scholarly journals Ectonucleosidase CD39 Is Highly Expressed on ATLL Cells and Suppresses the Immune Response through the Adenosine Pathway

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3720-3720
Author(s):  
Yasuhiro Nagate ◽  
Sachiko Ezoe ◽  
Jiro Fujita ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
...  

Abstract Background: Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm, linked to the human T-cell lymphotropic virus, HTLV-1. Patients with ATLL are often at the risk of opportunistic infections. Some studies suggested that ATLL cells originate from HTLV-1-infected regulatory T cells (Tregs). It could be possible that this immunocompromised state is caused by the function of ATLL cells having similar phenotypes with Tregs. In this study, we examined the expression of immunosuppressive molecules associated with Tregs in ATLL cells, and analyzed their roles in the function of ATLL cells. Methods: The protocol of this study was approved by the Investigational Review Board of Osaka University Hospital. Peripheral blood mononuclear cells (PBMCs) were collected from 10 asymptomatic HTLV-1 carriers and 22 ATLL patients (1 with smoldering type, 5 with chronic type, 2 with lymphoma type, and 14 with acute type) after getting informed consent. PBMCs from 3 ATLL patients were separated into CD4+ CD7- CADM1+ATLL cells and adjacent CD4+CD7+ CADM1-normal T cells using Fluorescence-activated Cell Sorter (FACS), and cells in each fraction were subjected to total RNA sequencing experiments. Based on the results, we examined the expression patterns of CD39 and CD73 in HTLV-1 carriers or each type of ATLL patients, and also analyzed the immune functions of these molecules in ATLL tumor cells. Results: We compared whole transcriptome of ATLL cells and normal CD4+cells. Bioinformatic analyses showed that many genes associated with immunosuppressive functions were elevated or downregulated in ATLL cells. Among these genes we focused on CD39, CD73 and CD26, because they have recently been reported to be strongly associated with the functions of Tregs. CD39, expressed on normal Tregs, and extrinsic CD73 have immunosuppressive potential by catalyzing adenosine from extracellular ATP, and CD26 has opposite potential by resolving adenosine, which have a strong anti-inflammatory function and plays major role in Treg-mediated immunosuppression. We found that all of 4 ATLL cell lines (MJ, MT1, MT2, MT4) expressed CD39, but not CD73 just as human effector Tregs. Tumor cells from 12 acute ATLL patients (86%) and 2 chronic ATLL patients (40%) expressed CD39, but the expressions of CD73 were various. Also in asymptomatic carriers, we could detect CD39 and/or CD73 positive in CD7- CADM1+ abnormal fraction of CD4+cells. On the other hand, CD26, normally expressed on human CD4+Th cells other than effector Tregs, was negative in ATLL cell lines and primary ATLL cells except for cells in abnormal fraction of one asymptomatic carrier. CD39 negative cases in chronic/smoldering type tended to show slower disease progression after the blood collection. Next, the role of CD39 and/or CD73 in ATLL cells was assessed in vitro and in vivo. As expected, CD39+ ATLL cells converted significantly more extracellular ATP than CD39- ATLL cells, and mass spectrometry analysis of AMP/adenosine concentration identified the AMPase activity of CD73+ ATLL cells. Furthermore, we established CD39 knockout (KO) cells from ATL cell-line MJ using CRISPR/Cas9 system, and performed in vitro suppression assays for assessment of immunosuppressive function. Although wild type MJ suppressed the growth of normal CD4+ and CD8+ T cells, KO MJ did little. Next, we analyzed the role of CD39 in the progression of tumor cells in vivo. We transplanted mouse T-cell lymphoma cell-line EG7-OVA artificially expressing CD39 or mock into mice subcutaneously. The coinjection of immunoadjuvant poly(I:C) significantly suppressed the tumor growth of mock cells, but the tumor sizes of CD39 expressing cells were almost the same as those of mock cells without poly(I:C) injection (Figure). Conclusion: In this study, we reported that most of ATLL cells in acute type patients express CD39+ CD26- just as Tregs, and that CD39- KO of ATLL cell line cancelled its immunosuppressive effects, and forcibly expressed CD39 on tumor cells rejected the anti-tumor immunity in vivo. From these data, we clarified the pathological mechanism of immunosuppressive function in ATLL cells, and also showed that CD39 expression could be used as a prognostic clue and be a new therapeutic target of ATLL. Disclosures Ezoe: TAIHO Phamaceutical Co., Ltd.: Research Funding. Yokota:Celgene: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc.: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; MSD K.K.: Research Funding. Ichii:Novartis Pharma K.K.: Speakers Bureau; Kowa Pharmaceutical Co.,LTD.: Speakers Bureau; Celgene K.K.: Speakers Bureau. Shibayama:Novartis Pharma K.K.: Honoraria, Research Funding; Celgene K.K.: Honoraria, Research Funding; Takeda Pharmaceutical Co.,LTD.: Honoraria, Research Funding; Fujimoto Pharmaceutical: Honoraria, Research Funding; Jansen Pharmaceutical K.K: Honoraria; Ono Pharmaceutical Co.,LTD: Honoraria, Research Funding; Mundipharma K.K.: Honoraria, Research Funding; Bristol-Meyer Squibb K.K: Honoraria, Research Funding. Oritani:Novartis Pharma: Speakers Bureau. Kanakura:Alexion Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3216-3216
Author(s):  
Hiroshi Fujiwara ◽  
Satoshi Okumura ◽  
Yoshihiro Miyahara ◽  
Linan Wan ◽  
Isao Tawara ◽  
...  

