scholarly journals Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells

Blood ◽  
2017 ◽  
Vol 130 (25) ◽  
pp. 2762-2773 ◽  
Author(s):  
Xin Zhao ◽  
Shouguo Gao ◽  
Zhijie Wu ◽  
Sachiko Kajigaya ◽  
Xingmin Feng ◽  
...  

Key Points We distinguished aneuploid cells from diploid cells within the hematopoietic stem and progenitor cells using scRNA-seq. Monosomy 7 cells showed downregulated pathways involved in immune response and maintenance of DNA stability.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 26-26
Author(s):  
Jimmy L. Zhao ◽  
Chao Ma ◽  
Ryan O'Connell ◽  
Dinesh S. Rao ◽  
James Heath ◽  
...  

Abstract Abstract 26 During infection, hematopoietic stem and progenitor cells (HSPCs) are called upon to proliferate and differentiate to produce more innate and adaptive immune cells to combat infection. Traditionally, HSPCs are thought to respond to depletion of downstream hematopoietic cells during infection. More recent evidence suggests that HSPCs may respond directly to infection and pro-inflammatory cytokines. However, little is known about the direct immune response of HSPCs and the molecular signaling regulating this response upon sensing an infection. In this study, we have combined transgenic and genetic knockout mouse models with a novel single cell barcode proteomics microchip technology to tackle these questions. We show that although long-term hematopoietic stem cells (HSCs) (defined by Lineage-cKit+Sca1+CD150+CD48-) do not secrete cytokines upon toll-like receptor (TLR) stimulation, short-term HSCs and multipotent progenitor cells (MPPs) (defined by Lineage-cKit+Sca1+, referred to as LKS thereafter) can produce copious amounts of cytokines upon direct TLR-4 and TLR-2 stimulation, indicating that LKS cells can directly participate in an immune response by producing a myriad of cytokines, upon a bacterial infection. Within the population of LKS cells we detect multiple functional subsets of cells, specialized in producing myeloid-like, lymphoid-like or both types of cytokines. Moreover, we show that the cytokine production by LKS cells is regulated by the NF-κB activity, as p50-deficient LKS cells show reduced cytokine production while microRNA-146a (miR-146a)-deficient LKS cells show significantly increased cytokine production. As long-term HSCs differentiate, they start to gain effector immune function much earlier than we had originally anticipated. In light of this finding, we should start to view the stepwise differentiation scheme of HSCs, and perhaps all other stem cells, as a strategy to sequentially gain functional capacity, instead of simply losing stemness and self-renewal ability. The remarkable ability of LKS cells to produce copious amounts of cytokines in response to bacteria may provide some protective immunity during severe neutropenia and lymphopenia or in the early stage of HSC transplantation. This study further extends the functions of NF-κB to include the regulation of primitive hematopoietic stem and progenitor cells and provides direct evidence of the bacteria-responding ability of HSPCs through the TLR/NF-κB axis. The single cell barcode proteomics technology can be widely applied to study proteomics of other rare cells or heterogeneous cell population at a single cell level. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3707-3707
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Brian Cox ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) have multi-lineage potential and can be used in transplants as a curative treatment for various hematopoietic diseases. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. One level of regulation comes from the sympathetic nervous system that innervates the niche and releases neurotransmitters to stromal cells. However, the direct regulation of HSPCs via cell surface expression of neural receptors has not been functionally explored. Using imaging mass spectrometry, we detected strong and regionally specific gamma-aminobutyric acid (GABA) neurotransmitter signal in the endosteal region of mouse bone marrow. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation has not been investigated. Based on published mouse HSPC single cell RNA-seq data (Nestorowa et al., Blood 2016), we found that a subset of HSPCs expressed the GABA type B receptor subunit 1 (Gabbr1). We confirmed by surface receptor expression that a subset of mouse bone marrow HSPCs express Gabbr1 protein. Using the same single cell RNA-seq data as above, our own gene set enrichment analysis (GSEA) revealed positive correlation of Gabbr1 expression with genes involved in immune system processes, such as response to type I interferons. We generated a CRISPR-Cas9 Gabbr1 mutant mouse model on a C57/BL6 background suitable for hematopoietic studies. Analysis of Gabbr1 mutant bone marrow cells revealed a reduction in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but no change in the number of long-term hematopoietic stem cells (LT-HSCs). With further hematopoietic profiling, we discovered reduced numbers of white blood cells in peripheral blood that was primarily due to fewer B220+ cells. We show that Gabbr1 null HSPCs display reduced proliferative capacity, as well as diminished reconstitution ability when transplanted in a competitive setting. An in vitro differentiation assay revealed the impaired ability of Gabbr1 null HSPCs to produce B cell lineages. We tested our predicted association with type I interferon response by administration of poly(I:C) and found reduced HSPC proliferation in Gabbr1 null mice. Our results may translate well to humans, as a rare human SNP within the GABBR1 locus was found that correlates with altered leukocyte counts (Astle et al., Cell 2016). Our results indicate an important role for Gabbr1 in the regulation of HSPC proliferation and differentiation, highlighting Gabbr1 as an emerging factor in the modulation of HSPC function and behavior. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2518-2518
Author(s):  
Brianna Craver ◽  
Quy Nguyen ◽  
Gajalakshmi Ramanathan ◽  
Angela G. Fleischman

