scholarly journals Persistence of CRISPR/Cas9-Edited Hematopoietic Stem and Progenitor Cells and Reactivation of Fetal Hemoglobin in Nonhuman Primates

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 806-806
Author(s):  
Olivier Humbert ◽  
Stefan Radtke ◽  
Ray R Carillo ◽  
Anai M Perez ◽  
Sowmya Somashekar Reddy ◽  
...  

Abstract Beta-thalassemia and sickle cell disease are monogenic disorders that are currently treated by allogeneic bone marrow (BM) transplantation although the challenges of finding a suitable matched-donor and the risk of graft vs host disease have limited the adoption of this otherwise curative treatment. A potentially promising approach for hemoglobinopathies aims to reactivate fetal hemoglobin (HbF) as a substitute for defective or absent adult hemoglobin by modifying the patient's own hematopoietic stem and progenitor cells (HSPCs). Here, we evaluated CRISPR/Cas9-induced small deletions in HSPCs that are associated with hereditary persistence of fetal hemoglobin (HPFH) using our nonhuman primate (NHP) stem cell transplantation and gene therapy model. The CRISPR/Cas9 nuclease platform was employed to recapitulate a natural genetic alteration identified in individuals with HPFH, consisting of a 13-nucleotide (nt) deletion in the gamma globin gene promoter. A first cohort of three rhesus macaques received 70-75% HPFH-edited BM-derived CD34+ HSPCs. All animals showed rapid hematopoietic recovery and peripheral blood (PB) editing levels stabilized at 12-30% for at least a year post transplantation (Figure 1). HbF production, determined by circulating F-cells, persisted at frequencies of 8-22% and correlated with in vivo PB editing. Robust engraftment of gene-edited HSPCs in the BM compartment was observed in all animals, with no measurable off-target activity or clonal expansion. We have recently shown, that the CD34+CD90+CD45RA- phenotype is exclusively required for short- and long-term multilineage reconstitution, significantly reduces the target cell number for gene therapy/editing and is conserved between human and NHP hematopoietic cells (Radtke et al., STM, 2017). To explore this cell population further, we transplanted a second cohort of three animals by sort-purifying and solely editing this hematopoietic stem cell (HSC)-enriched CD34+CD90+CD45RA- phenotype, thus reducing the number of target cells by over 10-fold without impacting hematopoietic recovery, engraftment, or HbF reactivation. In vivo levels of gene-edited PB started at less than 5% because of the high number of co-infused unmodified progenitor cells, but rapidly increased to about 50% within 1 week (Figure 1) and stabilized at levels comparable to the CD34 cohort. This data supports our interpretation that CD34+CD90+CD45RA- cells are the main cell population relevant for long-term reconstitution and an excellent target for improved and efficient gene therapy/editing. These results demonstrate robust engraftment and persistence of CD34+ HPSCs as well as HSC-enriched CD34+CD90+CD45RA- cells that have been CRISPR/Cas9-edited at the 13nt-HPFH site, with marked and stable HbF reactivation and no overt adverse effects in a NHP transplantation and gene therapy model. Most importantly, we validated our refined CD90+ target which reduces the need for editing reagents by 90% without compromising the gene modification and engraftment efficiencies. These are the first data in a clinically relevant large animal model to demonstrate the feasibility and clinical applicability of CRISPR/Cas9-mediated fetal hemoglobin reactivation. The successful targeting and engraftment of our HSC-enriched population should also have significant implications for gene therapy and editing of other genetic diseases. Figure 1: Tracking of HPFH editing in transplanted animals. A) Editing efficiency was longitudinally determined by next generation sequencing of the targeted locus in PB white blood cells from 2 cohorts of transplanted rhesus animals. Frequency is represented as the proportion of all sequence reads containing an edited locus. B) Normalized frequency of the desired 13nt-HPFH deletion in the same animals as shown in A). Figure. Figure. Disclosures Negre: Bluebird Bio: Employment, Equity Ownership, Other: Salary. Adair:RX Partners: Honoraria; Miltenyi Biotec: Honoraria; Rocket Pharmaceuticals: Patents & Royalties: PCT/US2017/037967 and PCT/US2018/029983. Scharenberg:Generation Bio: Equity Ownership; Casebia Therapeutics: Employment; Alpine Immune Sciences: Equity Ownership. Kiem:Rocket Pharmaceuticals: Consultancy; Magenta: Consultancy; Homology Medicine: Consultancy.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2933-2933
Author(s):  
Rkia El Kharrag ◽  
Kurt Berckmueller ◽  
Margaret Cui ◽  
Ravishankar Madhu ◽  
Anai M Perez ◽  
...  