Background: Adult T-cell leukemia/lymphoma (ATL) is a refractory peripheral T-cell malignancy caused by human T-lymphotropic virus type 1 (HTLV-1) infection. Although only allogeneic hematopoietic stem cell transplantation (allo-HSCT) displaying the graft-vs. ATL (GvATL) can bring durable remission, allo-HSCT is largely ineligible for newly diagnosed ATL patients due to disease aggressiveness and advanced age-related conditions. Thus, a novel treatment with safety and efficacy instead of allo-HSCT still remains an unmet need, and a cellular immunotherapy using TCR or CAR gene-modified immune cells exerting GvATL could be such an option. However, to generate those effector cells from autologous T cells of heavily pre-treated ATL patients faces many obstacles. To circumvent those hurdles, an employment of unconventional allogeneic Vγ9/δ2-T cells which are potentially free from the risk of GVHD could provide greater treatment opportunity for ATL patients due to highly extended donor availability. Taking above, here, we have newly devised an adoptive immunotherapy using a novel HTLV-1 p40Tax-specific TCR gene-modified allogeneic Vγ9/δ2 T cells against ATL. Methods: After written informed conscent, we firstly established novel HLA-A24 restricted TCR-α/β genes from HTLV-1 P40Tax301-309 (SFHSLHLLF)/HLA-A24 tetramer-positive peripheral CD8+T-lymphocytes of ATL patinets in durable remission using a single cell cloning method. Then, we confirmed that T cells gene-modified with these TCR-α/β genes exerted the epitope-specific and HLA-A24-restricted responses. Next, in order to achieve highly stable expression of this TCR-α/β heterodimer on gene-modified Vγ9/δ2-T cells, we newly developed a retroviral vector co-expressing TCR-α/β and CD8 α/β genes using self-cleaving P2A and E2A peptides. Using this vector, allogeneic Vγ9/δ2-T cells from healthy donors numerously expanded with high purity in our novel culture system were subjected to gene-transfer to express relevant TCR α/β complex. Thereafter, we asssessed target-reactive cytokine production and cytocidal activity mediated by those gene-modified allogeneic Vγ9/δ2-T cells both in vitro and in vivo. Finally, we additionally assessed a potential risk of GVHD using intravenous administration of another TCR gene-modified Vγ9/δ2 T-cells in vivo. Results: To start with PBMCs from healthy donors, allogeneic Vγ9/δ2-T cells were stably multiplied greater than thousandfold with a quite high purity (≥95%) using our novel bisphosphonate derivative PTA (tetrakis-pivaloyloxymethyl2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate) combined with both 25 ng/ml of IL-7 and IL-15 in culture for 8 to 10 days. The stable expression of introduced TCR α/β heterodimer on Vγ9/δ2-T cells were successfully achieved by co-expression of CD8 α/β molecule. Those gene-modified Vγ9/δ2-T cells successfully recognized target peptide (SFHSLHLLF) in an HLA-A24 restricted fashion, and similarly demonstrated a cytocidal activity both in vitro and in vivo against HLA-A24 positive HTLV-1 infected cell lines (TL-Su and ILT#Hod), but not HLA-A24-negtive/Tax-positive cell line ILT#37 or HLA-A24-positve/Tax-negative cell line ATN-1. Furthermore, intravenously administered those TCR gene-modified Vγ9/δ2-T cells quickly and durably eradicated luciferase-gene modified TL-Su cells, but not ATN-1 cells in xenografted immunodeficient (NOG) mice, examined by in vivo imaging system. Finally, infused HLA-A2 restricted and NY-ESO-1 specific TCR (G50) gene-modified Vγ9/δ2-T cells exerted durable antitumor activity without causing GVHD using NOG mice xenografted with HLA-A2 positive melanoma cell line cells (NW-MEL-38). Conclusions: Our preclinical observations here obviously demonstrated the potential utility of TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells for the treatment of ATL without causing GVHD. Further studies regarding biological behaviors of HTLV-1 Tax specific TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells following target recognition in vivo are warranted, however, based on these lines of evidence and currently conducting assessments using clinical samples, we are planning to launch a novel clinical trial, particularly focusing on the applicability of HLA partially matched relative donors, as the source of gene-modified allogeneic Vγ9/δ2-T cells, which could highly extend the donor availability. Disclosures Fujiwara: BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPath Bio. Okumura:BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPth Bio.. Miyahara:BirghtPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Wan:BrightPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Tawara:Astellas Pharma: Research Funding; Ono Pharmaceutical: Research Funding; Kyowa Hakko Kirin: Honoraria, Research Funding. Shiku:BrightPath Biotherapeutics, Co., Ltd.: Other: Chair of the department endowed by BrightPath Bio..


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1727-1727
Author(s):  
Sherly Mardiana ◽  
Olga Shestova ◽  
Stephan A. Grupp ◽  
Marco Ruella ◽  
David M. Barrett ◽  
...  

Abstract BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of relapsed/refractory B-cell malignancies, as highlighted by high complete remission rates and FDA approval of CD19-specific CAR T cell products. However, depth and duration of remission are limited by antigen loss/downregulation on tumors, as observed in clinical trials using CAR T cells targeting the CD19 or CD22 in leukemia and lymphoma, BCMA in multiple myeloma, and EGFRvIII in glioblastoma. This observation forms the basis of current efforts to develop multi-targeting CAR T cells to prevent antigen-negative escape. Antigen density is an important factor modulating CAR T cell response, since antigen expression below a certain threshold fails to trigger the full range of T cell functions. Given that signal strength induced upon antigen encounter determines CAR T cell activity, we hypothesized that simultaneous targeting of two dimly-expressed antigens will result in enhanced CAR T cell signaling and anti-tumor function, approaching that seen in response to one highly-expressed antigen. This is important given the heterogeneity of antigen expression in various cancers. Therefore, the bi-specific CAR T cells currently being developed to prevent antigen-negative escape could also be used to enhance efficacy against low antigen density (LAD) tumors. Results from this study will provide a novel rationale for using multi-specific CAR T cells and illuminate the mechanisms of successful CAR T cell therapy. METHODS Lentivirus transduction was performed to generate CAR T cells from healthy human T cells, using second generation 4-1BBz CARs specific for either human CD19 or CD22, or both in cis, herein referred to as CAR19, CAR22, or CAR19/22, respectively (Figure 1A). For in vitro functional characterization, we performed co-culture assay of T cells and B cell leukemia cell line NALM6, which is known to express high levels of both CD19 and CD22. To assess T cell function against LAD tumor cells, primary patients' B-ALL samples expressing low antigen density in comparison to the NALM6 cell line were used (Figure 1B). CAR T cell anti-tumor potency was determined by assessing CAR T cell cytotoxicity and cytokine production. For in vivo therapeutic study, primary patients' B-ALL samples with dimly expressed CD19 and CD22 were used to evaluate and compare the therapeutic efficacy of mono- versus bi-specific CAR T cells. Additionally, we generated a