Somatic mutations in hematopoietic stem and progenitor cells (HSPCs) leading to constitutive activation of thrombopoietin receptor signaling result in myeloproliferative neoplasms (MPN). The most common mutation found in MPN patients occurs in the Janus kinase 2 gene (JAK2V617F). We have previously found that JAK2V617F hematopoietic progenitors are resistant to tumor necrosis factor alpha (TNFα), however this mechanism is not well defined. We hypothesize that resistance to TNFα in JAK2V617F hematopoietic stem and progenitors is a driver of the competitive advantage over non-malignant clones. Here, we used droplet-based single-cell RNA-sequencing to investigate transcriptional profiling in primary human HSPCs. First, we harvested white blood cells from fresh bone marrow aspirates from one MPN patient (Polycythemia Vera with 71% JAK2V617F allele burden) as well as one unaffected individual then sorted Lin-/CD34+/CD38- hematopoietic progenitors. Immediately following sorting, half of the cells were stimulated with TNFα for 4 hours while the other half of cells were used as unstimulated controls. We then utilized the 10X Chromium platform to generate single-cell droplets for the 8,129 total cells from the unaffected individual and 33,299 total cells from the MPN patient. We ran alignment using the CellRanger pipeline then performed analysis using the Seurat package in R. Expression profiles of untreated HSPCs in both normal and MPN cells revealed high expression of genes involved in important pathways for hematopoiesis (Polycomb repressive complexes, chromatin regulation, the ubiquitin proteasome system etc.). Expression of CD34 was confirmed in both MPN and non-MPN cells, though CD34 expression was reduced following TNFα stimulation. Expression of stem (i.e. THY1, ITGA6) and progenitor (i.e. PTPRC) genes were detected within both individuals, which highlights the heterogeneity within Lineage-/CD34+/CD38- cells. Following stimulation with TNFα, we observed expression of genes in canonical pathways downstream of TNF including NF-κB, Mitogen-Activated Protein Kinase (MAPK), and Transforming Growth Factor Beta (TGFβ). Indeed, we observed a baseline level of expression of TGFβ-related genes in both normal and MPN cells. Upon inflammatory stimulation, normal HSPCs upregulated SMAD expression which are involved in the TGFβ pathway. Strikingly, we did not observe an increase in SMAD expression in MPN cells following TNF. This suggests a dampened response via the TGFβ pathway to TNF in MPN cells. Additionally, we found that TNF-stimulated HPSCs from the unaffected individual expressed canonical genes of the TNF pathway that encode for chemokines, cytokines, transcription factors and negative feedback regulators. In normal TNF-stimulated cells, we identified highly expressed genes involved in the caspase cascade, suggesting a robust apoptotic response in normal HPSCs. However, there was a lower expression of caspases in stimulated MPN cells, suggesting a dampened apoptotic response to TNF. One observation that was unique to TNF-stimulated cells from the MPN individual was the expression of glycoproteins involved in angiogenesis and platelet aggregation. Taken together, these data serve as a proof of principle for transcriptional profiling of primary human hematopoietic stem and progenitor cells and that this cell population rapidly and robustly alter their gene expression program upon TNFα stimulation. In conclusion, we show that HSPCs from an MPN patient exhibit a dampened response to TNF compared to normal HSPCs. Specifically, we observed a lower expression of genes involved with apoptosis and TGFβ signaling in MPN cells compared to normal cells following TNF stimulation. The finding of a dampened apoptotic response to TNF is consistent with the hypothesis that JAK2V617F cells gain a selective advantage over normal cells under inflammatory stress. To our knowledge, this is the first report of single-cell RNA-seq analysis on primary human HSPCs following FACS and inflammatory stimulation. Disclosures Fleischman: incyte: Speakers Bureau.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 549
Author(s):  
Niclas Björn ◽  
Ingrid Jakobsen ◽  
Kourosh Lotfi ◽  
Henrik Gréen

