scholarly journals Enhanced Expression of FGF Signaling in Primary Central Nervous System Lymphoma

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2847-2847
Author(s):  
Alanna Maguire ◽  
Talal Hilal ◽  
Xianfeng Chen ◽  
Allison C. Rosenthal ◽  
Lisa M. Rimsza

Abstract Introduction: Primary central nervous system lymphoma (PCNSL) is a rare intracranial lymphoma that accounts for less than 1% of all non-Hodgkins lymphomas and 3% of all brain tumors. Histopathologically, approximately 90% of PCNSL cases are categorized as a diffuse large B-Cell lymphoma (DLBCL). DLBCL malignancies are subdivided by Cell of Origin (COO), with the vast majority of PCNSL categorized as non-germinal center B cell (non-GCB) by immunohistochemistry. Gene expression profiling (GEP), however, has shown that immunohistochemically defined non-GCB resolves into two distinct subtypes, namely activated B-cell (ABC) and unclassified (UNC) subtypes. Using the Lymph2Cx molecular COO subtyping assay, we have found that 91% of PCNSL are ABC (unpublished data). Unlike systemic-DLBCL, PCNSL is largely confined to and rarely metastasizes outside of the immune privileged central nervous system. Despite this, PCNSL is one of the most aggressive forms of DLBCL. Given the immune privileged milieu in which PCNSL arises, we hypothesized that this milieu elicits a transcriptional profile that contributes to the enhanced aggressive nature of PCNSL compared to systemic-DLBCL. To investigate this hypothesis, this study assessed the gene expression differences between ABC-PCNSL and ABC-systemic-DLBCL, in order to identify novel players in the pathogenesis of ABC-PCNSL. Methods: A total of 35 HIV negative samples, with proven ABC-subtype COO as per the GEP Lymph2Cx assay, were employed; including 10 ABC systemic-DLBCL and 25 primary ABC PCNSL cases with no concurrent or prior history of systemic DLBCL. Samples were reviewed by a hematopathologist to confirm diagnoses and determine tumor content. Samples with <60% tumor content were macro-dissected before nucleic acid extraction, which was performed using the Qiagen AllPrep DNA/RNA FFPE Kit. Extracted DNA and RNA were quantified using the Qubit HS-kit and NanoDrop respectively. Digital gene expression technology was used to perform the PanCancer Pathways panel (NanoString, Seattle, WA). Differential gene expression analysis was performed using the NanoString specific statistical method NanoStringDiff. Identified gene sets were analyzed using the online Gene Set Enrichment Analysis (GSEA) Molecular Signatures Database (MSigDB). Results: Of the 739 cancer related genes targeted by the PanCancer panel, 256 were found to be significantly differentially expressed in the ABC-PCNSL cohort compared to the ABC-DLBCL cohort (p<0.05). Fifty six genes were upregulated and 200 were downregulated. With a 4.9 fold change, the most significantly overexpressed gene was FGF1 (p=4.7E-11). FGF1 encodes a primary ligand for the fibroblast growth factor receptors (FGFR) -1, -2, -3 and -4; of which, FGFR2 (p=1.0E-7) and FGFR3 (p=0.003) were also significantly overexpressed. Moreover, MSigDB identified the FGF signaling pathway as enriched in the upregulated gene set (5 genes, p=7.4E-9, FDR=6.6E-7). FGFRs are a family of receptors that activate known mitogenic signaling pathways including MAPK signaling, which MSigDB identified as the most enriched pathway in the upregulated gene set (14 genes, p=1.65E-19, FDR=2.2E-16). MSigDB analysis of the 200 down regulated genes revealed that 5 of the top 20 enriched signaling pathways were immune related and included Signaling by interleukins (26 genes, p=2.9E-38, FDR=3.2E-36), Immune cytokine signaling (31 genes, p=1.1 E-34, FDR=1.1E-32), chemokine signaling (28 genes, p=1.5E-34, FDR=1.4E-32), T-cell receptor signaling (24 genes, p=2.4E-34, FDR=1.9E-32) and Toll-like receptor signaling (23 genes, p=4.1E-33, FDR=3.0E-31). Conclusions: We show, for the first time, that ABC-PCNSL and ABC-systemic-DLBCL possess significantly different transcriptional profiles despite identical, molecularly determined, COO status. A principle difference between these DLBCL malignancies is their anatomical location related immune privilege status which is reflected as reduced immune related signaling in the CNS-DLBCL cohort and may have important mitogenic signaling implications. Indeed, the results suggest that the enhanced aggressive nature of PCNSL compared to systemic-DLBCL is mediated, at least in part, by enhanced FGF signaling; a pathway with known roles in cell survival and proliferation. Disclosures Rimsza: NanoString: Other: Inventor on the patent for the Lymph2Cx assay.

