 adult patients with AML-NK. Methods: A total of 67 AML-NK patients achieved complete remission (CR), candidate mutations in 21 genes were identified by whole exome sequencing which has 41–89× coverage and by single-nucleotide polymorphism array analysis using marrow mononuclear cells at diagnosis of AML-NK. Subsequently, mutation analysis of 11 genes (i.e. FLT3/ITD, NPM1, DNMT3a, IDH1, IDH2, TET2, NRAS, WT1, DNAH11, SF3B1, and PHF6) which are known to be involved in the pathogenesis of hematologic diseases, were performed using Sanger sequencing in another subset of 359 AML-NK patients as a validation cohort. Results: Of 426 patients in total (median age: 51, ranges: 15–85), FLT3/ITD, NPM1, and DNMT3a mutations were associated with higher leukocytes counts at presentation of AML-NK. In 284 patients who received standard remission induction (RI) chemotherapy (excluding 119 patients with conservative treatment and 22 early death/1 follow-up loss after RI chemotherapy), those with FLT3/ITD mutation were significantly associated with a higher risk of relapse (p=0.02), a shorter leukemic-free survival duration (LFS)(p<0.01) or overall survival (OS) (p=0.01). Accordingly, we divided the patients into FLT3/ITD+ and FLT3/ITD− population, and analyzed their treatment outcomes according to the other mutations. In the FLT3/ITD− group (n=200), those with NPM1 mutation showed a higher CR rates after one or two cycles of RI chemotherapy (p<0.01) and a longer OS duration (p<0.01), hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.25–0.73, adjusted by other clinical variables including age, leukocyte counts at diagnosis, and transplantation (Figure 1). In the FLT3/ITD+ patients (n=84), NPM1 mutation was found to be a favorable prognostic factor showing a lower relapse rate (p=0.00), a longer LFS duration (p<0.01, HR 0.35, 95% CI 0.18–0.70), and OS duration (p=0.04, HR 0.55, 95% CI 0.31–0.98) in NPM1 mutated patients. In addition, OS was significantly different in favor of those with IDH2, especially R140Q IDH2 mutation, (p=0.04, HR 0.30, 95% CI 0.09–0.99), whereas DNAH11 mutation was associated with inferior OS (p<0.01, HR 5.78, 95% CI 1.65–20.25). Accordingly, we stratified the FLT3/ITD+ patients into three subgroups according to the NPM1, IDH1/2 and DNAH11 mutation status, Group 1: NPM1 mutation and IDH1 or 2 mutations (n=16), Group 2: isolated DNAH11 mutation (n=4) and Group 3: all mutations were negative (n=64). The group 1 showed significantly better OS than group 2 (p<0.01, HR 16.90, 95% CI 3.48–82.15) or group 3 (p<0.01, HR 3.40, 95% CI 1.20–9.55) (Figure 2). In a subgroup analysis of younger patients less than 60 years of age, similar outcomes were also observed in favor of group 1 in terms of OS (data not shown). Conclusion: Our study confirmed that NPM1 mutation is an independent prognostic factor in adult patients with AML-NK not harboring FLT3/ITD mutation. In addition, several other genetic markers were identified as prognostic including IDH1/2 or DNAH11 mutations as well as NPM1 mutation in a subgroup of AML-NK patients with FLT3/ITD mutation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 657-657
Author(s):  
Alexander Kohlmann ◽  
Niroshan Nadarajah ◽  
Vera Grossmann ◽  
Tamara Alpermann ◽  
Wolfgang Kern ◽  
...  