LAD tumor model by deleting the highly expressed CD19 and CD22 from the ALL cell line NALM6 using CRISPR/Cas9, transducing the now antigen-negative cell line with CD19 and CD22, followed by single cell cloning to generate a cell line expressing low antigen density for both the CD19 and CD22. We engrafted tumor cells in NSG mice, followed by administration of CAR19, CAR22, CAR19/22 or untransduced T cells. Therapeutic efficacy was assessed by measuring tumor burden using either flow cytometry or bioluminescent imaging. RESULTS Cytotoxicity assay revealed that the bi-specific CAR19/22 T cells killed tumor cells more rapidly than CAR19 or CAR22 T cells. Further, compared to mono-specific CAR T cells, the bi-specific CAR19/22 T cells produced significantly more pro-inflammatory cytokines including IL-2 and IFNg, in response to stimulation with LAD primary samples or NALM6 cells. This increased cytokine-producing capacity compared to mono-specific CAR T cells was maintained following repeated antigen stimulation when in vitro exhaustion assay was performed. In vivo, enhanced tumor elimination was observed in mice receiving bi-specific CAR19/22 T cells compared to either of the mono-specific CAR T cells, in both low antigen density primary ALL and NALM6 tumor models. This translated to increased survival rates seen in mice treated with the bi-specific CAR19/22 T cells (Figure 1C-D). CONCLUSIONS Here we showed that bi-specific CAR19/22 T cells are superior to mono-specific CAR19 or CAR22 T cells, not only against LAD tumors but also tumor cells expressing high antigen density, NALM6. This was demonstrated by their enhanced cytokine-producing function, cytotoxic capacity, and therapeutic efficacy in vivo. Results from this study provide a novel rationale for repurposing multi-specific CAR T cells as a strategy to improve efficacy against LAD tumors, in addition to the recognized benefit of reducing antigen-negative escape. Figure 1 Figure 1. Disclosures Shestova: Hemogenyx Pharmaceuticals LLC: Research Funding. Grupp: Novartis, Roche, GSK, Humanigen, CBMG, Eureka, and Janssen/JnJ: Consultancy; Novartis, Kite, Vertex, and Servier: Research Funding; Novartis, Adaptimmune, TCR2, Cellectis, Juno, Vertex, Allogene and Cabaletta: Other: Study steering committees or scientific advisory boards; Jazz Pharmaceuticals: Consultancy, Other: Steering committee, Research Funding. Ruella: viTToria biotherapeutics: Research Funding; Novartis: Patents & Royalties; BMS, BAYER, GSK: Consultancy; AbClon: Consultancy, Research Funding; Tmunity: Patents & Royalties. Gill: Novartis: Other: licensed intellectual property, Research Funding; Interius Biotherapeutics: Current holder of stock options in a privately-held company, Research Funding; Carisma Therapeutics: Current holder of stock options in a privately-held company, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2807-2807
Author(s):  
Masaya Suematsu ◽  
Shigeki Yagyu ◽  
Nobuyoshi Nagao ◽  
Susumu Kubota ◽  
Yuto Shimizu ◽  
...  

Abstract Background: The quality of chimeric antigen receptor (CAR)-T cell products, including the expression of memory and exhaustion markers, has been shown to influence their long-term functionality. We previously demonstrated that piggyBac (PB) transposon-mediated CD19 CAR-T cells exhibit memory-rich phenotype that is characterized by a high proportion of CD45RA+/CCR7+ T cell fraction. To further investigate the favorable phenotype of PB-CD19 CAR-T cells, we generated PB-CD19 CAR-T cells from CD45RA+ and CD45RA− peripheral blood mononuclear cells (PBMCs) (RA+ CAR and RA− CAR, respectively), and compared their phenotype and antitumor function. Methods: CD45RA+ and CD45RA− PBMCs were isolated by magnetic selection from whole PBMCs, then the CD19-CAR