Abstract Autologous hematopoietic stem cell (HSC) gene therapy has the potential to cure millions of patients suffering from hematological diseases and disorders. Recent HSCs gene therapy trials using CRISPR/Cas9 nucleases to treat sickle cell disease (SCD) have shown promising results paving the way for gene editing approaches for other diseases. However, current applications depend on expensive and rare GMP facilities for the manipulation of HSCs ex vivo. Consequently, this promising treatment option remains inaccessible to many patients especially in low- and middle-income settings. HSC-targeted in vivo delivery of gene therapy reagents could overcome this bottleneck and thereby enhance the portability and availability of gene therapy. Various kinds of nanoparticles (lipid, gold, polymer, etc.) are currently used to develop targeted ex vivo as well as in vivo gene therapy approaches. We have previously shown that poly (β-amino ester) (PBAE)-based nanoparticle (NP) formulations can be used to efficiently deliver mRNA into human T cells and umbilical cord blood-derived CD34 + hematopoietic stem and progenitor cells (HSPCs) (Moffet et al. 2017, Nature Communications). Here, we optimized our NP formulation to deliver mRNA into GCSF-mobilized adult human CD34 + HSPCs, a more clinically relevant and frequently used cell source for ex vivo and the primary target for in vivo gene therapy. Furthermore, we specifically focused on the evaluation of NP-mediated delivery of CRISPR/Cas9 gene editing reagents. The efficiency of our NP-mediated delivery of gene editing reagents was comprehensively tested in comparison to electroporation, the current experimental, pre-clinical as well as clinical standard for gene editing. Most important for the clinical translation of this technology, we defined quality control parameters for NPs, identified standards that can predict the editing efficiency, and established protocols to lyophilize and store formulated NPs for enhanced portability and future in vivo applications. Nanoformulations were loaded with Cas9 ribonucleoprotein (RNP) complexes to knock out CD33, an established strategy in our lab to protect HSCs from anti-CD33 targeted acute myeloid leukemia (AML) immunotherapy (Humbert et al. 2019, Leukemia). RNP-loaded NPs were evaluated for size and charge to correlate physiochemical properties with the outcome as well as establish quality control standards. NPs passing the QC were incubated with human GCSF-mobilized CD34 + hematopoietic stem and progenitor cells (HSPCs). In parallel, RNPs were delivered into CD34 + cells using our established EP protocol. NP- and EP-edited CD34 + cells were evaluated phenotypically by flow cytometry and functionally in colony-forming cell (CFC) assays as well as in NSG xenograft model. The optimal characteristics for RNP-loaded NPs were determined at 150-250 nm and 25-35 mV. Physiochemical assessment of RNP-loaded NP formations provided an upfront quality control of RNP components reliably detecting degraded components. Most importantly, NP charge directly correlated with the editing efficiency (Figure A). NPs achieved more than 85% CD33 knockout using 3-fold lower dose of CRISPR nucleases compared to EP. No impact on the erythromyeloid differentiation potential of gene-edited cells in CFC assays was observed. Finally, NP-modified CD34 + cells showed efficient and sustained gene editing in vivo with improved long-term multilineage engraftment potential in the peripheral blood (PB) and bone marrow stem cell compartment of NSG mice in comparison to EP-edited cells (Figure B). Here we show that PBAE-NPs enable efficient CRISPR/Cas9 gene editing of human GCSF-mobilized CD34 + cells without compromising the viability and long-term multilineage engraftment of human HSPCs in vivo. Most importantly, we defined physiochemical properties of PBAE-NPs that enable us to not only determine the integrity of our gene-editing agents but also predict the efficiency of editing in HSPCs. The requirement of 3-fold less reagents compared to EP, the ability to lyophilize quality-controlled and ready to administer gene therapy reagents, and the opportunity to engineer the surface of PBAE-NPs with HSC-targeting molecules (e.g. antibodies) could make this also a highly attractive and portable editing platform for in vivo HSC gene therapy. Figure 1 Figure 1. Disclosures Kiem: VOR Biopharma: Consultancy; Homology Medicines: Consultancy; Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company. Radtke: Ensoma Inc.: Consultancy; 47 Inc.: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 957-964 ◽  
Author(s):  
Jinah Han ◽  
Young Jun Koh ◽  
Hye Rin Moon ◽  
Hyun Gee Ryoo ◽  
Chung-Hyun Cho ◽  
...  