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3200-3210 ◽  
Author(s):  
Han W. Tun ◽  
David Personett ◽  
Karen A. Baskerville ◽  
David M. Menke ◽  
Kurt A. Jaeckle ◽  
...  

Abstract Primary central nervous system (CNS) lymphoma (PCNSL) is a diffuse large B-cell lymphoma (DLBCL) confined to the CNS. A genome-wide gene expression comparison between PCNSL and non-CNS DLBCL was performed, the latter consisting of both nodal and extranodal DLBCL (nDLBCL and enDLBCL), to identify a “CNS signature.” Pathway analysis with the program SigPathway revealed that PCNSL is characterized notably by significant differential expression of multiple extracellular matrix (ECM) and adhesion-related pathways. The most significantly up-regulated gene is the ECM-related osteopontin (SPP1). Expression at the protein level of ECM-related SPP1 and CHI3L1 in PCNSL cells was demonstrated by immunohistochemistry. The alterations in gene expression can be interpreted within several biologic contexts with implications for PCNSL, including CNS tropism (ECM and adhesion-related pathways, SPP1, DDR1), B-cell migration (CXCL13, SPP1), activated B-cell subtype (MUM1), lymphoproliferation (SPP1, TCL1A, CHI3L1), aggressive clinical behavior (SPP1, CHI3L1, MUM1), and aggressive metastatic cancer phenotype (SPP1, CHI3L1). The gene expression signature discovered in our study may represent a true “CNS signature” because we contrasted PCNSL with wide-spectrum non-CNS DLBCL on a genomic scale and performed an in-depth bioinformatic analysis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2687-2687
Author(s):  
Kenichi Yoshida ◽  
Rie Nakamoto-Matsubara ◽  
Kenichi Chiba ◽  
Yusuke Okuno ◽  
Nobuyuki Kakiuchi ◽  
...  

Abstract Introduction Primary central nervous system lymphoma (PCNSL) is a rare subtype of non-Hodgkin lymphoma, of which approximately 95% are diffuse large B-cell lymphomas (DLBCLs). Despite the substantial development of intensive chemotherapy during the past two decades, overall clinical outcome of PCNSL has been poorly improved especially in elderly and so has been our knowledge about the molecular pathogenesis of PCNSL, in terms of driver alterations that are relevant to the development of PCNSL. Method To delineate the genetic basis of PCNSL pathogenesis, we performed a comprehensive genetic study. We first analyzed paired tumor/normal DNA from 35 PCNSL cases by whole-exome sequencing (WES). Significantly mutated genes identified by WES and previously known mutational targets in PCNSL and systemic DLBCL were further screened for mutations using SureSelect-based targeted deep sequencing (Agilent) in an extended cohort of PCNSL cases (N = 90). Copy number alterations (CNAs) have been also investigated using SNP array-karyotyping (N =54). We also analyzed WES and SNP array data of systemic DLBCL cases (N = 49) generated by the Cancer Genome Atlas Network (TCGA) to unravel the genetic difference between PCNSL and systemic DLBCL. Results The mean number of nonsynonymous mutations identified by WES was 183 per sample, which was comparable to the figure in systemic DLBCL and characterized by frequent somatic hypermutations (SHMs) involving non-Ig genes. A higher representation of C>T transition involving CpG dinucleotides and hotspot mutations within the WRCY motif targeted by SHM further suggested the involvement of activation-induced cytidine deaminase (AID) in the pathogenesis of PCNSL. We found 12 genes significantly mutated in PCNSL (q < 0.1), including MYD88, PIM1, HLA-A, TMEM30A, B2M, PRDM1, UBE2A, HIST1H1C, as well as several previously unreported mutational targets in systemic DLBCL or PCNSL, such as SETD1B, GRB2, ITPKB, EIF4A2. Copy number analysis identified recurrent genomic segments affected by focal deletions (N = 27) and amplifications (N = 10), most of which included driver genes targeted by recurrent somatic mutations or known targets of focal CNAs such as CDKN2A and FHIT. Subsequent targeted sequencing finally identified a total of 107 significantly mutated genes, of which 43 were thought to be targeted by SHM according to their mutational signature and genomic distribution. Most cases with PCNSL (98%) had mutations and CNAs involving genes that are relevant to constitutive NF-KB/Toll-like receptor (TLR)/BCR activity, including those in MYD88 (80%), CD79B/A (60%), CARD11 (18%), TNFAIP3 (26%), GRB2 (24%) and ITPKB (23%). Genetic alterations implicated in escape from immunosurveillance were also frequently identified in as many as 76% of cases. Mutations of HLA-B (64%), HLA-A (36%), HLA-C (28%), B2M (14%) and CD58 (12%) were commonly detected in addition to CNAs in 6p21.32 (HLA class II), 1p13.1 (CD58) and 15q15.2 (B2M), suggesting the importance of immune escape in the pathogenesis of PCNSL. SHMs were also seen in most cases (98%), which affected not only known targets of AID including PIM1, IGLL5 and BTG2 but also previously unreported genes involved in cell proliferation, apoptosis, or B cell development. The pattern of frequently mutated genes in PNCSL was more uniform compared with that in systemic DLBCL, and similar to that found in the activated B cell subtype of DLBCL (ABC-DLBCL), which was in accordance with the previous report of immunophenotypic analysis of PCNSL. On the other hand, mutations of HLA class I genes (HLA-B, HLA-A) were more frequently mutated in PCNSL compared with ABC-type DLBCL. Conclusion WES, SNP array karyotyping and follow-up targeted sequencing of a large cohort of PCNSL cases revealed the genetic landscape of PCNSL, which were more homogeneous than that of systemic DLBCL, and thought to be involved in activation of constitutive NF-KB/TLR/BCR signaling, escape from immunosurveillance, as well as highly frequent SHMs. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Josefine Radke ◽  
Naveed Ishaque ◽  
Randi Koll ◽  
Zuguang Gu ◽  
Elisa Schumann ◽  
...  

Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Despite extensive research, the molecular alterations leading to PCNSL have not been fully elucidated. In order to provide a comprehensive description of the genomic and transcriptional landscape of PCNSL, we here performed whole-genome and transcriptome sequencing and integrative analysis of 51 lymphomas presenting in the CNS, including 42 EBV-negative PCNSL, 6 secondary CNS lymphomas (SCNSL) and 3 EBV+ CNSL and matched controls. The results were compared to an independent validation cohort of 31 FFPE CNSL specimens (PCNSL, n = 19; SCNSL, n = 9; EBV+ CNSL, n = 3) as well as 39 FL and 36 systemic DLBCL cases outside the CNS. Somatic genomic alterations in PCNSL mainly affect the JAK-STAT, NFkB, and B-cell receptor signaling pathways, with hallmark recurrent mutations including MYD88 L265P (67%) and CD79B (63%), CDKN2A deletions (83%) and also non-coding RNA genes such as MALAT1 (70%), NEAT (60%), and MIR142 (80%). Kataegis events, which affected 15 of 50 identified driver genes and 21 of the top 50 mutated ncRNAs, played a decisive role in shaping the mutational repertoire of PCNSL. Compared to systemic DLBCL, PCNSLs exhibited significantly more focal deletions in 6p21 targeting the HLA-D locus that encodes for MHC class II molecules as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis (SBS1, ID1 and ID2) were significantly enriched in PCNSL (SBS1: p = 0.0027, ID1/ID2: p < 1x10-4). Furthermore, TERT gene expression was significantly higher in PCNSL compared to ABC-DLBCL (p = 0.027). Although PCNSL share many genetic alterations with systemic ABC-DLBCL in the same signaling pathways, transcriptome analysis clearly distinguished both into distinct molecular subtypes. EBV+ CNSL cases may be distinguished by lack of recurrent mutational hotspots apart from IG and HLA-DRB loci.


2020 ◽  
Vol 19 (3) ◽  
pp. 165-173
Author(s):  
Xiaowei Zhang ◽  
Yuanbo Liu

Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.


2020 ◽  
pp. 194187442096756
Author(s):  
Prashant Anegondi Natteru ◽  
Shashank Shekhar ◽  
Lakshmi Ramachandran Nair ◽  
Hartmut Uschmann

Primary central nervous system lymphoma (PCNSL) is an uncommon variant of extra-nodal non-Hodgkin’s lymphoma. Three regions can be involved in PCNSL: the brain, the spine, or the vitreus and retina. Spinal PCNSL is rare. It can mimic neoplasm, infection, and inflammation. Diagnostic confirmation is by tissue biopsy, and even then, tissue corroboration may be altered by an inflammatory overlay. We report a 59-year-old woman who we saw after she had 4 weeks of ascending tetraparesis plus bowel and bladder incontinence. Upon presentation, the patient was ventilator-dependent and locked-in. She reported normal sensation through eye-blinking. Magnetic resonance imaging (MRI) brain revealed signal intensity in the bilateral corona radiata and restricted diffusion in the right thalamus, whereas, MRI cervical, and thoracic spine showed T2 prolongation in the anterior medulla and upper cervical cord, with enhancement to C2-C3, and long segment hyperintensity from T1-T9 levels, respectively, suggestive of neuromyelitis optica spectrum disorder. Cerebrospinal fluid cytomorphology and flow cytometry were inconclusive for lymphoma/leukemia, but oligoclonal bands were present. Serum aquaporin-4 (AQP-4) antibodies were negative. MR spectroscopy demonstrated NAA reduction, mild lipid lactate peak, and relative reduction of choline on the side of the lesion, favoring demyelination. She received 5-days of intravenous methylprednisolone, followed by 7 sessions of plasma exchange without clinical improvement. Stereotactic biopsy of the right thalamic lesion revealed diffuse large B-cell lymphoma. PCNSL can mimic a demyelinating process early on, as steroid treatment could disrupt B-cell lymphoma cells, thus masking the correct diagnosis.