transgene was transduced into these cells using the PB transposon system, as described previously. Transduction efficiency of CD19 CAR transgene was determined 24 hours by flow cytometry after transduction. The phenotype of CD19 CAR-T was evaluated by flow cytometry on day 14. High throughput RNA sequencing was performed to see the T cell activation/exhaustion profile upon antigen stimulation. Sequential killing assays were performed by adding fresh tumor cells into CAR-T cells co-cultured with tumor cells every three days by restoring an effector target ratio of 1:1. To see the durable antitumor efficacy in vivo, we performed in vivo stress test, in which CAR T-cells dosage was lowered to the functional limits, so that these CAR-T cells should be maintained and expanded in vivo, to achieve the antitumor efficacy. We injected 5 x 10 5 of firefly luciferase-labeled CD19+ tumor cells (REH) into NSG mice via tail vein, then these mice were treated with 1 x 10 5 of CD19 RA+ CAR-T, RA− CAR-T, or control CAR-T cells, respectively, at day 6 after the tumor injection. Results: RA+ CAR T cells demonstrated better transient transduction efficiency 24 h after transduction (RA+ CAR-T: 77.5 ± 9.8% vs RA− CAR-T: 39.7 ± 3.8%), and superior expansion capacity after 14 days of culture than RA− CAR-T cells (RA+ CAR-T: 32.5 ± 9.3-fold vs RA− CAR-T: 11.1 ± 5.4-fold). RA+ CAR-T cells exhibited dominant CD8 expression (RA+ CAR-T: 84.0 ± 3.4% vs RA− CAR-T: 34.1 ± 10.6%), less expression of exhaustion marker PD-1 (RA+ CAR-T: 3.1 ± 2.5% vs RA− CAR-T: 19.2 ± 6.4%) and T cell senescence marker CD57 (RA+ CAR-T: 6.8 ± 3.6% vs RA− CAR-T: 20.2 ± 6.9%), and enrichment of naïve/stem cell memory fraction (CAR+/CD45RA+CCR7+ fraction; RA+ CAR-T: 71.9 ± 9.7% vs RA− CAR-T: 8.0 ± 5.3%), which were associated with longevity of CAR-T cells. Transcriptome analysis revealed that RA+ CAR-T cells exhibited the enrichment of naïve/memory phenotype and less expression of canonical exhaustion markers, and these exhaustion profiles even maintained after the antigen stimulation. RA+ CAR-T cells demonstrated sustained killing activity even after multiple tumor rechallenges in vitro, without inducing exhaustion marker expression of PD-1. Although antigen stimulation could increase CAR expression, leading to tonic CAR signaling and exhaustion, in our study, the expression of CAR molecule on the cell surface following antigen stimulation in RA+ CAR was controlled at a relatively lower level that in RA− CAR-T cells. RA+ CAR-T cells achieved prolonged tumor control with expansion of CAR-T cells than RA− CAR-T cells in in vivo stress test (Fig.1A-C). On day15, bone marrow studies in RA+ CAR group exhibited abundant human CD3 positive T cells with less expression of PD-1, and relatively smaller amount of REH cells than RA− CAR group (Fig.1D). Furthermore, in two of long-lived mice in RA+ CAR group, human CD3 positive T cells were expanded even day 50 after treatment as confirmed by sequential bone marrow studies (Fig.1E), which indicated the antigen-induced proliferation and long-term functionality of RA+ CAR-T cells in vivo. Conclusion: Our results suggest that PB-mediated RA+ CAR-T cells exhibit memory-rich phenotype and superior antitumor function, thereby indicating the usefulness of CD45RA+ PBMC as a starting material of PB-CAR-T cells. Figure 1 Figure 1. Disclosures Yagyu: AGC Inc.: Research Funding. Nagao: AGC Inc.: Current Employment. Kubota: AGC Inc.: Current Employment. Shimizu: AGC Inc.: Current Employment. Nakazawa: AGC Inc.: Research Funding; Toshiba Corporation: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2776-2776
Author(s):  
Salvatore Fiorenza ◽  
George S. Laszlo ◽  
Tinh-Doan Phi ◽  
Margaret C. Lunn ◽  
Delaney R. Kirchmeier ◽  
...  