Abstract The stromal vascular fraction (SVF) in adipose tissue contains a pool of various stem and progenitor cells, but the existence of hematopoietic stem and progenitor cells (HSPCs) in the SVF has not been seriously considered. We detected the presence of HSPCs in the SVF by phenotypically probing with Lin−Sca-1+c-kit+ (LSK) and functionally confirming the presence using colony-forming cell assay and assessing the long-term multilineage reconstitution ability after SVF transplantation. The LSK population in the SVF was 0.004% plus or minus 0.001%, and 5 × 105 freshly isolated SVF cells gave rise to 13 plus or minus 4 multilineage colonies. In addition, 0.15% plus or minus 0.03% of SVF cells was home to bone marrow (BM), especially near vascular and endosteal regions, 24 hours after blood transplantation. SVF transplantation was capable of generating a long-term (> 16 weeks), but variable extent (2.1%-32.1%) multilineage reconstitution in primary recipients, which was subsequently transferred to the secondary recipients by BM transplantation. All HSPCs within the SVF originated from the BM. Furthermore, the granulocyte–colony-stimulating factor (G-CSF) mobilization of HSPCs from BM markedly elevated the number of phenotypic and functional HSPCs in the SVF, which induced a high efficiency long-term reconstitution in multilineage hematopoiesis in vivo. Our results provide compelling evidence that adipose tissue is a novel extramedullary tissue possessing phenotypic and functional HSPCs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-48-SCI-48
Author(s):  
Leonard I. Zon

Abstract The initiation of blood-specific programs is orchestrated by key transcription factors. To generate a complete compendium of chromatin factors that establish the epigenetic code during developmental hematopoiesis, a large-scale reverse genetic screen was conducted targeting orthologs of 425 human chromatin factors in zebrafish. A set of chromatin regulators was identified that function at distinct steps of primitive and definitive blood formation, including factors not previously implicated in blood development. We identified 15 factors that regulate development of primitive erythroid progenitors and 29 factors that regulate development of definitive stem and progenitor cells. These chromatin factors are associated with SWI/SNF and ISWI chromatin remodeling, SET1/MLL methyltransferase, CBP/P300/HBO1/NuA4 acetyltransferase, Sin3A/NuRD deacetylase, and Polycomb repressive complexes. Knockdown of a class of chromatin factors led to an expansion of hematopoietic stem cells (HSCs). In collaboration with Nancy Speck’s laboratory, we have investigated the activity of one of these chromatin factors, CHD7, that led to an expansion of hematopoietic stem and progenitor cells in the aorta. Using a T-cell line, a CBFβ protein pulldown, and a mass spectrometric sequencing approach led to the finding that CBFβ immunoprecipitated RUNX1 and CHD7. By studying a conditional allele of murine Chd7, inactivation does not have an effect on peripheral blood counts, but Chd7-deleted HSCs purified based on phenotypic markers contain an increased number of functional HSCs. Our studies suggest that CHD7 suppresses hematopoiesis, and provides a novel control mechanism for the regulation of HSCs. Our work provides a comprehensive view of how specific chromatin factors and their associated complexes play a major role in the establishment of hematopoietic cells in vivo. Disclosures: Zon: Scholar Rock: Consultancy, Equity Ownership, Founder, Founder Other, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties; Stemgent, Inc: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Stocks, Stocks Other; FATE Therapeutics, Inc: Consultancy, Equity Ownership, Founder Other, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 985-985
Author(s):  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Andrew Crouch ◽  
Gracy Sebastian ◽  
...  