Rare Tumors ◽  
2015 ◽  
Vol 7 (4) ◽  
pp. 160-162 ◽  
Author(s):  
Pooja Advani ◽  
Jason Starr ◽  
Abhisek Swaika ◽  
Liuyan Jiang ◽  
Yushi Qiu ◽  
...  

2020 ◽  
Author(s):  
Haoyu Ruan ◽  
Zhe Wang ◽  
Yue Zhai ◽  
Ying Xu ◽  
Linyu Pi ◽  
...  

AbstractDiffuse large B-cell lymphoma (DLBCL) is the predominant type of central nervous system lymphoma (CNSL) including primary CNSL and secondary CNSL. Diffuse large B cells in cerebrospinal fluid (CSF-DLBCs) have offered great promise for the diagnostics and therapeutics of CNSL leptomeningeal involvement. To explore the distinct phenotypic states of CSF-DLBCs, we analyzed the transcriptomes of 902 CSF-DLBCs from six CNSL-DLBCL patients using single-cell RNA sequencing technology. We defined CSF-DLBCs based on abundant expression of B-cell markers, as well as the enrichment of cell proliferation and energy metabolism pathways. CSF-DLBCs within individual patients exhibited monoclonality with similar variable region of light chains (VL) expression. It is noteworthy that we observed some CSF-DLBCs have double classes of VL (lambda and kappa) transcripts. We identified substantial heterogeneity in CSF-DLBCs, and found significantly greater among-patient heterogeneity compared to among-cell heterogeneity within a given patient. The transcriptional heterogeneity across CSF-DLBCs is manifested in cell cycle state and cancer-testis antigens expression. Our results will provide insight into the mechanism research and new diagnostic direction of CNSL-DLBCL leptomeningeal involvement.


2020 ◽  
Vol 18 (11) ◽  
pp. 1571-1578
Author(s):  
Matthias Holdhoff ◽  
Maciej M. Mrugala ◽  
Christian Grommes ◽  
Thomas J. Kaley ◽  
Lode J. Swinnen ◽  
...  

Primary central nervous system lymphomas (PCNSLs) are rare cancers of the central nervous system (CNS) and are predominantly diffuse large B-cell lymphomas of the activated B-cell (ABC) subtype. They typically present in the sixth and seventh decade of life, with the highest incidence among patients aged >75 years. Although many different regimens have demonstrated efficacy in newly diagnosed and relapsed or refractory PCNSL, there have been few randomized prospective trials, and most recommendations and treatment decisions are based on single-arm phase II trials or even retrospective studies. High-dose methotrexate (HD-MTX; 3–8 g/m2) is the backbone of preferred standard induction regimens. Various effective regimens with different toxicity profiles can be considered that combine other chemotherapies and/or rituximab with HD-MTX, but there is currently no consensus for a single preferred regimen. There is controversy about the role of various consolidation therapies for patients who respond to HD-MTX–based induction therapy. For patients with relapsed or refractory PCNSL who previously experienced response to HD-MTX, repeat treatment with HD-MTX–based therapy can be considered depending on the timing of recurrence. Other more novel and less toxic regimens have been developed that show efficacy in recurrent disease, including ibrutinib, or lenalidomide ± rituximab. There is uniform agreement to delay or avoid whole-brain radiation therapy due to concerns for significant neurotoxicity if a reasonable systemic treatment option exists. This article aims to provide a clinically practical approach to PCNSL, including special considerations for older patients and those with impaired renal function. The benefits and risks of HD-MTX or high-dose chemotherapy with autologous stem cell transplantation versus other, better tolerated strategies are also discussed. In all settings, the preferred treatment is always enrollment in a clinical trial if one is available.


2019 ◽  
Vol 25 (4) ◽  
pp. 239-242
Author(s):  
Asuman Ali ◽  
Cemile Haki ◽  
Fatma Öz Atalay ◽  
Ramazan Yalçın

Sign in / Sign up

Export Citation Format

Share Document