Abstract Background: There is increasing interest in targeting CD33 in malignant and non-malignant disorders, but available drugs are ineffective in many patients. As one limitation, therapeutic CD33 antibodies typically recognize the membrane-distal V-set domain. Likewise, currently tested CD33-directed chimeric antigen receptor (CAR) T cells likewise target the V-set domain and have thus far shown limited clinical activity. We have recently demonstrated that binding closer to the cell membrane enhances the effector functions of CD33 antibodies. We therefore raised antibodies against the membrane-proximal C2-set domain of CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain ("CD33 PAN antibodies"). Here, we tested their properties as targeting moiety in CD33 PAN CAR T cell constructs, using a clinically validated lentiviral backbone. Methods: To generate CAR T cells, negatively selected CD8 + T cells were transduced with an epHIV7 lentivirus encoding the scFv from a CD33 PAN antibody (clone 1H7 or 9G2) linked to either a short (IgG 4 hinge only), intermediate (hinge plus IgG 4 CH3 domain), or long (hinge plus IgG 4 CH3 domain plus IgG 4 CH2 domain) spacer, the CD28-transmembrane domain, CD3zeta and 4-1BB intracellular signaling domains, and non-functional truncated CD19 (tCD19) as transduction marker. Similar constructs using scFvs from 2 different V-set domain-targeting CD33 antibodies, including hP67.6 (My96; used in gemtuzumab ozogamicin), were generated for comparison. CAR-T cells were sorted, expanded in IL-7 and IL-15, and used in vitro or in vivo against human AML cell lines endogenously expressing CD33 and cell lines engineered to lack CD33 (via CRISPR/Cas9) with/or without forced expression of different CD33 variants. Results: CD33 V-set-directed CAR T cells exerted significantly more cytolytic activity against AML cells expressing an artificial CD33 variant lacking the C2-set domain (CD33 ΔE3-4) than cells expressing full-length CD33 at similar or higher levels, consistent with the notion that CD33 CAR T cell efficacy is enhanced when targeting an epitope that is located closer to the cell membrane. CD33 PAN CAR T cells were highly potent against human AML cells in a strictly CD33-dependent fashion, with constructs containing the short and intermediate-length spacer demonstrating robust cytokine secretion, cell proliferation, and in vitro cytolytic activity, as determined by 51Cr release cytotoxicity assays. When compared to optimized CD33 V-set CAR T cells, optimized CD33 PAN CAR T cells were significantly more potent in cytotoxicity, proliferation, and cytokine production without appreciably increased acquisition of exhaustion markers. In vivo, CD33 PAN CAR T cells extended survival in immunodeficient NOD.SCID. IL2rg -/- (NSG) mice bearing significant leukemic burdens from various cell line-derived xenografts (HL-60, KG1α and MOLM14) with efficient tumor clearance demonstrated in a dose-dependent fashion. Conclusion: Targeting the membrane proximal domain of CD33 enhances the anti-leukemic potency of CAR T cells. Our data provide the rationale for the further development of CD33 PAN CAR T cells toward clinical testing. Disclosures Fiorenza: Link Immunotherapeutics: Consultancy; Bristol Myers Squibb: Research Funding. Godwin: Pfizer: Research Funding; Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Turtle: Allogene: Consultancy; Amgen: Consultancy; Arsenal Bio: Consultancy; Asher bio: Consultancy; Astrazeneca: Consultancy, Research Funding; Caribou Biosciences: Consultancy, Current holder of individual stocks in a privately-held company; Century Therapeutics: Consultancy, Other; Eureka therapeutics: Current holder of individual stocks in a privately-held company, Other; Juno therapeutics/BMS: Patents & Royalties, Research Funding; Myeloid Therapeutics: Current holder of individual stocks in a privately-held company, Other; Nektar therapeutics: Consultancy, Research Funding; PACT Pharma: Consultancy; Precision Biosciences: Current holder of individual stocks in a privately-held company, Other; T-CURX: Other; TCR2 Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 590-590 ◽  
Author(s):  
Alejandra Leivas ◽  
Paula Rio ◽  
Rebeca Mateos ◽  
Mari Liz Paciello ◽  
Almudena Garcia-Ortiz ◽  
...  