Background Sickle cell disease (SCD) is curable by transplantation and potentially by gene therapy, and is generally treated by a combination of blood transfusion and Hydroxyurea (HU). Characterizing the hematopoietic system in SCD patients is important because the long-term effect of HU treatment are not known, and because of lower than expected efficacy of transduction and transplantation in Hematopoietic Stem and Progenitor Cells (HSPCs) in recent gene therapy trials. Previous studies have shown that the number of bone marrow (BM) CD34+ cells is elevated in SCD patients and that HU treatment is associated with decreased level of CD34+ cells in the peripheral blood (PB) and BM relative to steady state patients. However, hematopoiesis in SCD patients naive or treated with HU or transfusion remains poorly understood. Here, we report on the characterization of the HSPC compartment in patients with SCD by prospective isolation of 49f+ long-term Hematopoietic Stem Cells (49f+LT-HSCs), Multipotent Progenitors (MPPs), Common Myeloid Progenitors (CMPs), Megakaryocyte-Erythroid Progenitors (MEPs), and Granulocyte-Monocyte Progenitors (GMPs). Methods After obtaining consent, PB and/or BM were collected from 69 patients with HBSS/SB0, aged 12 to 45years, and 25 healthy adult African American controls. Patients were divided into chronic transfusion therapy (n=19), HU (n=31) and naïve (n=19) groups. Frozen mono-nuclear cells were analyzed by flow cytometry on a BD LSRII using CD 49f, 90 45Ra, 123, 235a, 38, 34, 33 and lineage antibodies. Results FACS analysis revealed that the number PB CD34+ cells was 2.5 CD34+/uL of blood in the HU group as compared to 19 CD34+/uL in the exchange and naive groups, and 7.3 CD34+/uL in the control group (q-value <0.05 in all cases). Analysis with additional markers revealed that the decrease in circulating HSPCs in the HU group affected the entire hematopoietic system since the number of 49f+LT-HSCs, MPPs, CMPs, MEPs were all significantly lower in the HU group. The decrease in cell number in the HU group, however, was not homogeneous. The proportion of LT-HSCs was higher in the HU and transfusion groups when compared to the naive and control groups. The HU group also had the lowest proportion of MPPs and GMPs, as well as the highest proportion of MEPs. We then investigated hematopoiesis as a function of the length of HU treatment to elucidate the long-term treatment effect of this cytotoxic agent. Patients > 18 years of age that had been treated on HU for at least three years exhibited a strong statistically significant negative correlation between years on HU and CD34+/uL (R2 = 0.41), LT-HSC/uL (R2 = 0.35), MPP/uL (R2 =0.43), CMP/uL (R2 = 0.37), MEP/uL (R2 = 0.25) and GMP/uL (R2 0.39, p<0.01 in all cases). Importantly there was no correlation between WBC counts, age, HU dose, or serum erythropoietin level versus the numbers of any HSPC/uL. Lastly, we compared the number of HSPCs in paired PB and BM samples 10 controls and 4 SCD patients. This revealed that the numbers of CD34+, HSCs, MPPs, CMPs, GMPs and MEPs in the PB and BM were well correlated (r2 in 0.6-0.8 range) suggesting that in first approximation, results obtained in the PB reflect changes in the BM rather than changes in egress of HSPCs from the BM. Discussion We have observed lower numbers of circulating CD34+,49f+LT- HSCs, MPPs, CMP, GMP and MEPs in individuals with HBSS on HU therapy when compared to naive, chronic transfusion and, to a lesser extent, controls. Furthermore we observed subtle differences in the proportion of various circulating stem and progenitor cells (HSPCs) suggesting that the various treatments affects hematopoiesis in complex ways. The strong negative correlations between the length of HU treatment and the numbers of HSPCs can be explained either by decreased cell mobilization to the periphery, or by a depletion of the HSPC numbers in the BM overtime. Most patients undergoing gene therapy trials are currently taken off HU and placed on transfusion therapy for several months to increase CD34+ cell collection and LT-HSC transduction efficiency. We observed a greater number of circulating 49f+LT-HSC/uL of blood in the transfusion group than in the HU group, but the proportion of 49f+LT-HSC relative to the number of CD34+ were similar in both groups. Functional studies may help determine whether 49f+LT-HSCs from the transfusion group are qualitatively different from of the HU group and more amenable to gene therapy. Figure Disclosures Manwani: Novartis: Consultancy; Pfizer: Consultancy; GBT: Consultancy, Research Funding. Minniti:Doris Duke Foundation: Research Funding.


Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3258-3258
Author(s):  
Stefan Radtke ◽  
Mark Enstrom ◽  
Dnyanada Pande ◽  
Margaret Cui ◽  
Hans-Peter Kiem

Abstract Recovery after conditioning and transplantation of hematopoietic stem and progenitor cells (HSPC) is thought to be biphasic, with short-term engrafting progenitors driving the recovery for 6-9 months and multipotent hematopoietic stem cells (HSCs) providing long-term repopulation. Recent clonal tracking data from autologous human gene therapy trials seems to support this model (Biasco et al. 2016, Cell Stem Cell; Six et al. 2020, Blood). These recent reports investigating the contribution of HSCs in patients are based on the longitudinal tracking of thousands of gene-marked cells using retroviral integration site analysis (ISA). While this technology is very reliable to follow gene therapy patients and monitor the potential outgrowth of dominant or malignant clones, low sensitivity and high error rates require significant data exclusion and sophisticated statistical tests to ensure data reliability (Adair et al. 2020, Molecular Therapy MCD). Lack of sensitivity can be overcome by increasing the frequency (high density) of sampling. However, limited material from patients remains a bottleneck for improved data quality and, consequently, correct interpretation of such complex datasets. To overcome the limitations of ISA and determine the onset of HSC contribution we performed high-density sampling for ISA in nonhuman primates (NHPs) transplanted with gene-modified HSCs. In the first month of hematopoietic recovery weekly blood samples were taken to enhance data density and increase the reliablity to detect clones with low abundance. Animals were followed up to 5 years to confirm that identified HSC clones persist long-term. Finally, clonal tracking data from the NHPs was used to inform a simulation of hematopoietic reconstitution, determine the temporal involvement of HSCs, and refine the phases of hematopoietic recovery after myeloablation and HSC transplantation. In contrast to the current biphasic model, contribution of multipotent HSCs clones was detected in the very first blood samples taken 2 to 3 weeks post-transplant during neutrophil recovery. HSC clones found in these early time points persisted long-term throughout the entire follow-up and were detected in bone marrow CD34 + cells 4 years later. Most surprisingly, multipotent HSCs became the dominant source for mature blood cells in the peripheral blood as early as 50 days post-transplant. To understand the observed kinetics of HSC contribution and change in clonal diversity in our dataset, we simulated the clonal outgrowth and differentiation of multipotent clones. Simulations predicted that hematopoietic recovery is primarily HSC driven and HSC contribution follows a stochastic pattern. Finally, to confirm that HSCs proliferation and differentiation is a stochastic process, in vitro experiments in colony-forming cell (CFC) assays were carried out. As predicted, the decision of individual HSCs to either grow into a larger pool or differentiate and get lost followed the same kinetics as observed in vivo. Here, we show evidence that long-term persisting multipotent HSCs actively contribute during early hematopoietic reconstitution after myeloablation and HSC transplantation. Enhanced sampling showed that multipotent HSCs produce neutrophils during recovery and become the predominant source of mature blood cells as early as 50 days post-transplant. Most importantly, observed changes in the clonal diversity during early recovery suggest a stochastic engraftment of HSCs rather than a bi-phasic reconstitution initially driven by short-term progenitors. These findings should have important implications for the design of ex vivo and in vivo HSC gene therapy and genome editing approaches. Figure 1 Figure 1. Disclosures Radtke: 47 Inc.: Consultancy; Ensoma Inc.: Consultancy. Kiem: Homology Medicines: Consultancy; VOR Biopharma: Consultancy; Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3057-3057
Author(s):  
Wen Tao ◽  
Barbara Graham-Evans ◽  
Scott Cooper ◽  
Kenneth Cornetta ◽  
Christopher B. Ballas ◽  
...  