Abstract Abstract 657 Introduction: RUNX1 mutations constitute disease-defining aberrations in acute myeloid leukemia (AML) and were demonstrated to be particularly frequent in secondary and de novo AML with normal karyotype or non-complex alterations and to confer an unfavorable prognosis. Monitoring minimal residual disease (MRD) in AML has been shown to provide prognostic information and is increasingly used for treatment decisions. A variety of molecular markers has been identified suitable for MRD assessment, yet there still is a lack of such markers in a significant number of patients. The use of RUNX1 mutations may bridge a gap. Aims: Patients and Methods: RUNX1 mutation screening was prospectively performed in 814 patients with AML at diagnosis (645 de novo, 109 s-AML, and 60 t-AML). The median age of the patients was 69.6 years (range: 1 – 93 years), including 375 female and 439 male patients, respectively. 50.5% (411/814) of cases presented with a normal karyotype, 38.8% (316/814) with non-complex cytogenetic alterations, 9.6% (78/814) with a complex aberrant karyotype, and 1.1% (9/814) with prognostically favorable cytogenetics. Mutation analysis was performed using a sensitive next-generation amplicon deep-sequencing assay (454 Life Sciences, Branford, CT). Moreover, in a subset of 44 AML patients and additional 59 retrospectively analyzed cases the prognostic impact of MRD levels of RUNX1 mutations was studied at a second time point after completion of intensive induction therapy (median sampling interval: 128 days after diagnosis; range 60 – 180 days). In these follow-up samples the RUNX1 mutations already detected at diagnosis were investigated with a higher coverage (835-fold median coverage) as compared to the diagnostic assessment (759-fold median coverage) resulting in a sensitivity level of 1%. Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed to assess the stability of RUNX1 mutations. Results: 211/814 patients (25.9%) were detected to carry RUNX1 mutations. The median clone size was 39% and revealed a significant heterogeneity ranging from 2% to 96%. 73.9% (156/211) of mutated patients carried one mutation only, whereas 26.1% (55/211) harbored two (n=46) or more (n=9) mutations. In detail, the 211 patients harbored a total number of 275 alterations in RUNX1: 42.5% (117/275) frame-shift mutations, 34.9% (96/275) missense, 14.2% (39/275) nonsense, 4.4% (12/275) exon-skipping/splicing, and 4.0% (11/275) in-frame insertion/deletion alterations, respectively. Regarding MRD assessment, patients were separated according to the median MRD level (3.92%; range 0.03% - 48.00%) into “good responders” (n=78) with MRD levels below 3.92% and “poor responders” (n=25) with MRD levels above 3.92%. This resulted in significant differences in both event-free survival (median 21.4 vs 5.7 months, p<0.001) and overall survival (73.3% vs 66.1% at 2 years, p=0.016). Moreover, in 57 cases the stability of individual RUNX1 mutations was studied at the time of relapse. In 46/57 (80.7%) cases the same alterations detected at diagnosis were present at relapse, whilst in 2/57 (3.5%) cases the RUNX1 mutation from the diagnostic sample was no longer detectable at relapse. Importantly, in 7/57 (12.3%) patients novel RUNX1 mutations were detected in regions different from those affected at diagnosis. Conclusion: Next-generation deep-sequencing accurately detects and quantifies RUNX1 mutations in AML with high sensitivity. RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. Thus, the measurement of mutation load by next-generation sequencing may contribute to refine the assignment into distinct risk categories in AML. Analysis of RUNX1 mutations should be considered for the complete coding region at relapse to detect new RUNX1 mutations. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment; Roche Diagnostics: Honoraria. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7052-7052
Author(s):  
B. C. Medeiros ◽  
J. R. Gotlib ◽  
S. E. Coutre ◽  
C. Jones ◽  
S. A. Khan ◽  
...  