Treatments that include gemcitabine and carboplatin induce dose-limiting myelosuppression. The understanding of how human bone marrow is affected on a transcriptional level leading to the development of myelosuppression is required for the implementation of personalized treatments in the future. In this study, we treated human hematopoietic stem and progenitor cells (HSPCs) harvested from a patient with chronic myelogenous leukemia (CML) with gemcitabine/carboplatin. Thereafter, scRNA-seq was performed to distinguish transcriptional effects induced by gemcitabine/carboplatin. Gene expression was calculated and evaluated among cells within and between samples compared to untreated cells. Cell cycle analysis showed that the treatments effectively decrease cell proliferation, indicated by the proportion of cells in the G2M-phase dropping from 35% in untreated cells to 14.3% in treated cells. Clustering and t-SNE showed that cells within samples and between treated and untreated samples were affected differently. Enrichment analysis of differentially expressed genes showed that the treatments influence KEGG pathways and Gene Ontologies related to myeloid cell proliferation/differentiation, immune response, cancer, and the cell cycle. The present study shows the feasibility of using scRNA-seq and chemotherapy-treated HSPCs to find genes, pathways, and biological processes affected among and between treated and untreated cells. This indicates the possible gains of using single-cell toxicity studies for personalized medicine.


Blood ◽  
2017 ◽  
Vol 129 (18) ◽  
pp. 2479-2492 ◽  
Author(s):  
Wei Shi ◽  
Therese Vu ◽  
Didier Boucher ◽  
Anna Biernacka ◽  
Jules Nde ◽  
...  

Key Points Combined loss of Ssb1/Ssb2 induces rapid lethality due to replication stress–associated loss of hematopoietic stem and progenitor cells. Functionally, loss of Ssb1/Ssb2 activates p53 and IFN pathways, causing enforced cell cycling in quiescent HSPCs and apoptotic cell loss.


Blood ◽  
2015 ◽  
Vol 125 (12) ◽  
pp. 1890-1900 ◽  
Author(s):  
Sarah A. Kinkel ◽  
Roman Galeev ◽  
Christoffer Flensburg ◽  
Andrew Keniry ◽  
Kelsey Breslin ◽  
...  

Key Points Depletion of Jarid2 in mouse and human hematopoietic stem cells enhances their activity. Jarid2 acts as part of PRC2 in hematopoietic stem and progenitor cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jennifer L. Granick ◽  
Scott I. Simon ◽  
Dori L. Borjesson

Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC). While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.


Blood ◽  
2017 ◽  
Vol 129 (21) ◽  
pp. 2939-2949 ◽  
Author(s):  
Darja Karpova ◽  
Julie K. Ritchey ◽  
Matthew S. Holt ◽  
Grazia Abou-Ezzi ◽  
Darlene Monlish ◽  
...  

Key Points Prolonged inhibition of CXCR4/CXCL12 signaling results in exceptional mobilization along with an expansion of the BM HSPC pool. Reversible inhibition of the CXCR4/CXCL12 axis may represent a novel strategy to restore damaged BM.


Blood ◽  
2016 ◽  
Vol 127 (26) ◽  
pp. 3398-3409 ◽  
Author(s):  
Xiaoli Wang ◽  
David Haylock ◽  
Cing Siang Hu ◽  
Wioleta Kowalczyk ◽  
Tianbo Jiang ◽  
...  

Key Points Treatment of MF CD34+ cells with a TPO receptor antagonist selectively depletes MF HSCs and HPCs. Agents that target the TPO receptor represent potentially new approaches for the treatment of MF patients.


Blood ◽  
2017 ◽  
Vol 129 (23) ◽  
pp. 3074-3086 ◽  
Author(s):  
Jared A. Wallace ◽  
Dominique A. Kagele ◽  
Anna M. Eiring ◽  
Carissa N. Kim ◽  
Ruozhen Hu ◽  
...  

Key Points miR-155 promotes myeloproliferation in the bone marrow, spleen, and blood of mice carrying the FLT3-ITD mutation. miR-155 suppresses the IFN response in FLT3-ITD+ mouse hematopoietic stem and progenitor cells, as well as FLT3-ITD+ human AML cells.


Sign in / Sign up

Export Citation Format

Share Document