Abstract In the post-genome era, precise functions of the vast majority of human and mouse genes and their interactions remain to be elucidated and defined. To assess the contributions of many different genes to hematopoiesis and to determine how they function in hematopoietic stem and progenitor cells, often requires introduction of the gene of interests or its derivative mutants into these cells along with a marker gene which is used to track the transduced cells over time. An ideal expression tracer should be easy to track and non-toxic to cells with minimal perturbation of cell metabolism. Although the enhanced green fluorescent protein (EGFP) has been widely used as an expression tracer and other fluorescent proteins were occasionally used in this capacity as well, their suitability for long-term marking of hematopoietic stem cells and their unintended side-effects on the functions of these cells have not been systematically investigated. In this study, we have performed a series of in vitro and in vivo experiments to evaluate whether two fluorescent proteins, EGFP and DsRed-Express which is an optimized variant of a red fluorescent protein from coral, are suitable for use as expression tracers in hematopoietic stem and progenitor cells. We first constructed a pair of MSCV based retroviral vectors with an identical backbone expressing either EGFP or DsRed-Express. These vectors were intended to be used for multicolor tracking of separate genes simultaneously and accurately in a single cell or mouse since the emission spectra of EGFP and DsRed-Express have minimal overlap. We used these vectors to transduce mouse mononuclear bone marrow cells, and the results demonstrated that the EGFP vector transduced green cells and DsRed-Express vector transduced red cells from single color or mixed dual color cell populations are clearly discerned by flow cytometry and fluorescent microscopy. Our results from in vivo competitive repopulation assay showed that under the experimental condition, mouse hematopoietic stem cells expressing EGFP alone are maintained nearly throughout the lifespan of the transplanted mice and appear to function normally. About 15 months after bone marrow transplantation, on average, 24% total peripheral white blood cells in recipient mice expressed EGFP. This initial donor population prior to injection contained 25.2% EGFP positive cells and all 5 mice assessed at 15 months were EGFP positive. Most EGFP transplanted mice lived at least 22 months and appeared normal at sacrifice. In contrast, the percentage of DsRed expressing donor cells transplanted either alone or mixed with EGFP expressing cells unexpectedly declined in recipient mice over time. By 3 months post-transplantation, the decrease of the percentage of DsRed expressing cells was dramatic. Therefore, EGFP itself has no detectable deteriorative effects on hematopoietic stem cells and is nearly an ideal long-term expression tracer for hematopoietic cells. However, the number of detectable DsRed expressing hematopoietic stem and progenitor cells, for reasons not yet known, decreases over time; therefore, DsRed fluorescent protein should not be used as a long-term tracer for these cells. This study also points out the importance of using correct expression tracers for accurately defining the functions of any genes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 813-813
Author(s):  
Oksana Zavidij ◽  
Claudia R Ball ◽  
Sylvia Fessler ◽  
Daniela Belle ◽  
Manfred Schmidt ◽  
...  