7052 Background: High treatment-related mortality and low response rates often discourage elderly patients with acute myeloid leukemia from receiving treatment. Previous data demonstrate that only patients lacking expression of O6-alkylguanine-DNA alkyltransferase (AGAT) in leukemic blasts are sensitive to temozolomide. Protracted exposure to low doses of temozolomide can significantly inhibit AGAT enzymatic activity. Methods: Phase II clinical trial of tailored temozolomide therapy to high-risk AML patients according to AGAT methylation promoter status. Patients demonstrating evidence of AGAT promoter methylation were stratified to conventional doses of temozolomide at 200 mg/m2 orally x 7 days. Patients demonstrating lack of AGAT promoter methylation (unmethylated) received protracted doses of temozolomide (100 mg/m2 orally x 14 days) followed by conventional doses of temozolomide. Patients who achieved CR were given up to 5 consolidation treatments. Results: Fifteen patients have completed treatment to date. The median age was 78 (68–83) and nine were male. De novo AML was diagnosed in eight patients and five patients had s-AML. Nine patients had a normal karyotype and three patients had a complex karyotype. Two patients had only a NPM1 mutation and one had NPM1mut/FLT3-ITD. In 13 patients, the AGAT promoter was found to be unmethylated. AGAT protein was present in 5/11 patients. All patients had an intact mismatch repair pathway. Thirteen patients had HCT-CI scores of 0–2. Six patients (6/13) achieved a complete remission (CR) after 1 cycle of therapy (1/2 for patients with methylated and 5/11 for patients with unmethylated AGAT promoter). Nonhematologic toxicities were minimal. Drug-related hematologic toxicities were difficult to distinguish from disease-related cytopenias. Three patients remain in CR with a median duration of 22 weeks (14–36 weeks). Seven patients have died from disease progression, while two patients died of neutropenic sepsis (early deaths). With a median follow-up of 38 weeks (10–48), the median overall survival for the entire population is 12 weeks (3.5 - 38) weeks (responders 26.5 weeks). Conclusions: These preliminary results suggest that temozolomide therapy may be individually tailored to elderly patients with AML according to AGAT promoter status. [Table: see text]


2021 ◽  
Author(s):  
xinwen zhang ◽  
Hao Xiong ◽  
Jialin Duan ◽  
Xiaomin Chen ◽  
Yang Liu ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is one of the common malignant diseases of hematopoietic system. Paxillin ( PXN ) is an important part of focal adhesions (FAs), which is related to the poor prognosis of many kinds of malignant tumors. However, no research has focused on the expression of PXN in AML. We aimed to investigate the expression of PXN in AML and its prognostic significance. Methods: Using GEPIA and UALCAN database to analyze the expression of PXN in AML patients and its prognostic significance. Bone marrow samples of newly diagnosed AML patients were collected to extract RNA, and qRT-PCR was used to detect the expression of PXN . The prognosis was followed up. Chi-square test was used to analyze the relationship between PXN expression and clinical laboratory characteristics. Kaplan-Meier analysis was used to draw survival curve, and Cox regression analysis was used to analyze the independent factors affecting the prognosis of patients with AML. The co-expression genes of PXN were analyzed by LinkedOmics to explore its biological significance in AML. Results: Kaplan-Meier analysis showed that the overall survival time of AML patients was related to whether to receive treatment and PXN expression(P<0.05). COX regression analysis showed that whether to receive treatment (HR=0.227,95%CI=0.075-0.689, P =0.009) and high expression of PXN (HR=4.484,95%CI=1.449-13.889, P =0.009) were independent poor prognostic factors in patients with AML. Conclusion: PXN is highly expressed in AML patient, and high PXN expression is an indicator of poor prognosis in AML patient.


2021 ◽  
Author(s):  
Zhiyuan Zheng ◽  
Wei Wu ◽  
Zehang Lin ◽  
Shuhan Liu ◽  
Qiaoqian Chen ◽  
...  

Abstract Background: Ferroptosis is a newly discovered type of programmed cell death that participates in the biological processes of various cancers. However, the mechanism by which ferroptosis modulates acute myeloid leukemia (AML) remains unclear. This study aimed to investigate the role of ferroptosis-related long non-coding RNAs (lncRNAs) in AML and establish a corresponding prognostic model.Methods: RNA-sequencing data and clinicopathological characteristics were obtained from The Cancer Genome Atlas database, and ferroptosis-related genes were obtained from the FerrDb database. The “limma” R package, Cox regression, and the least absolute shrinkage and selection operator were used to determine the ferroptosis-related lncRNA signature with the lowest Akaike information criteria (AIC). The risk score of ferroptosis-related lncRNAs was calculated and patients with AML were divided into high- and low-risk groups based on the median risk score. The Kaplan-Meier curve and Cox regression were used to evaluate the prognostic value of the risk score. Finally, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the biological functions of the ferroptosis-related lncRNAs.Results: Seven ferroptosis-related lncRNA signatures were identified in the training group, and Kaplan-Meier and Cox regression analyses confirmed that risk scores were independent prognostic predictors of AML in both the training and validation groups (All P < 0.05). In addition, the area under the curve (AUC) analysis confirmed that the signatures had a good predictive ability for the prognosis of AML. GSEA and ssGSEA showed that the seven ferroptosis-related lncRNAs were related to glutathione metabolism and tumor immunity.Conclusions: In this study, seven novel ferroptosis-related lncRNA signatures (AP001266.2, AC133961.1, AF064858.3, AC007383.2, AC008906.1, AC026771.1, and KIF26B-AS1) were established. These signatures were shown to accurately predict the prognosis of AML, which would provide new insights into strategies for the development of new AML therapies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5097-5097
Author(s):  
Atsushi Marumo ◽  
Hiroki Yamaguchi ◽  
Yuho Najima ◽  
Kensuke Usuki ◽  
Shinichi Kako ◽  
...  

Background: As recurrence of acute myeloid leukemia (AML) is difficult to predict, it is important to detect it by measuring minimal residual disease (MRD). PML-RARA, RUNX-RUNX1T1, CBFB-MYH11 are regarded as the reliable MRD markers. However, in AML with normal karyotype and many other forms, no MRD markers have been established. NPM1 mutations, occurring in approximately 30% of adult AML cases, and 50-60% of AML cases with normal karyotype, represent one of the most frequent mutations in AML. Recently, NPM1 mutation is reported to be useful in assessing MRD. We undertook a retrospective and prospective investigation of the usefulness of NPM1 mutation as an MRD marker in Japanese patients with AML. Methods: The subjects were 38 NPM1-mutated AML patients with first hematological remission at several hospitals related to our institution between 2001 and 2018. This study was approved by the ethics committee of Nippon Medical School and the informed consents were obtained from all patients, according to the Declaration of Helsinki. We analyzed peripheral blood cells or bone marrow cells at diagnoses, and evaluated only bone marrow cells after diagnoses. Detection of NPM1 mutation was carried out using allele-specific real time PCR following creation of a complementary primer. After dilution of the samples, sensitivity to TCTG, CATG, and CCTG was found to be 0.001%. The NPM1 mutant copies were qualified only at successful amplification of internal control. Results: The median age of the patients was 58 years (18-79 years). There were 32 cases with intermediate cytogenetic prognosis and 6 cases with unclear chromosomal profile. Of the 38 cases, 14 cases (37%) were FLT3-ITD-positive and allogeneic hematopoietic stem cell transplantation was carried out in 14 cases (37%). The base sequence was TCTG in 36 cases and CCTG in 2 cases. Persistence of NPM1-mutatation was present in 25 patients with first hematological remission (66%). Compared with patients with MRD negative, patients with MRD positive were associated with DNMT3A mutation (MRD positive 12/25 vs MRD negative 0/13, p=0.003). The rate of relapse in patients with MRD positive was significantly higher than those of in patients with MRD negative (MRD positive 76% vs MRD negative 23%, p=0.004). The rates of relapse free survival (RFS) and overall survival (OS) in patients with MRD positive were significantly lower than those in patients with MRD negative (RFS at 2 years: MRD positive 14% vs MRD negative 86% p=0.003; Figure 1, OS at 2 years: MRD positive 25% vs MRD negative 93%, p<0.001). In FLT3-ITD negative group, the rates of RFS in patients with MRD positive were significantly lower than those in patients with MRD negative. (RFS at 2 years: MRD positive 21% vs MRD negative 92% p=0.001; Figure 1). Conclusion: The presence of MRD with NPM1 mutation is significantly associated with relapse and it is useful to decide their treatment strategy. Especially, there is the usefulness of NPM1 mutation as an MRD marker in NPM1 positive Flt3-ITD negative AML patients who are generally classified as favorable risk. According to previous reports, it is known that NPM1-mutated AML sometimes relapse with losing NPM1 mutations. However, in this study, all NPM1-mutated AML relapse without losing NPM1 mutations. We need to collect more patients and are going to confirm whether there are patients who relapse with losing NPM1 mutations or not. We plan to analyze the genetic background of MRD positive and negative patients with next-generation sequencing. We are going to announce the genetic characteristics in addition to this result at ASH. Disclosures Usuki: Astellas Pharma Inc: Research Funding, Speakers Bureau; Daiichi Sankyo Co., Ltd.: Research Funding, Speakers Bureau. Kako:Bristol-Myers Squibb: Honoraria; Pfizer Japan Inc.: Honoraria. Inokuchi:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document