Abstract Abstract 813 Most of the knowledge to date on the in vivo blood forming activity of individual hematopoietic stem and progenitor cells was gained in transplantation experiments of defined cell populations into syngeneic or xenogeneic murine hosts. Consequently, stem and progenitor cells are solely defined by their role in post-transplant reconstitution and very little is known on their clonal activity in steady-state hematopoiesis. To gain new insights into the clonal activity of stem and progenitor cells under steady-state conditions we used a genetic in vivo lentiviral marking strategy and subsequently monitored the clonal activity of marked hematopoietic cells for up to one year by highly sensitive integration site amplification using LAM-PCR. Highly concentrated GFP-expressing lentiviral vectors (LV) were injected intravenously (IV, n=10) or intrafemorally (IF, n=15) into GFP-tolerant B6.Cg-Tg (Krt1-15-EGFP) 2Cot/J (Krt15) mice to directly mark hematopoietic stem and progenitor cells. 5 mice from each of the two cohorts were treated with 5-Fluorouracil (5-FU, 150 mg/kg) to mobilize hematopoietic stem cells prior to LV-marking. The clonality of the transduced myelopoiesis and lymphopoiesis was analyzed by LAM-PCR. A small proportion of all peripheral blood cells in LV-injected mice consistently expressed GFP for up to one year (5-100 GFP+ cells per 20000 PB cells analyzed). Pre-treatment with 5-FU did not affect the percentage or lineage distribution of marked blood cells even when the vector was injected intravenously. Even though the initial percentage of marked cells was similar after IV and IF vector injection (p>0.05) the marking kinetics were different. Whereas the percentage of GFP expressing cells in PB of IF-marked mice remained stable over the whole observation period for up to 1 year, a 2-fold decline of the percentage of marked cells was detected two weeks after IV-marking indicating that predominantly short-lived more mature cells were transduced after IV vector injection. LAM-PCR analyses of sorted cell lineages showed that multiple clones contributed to the marked myeloid and lymphoid long-term hematopoiesis after IF-injection. In summary, our data demonstrate stable marking of steady-state hematopoiesis for up to one year. Our results demonstrate that remarkably stable stem cell clones with myeloid and lymphoid differentiation potential contribute to murine steady-state long-term hematopoiesis. In vivo marking will further allow to directly address the response of individual stem cell clones to hematopoietic stress including chemotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3623-3623 ◽  
Author(s):  
Bibhu Mishra ◽  
Song Chou ◽  
Michelle I Lin ◽  
Elizabeth J Paik ◽  
Ying Zhang ◽  
...  

Abstract Fetal hemoglobin (HbF) is abundant in the late stage fetus and newborns, but is progressively lost over the first 6 months of life as the genes encoding the g-globin subunit of HbF are repressed. HbF expression can provide clinical benefit to patients with deficient or defective b-globin, for example in β-thalassemia and Sickle Cell Disease (SCD), respectively. CRISPR-Cas9 technology offers a unique treatment modality that can be used to ex vivo edit regulatory DNA sequences in patient CD34+ hematopoietic stem and progenitor cells (HSPC) containing hematopoietic stem and progenitor cells in order to upregulate HbF. Reinfusion of edited CD34+ HSPC would be expected to lead to the production of erythrocytes expressing high levels of HbF, and amelioration of disease. There are a number of reports of naturally occurring genetic variants that are associated with Hereditary Persistence of Fetal Hemoglobin (HPFH), presumably through the loss of regulatory sequences that would otherwise bind regulatory proteins that developmentally down-regulate the expression of HbF. Thus, by using the CRISPR-Cas9 system to re-create the DNA sequence variations associated with HPFH in CD34+ HSPC, we aim to relieve transcriptional inhibition of ɣ-globin, resulting in upregulation of HbF. Here, we transfected healthy primary human CD34+ HSPC with Cas9 and guide RNAs in order to re-create naturally occurring HPFH genetic variants. Transfected CD34+ HSPC were sorted as single cells post-editing and expanded as erythroid colonies. These colonies were then genotyped to confirm editing and further assessed for globin transcript and protein. Clonal analysis demonstrated Non-Homologous End Joining (NHEJ) mediated editing in greater than 90% of the colonies. These editing events re-created the intended HPFH genetic variants in up to 75% of the colonies. For some, but not all of the HPFH genetic variants, both mono-and bi-allelic genetic modifications led to significant upregulation of HbF. These results provide us with an editing strategy that support a viable therapeutic approach for the treatment of β-thalassemia and SCD. Disclosures Mishra: CRISPR Therapeutics: Employment. Chou:CRISPR Therapeutics: Employment. Lin:CRISPR Therapeutics: Employment. Paik:CRISPR Therapeutics: Employment. Zhang:CRISPR Therapeutics: Employment, Equity Ownership. Liang:CRISPR Therapeutics: Employment. Tomkinson:CRISPR Therapeutics: Employment. Pettiglio:CRISPR Therapeutics: Employment. Sanginario:CRISPR Therapeutics: Employment. Allen:CRISPR Therapeutics: Employment. Cradick:CRISPR Therapeutics: Employment. John:CRISPR Therapeutics: Employment. Chakraborty:CRISPR Therapeutics: Employment. Cowan:CRISPR Therapeutics: Employment, Equity Ownership. Novak:CRISPR Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Lundberg:CRISPR Therapeutics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document