Abstract Introduction Immunotherapy represents a new weapon in the fight against multiple myeloma. Current clinical outcomes using CAR-T cell therapy against multiple myeloma show promise in the eradication of the disease. However, these CARs observe relapse as a common phenomenon after treatment due to the reemergence of neoantigens or negative cells. CARs can also be targeted using non-antibody approaches, including the use of receptors, as NKG2D with a wider range of ligands, and ligands to provide target specificity. Different cell types have been used to improve CAR cell therapy. CAR-T cells are the most commonly used. However, despite its effectiveness, there are still problems to face. The toxicity of the cytokine release syndrome is well known, that is why memory CD45RA- T cells are used to avoid collateral effects, although having lower efficacy. However, CAR-NK cells may have less toxicity and provide a method to redirect these cells specifically to refractory cancer. The objective of this work was to compare the anti-tumor activity of CAR-T, NKAEs and CAR-NK cells from multiple myeloma patients. Methods The activated and expanded NK cells (NKAE) were generated by coculture of peripheral blood mononuclear cells with the previously irradiated CSTX002 cell line. The CD45RA- T cells were obtained by depletion with CD45RA magnetic beads and subsequent culture. The NKAE and T were transduced with an NKG2D-CAR with signaling domains of 4-1BB and CD3z. The expansion of NKAE and the expression of NKG2D-CAR were evaluated by flow cytometry based on the percentage of NK cell population and transduction efficiency by the expression of NKG2D. Europium-TDA release assays (2-4 hours) were performed to evaluate in vitro cytotoxic activity. The antitumor activity of the NKAE (n=4) and CD45RA- (n=4) cells against MM U-266 cells was studied. Methylcellulose cultures were performed to assess the activity against the clonogenic tumor cell. In vivo studies were carried out in NSG mice receiving 5.106 of U266-luc MM cells i.v. injected at day 1. At day 4, mice received 15.106 i.v. injected of either CAR-NKAE or untransduced NKAE cells. Results In vitro. The killing activity of primary NKAE cells (n=4) was 86.6% (± 13.9%), considerably higher than that of CD45RA- lymphocytes (16.7% ± 13.6%) from the same patient (n=4). Even CD45RA- T cells from healthy donors (n=4) exhibit lower anti tumoral capacity (28.2% ± 9.7%) than NKAE cells. The transduction with an NKG2D CAR (MOI=5) improved the activity of autologous NKAE cells by 10% (96.4% ± 19%) leading to a nearly complete destruction of U-266 MM cells, and that of CD45RA- allogenic healthy cells in 19% (47.4% ± 12.6%). Nevertheless, CD45RA- autologous T cells transduced with NKG2D-CAR minimally improved their activity by 5.8% (22.5% ± 10.6%). Additionally, the CAR-NKAE cells were able to destroy the clonogenic tumor cell responsible for the progression of the MM from RPMI-8226 cell line. At an 8:1 ratio the CAR-NKAE cells were able to destroy 71.2% ± 2.5% of the clonogenic tumor cells, while the NKAE reached 56.5% ± 2.6% at a maximum ratio of 32: 1. The toxicity of the CAR-NKAE cells on healthy tissue from the same patient was assessed, and no activity against autologous PBMCs was observed, 1,8% at a maximun ratio of 32:1 (effector:target). In vivo. NKAE cells and CAR-NKAE cells were efficient in abrogating MM growth. However, CAR-NKAE cells treatment showed higher efficiency 14 days after tumor cells injection. Forty-two days after tumor cells injection, only animals receiving CAR-NKAE cells treatment remain free of disease (Figure 1). Conclusions It is feasible to modify primary NKAE cells and CD45RA- T cells from primary MM cells to safely express an NKG2D-CAR. Our data show that CD45RA- T cells from patients are not effective in vitro against MM even once transduced with our CAR. The resulting CAR-NKG2D NKAE cells are the most appropriate strategy for the destruction of MM in vitro and in vivo in our model. These results form the basis for the development of an NKG2D-CAR NK cell therapy in MM. Disclosures Rio: Rocket Pharmaceuticals Inc: Equity Ownership, Patents & Royalties, Research Funding. Lee:Merck, Sharp, and Dohme: Consultancy; Courier Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; CytoSen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Martinez-Lopez:Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Vivia: Honoraria; Pfizer: Research Funding; BMS: Research Funding; Novartis: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 679-679
Author(s):  
Michelle J. Cox ◽  
Fabrice Lucien-Matteoni ◽  
Reona Sakemura ◽  
Justin C. Boysen ◽  
Yohan Kim ◽  
...  

Treatment with CD19-directed chimeric antigen receptor T cell (CART19) therapy has resulted in unprecedented clinical outcomes and was FDA-approved in acute lymphoblastic leukemia and non-Hodgkin B-cell lymphoma. However, its success in chronic lymphocytic leukemia (CLL) has been modest to date. An increasing body of evidence indicates that impaired CART cell fitness is the predominant mechanism of the relative dysfunction in CLL. The immunosuppressive microenvironment in CLL is well known and in part may be related to the abundance of circulating extracellular vesicles (EVs) bearing immunomodulatory properties. We hypothesized that CLL-derived EVs contribute to CART cell dysfunction. In this study, we aimed to investigate the interaction between circulating EVs isolated from CLL patient plasma (designated as CLL-derived EVs) and CART19 cells. We enumerated and immunophenotyped circulating EVs from platelet free plasma in untreated patients with CLL. We determined their interaction with CART19 cells using second generation, 41BB co-stimulated, lentiviral transduced CART19 cells generated in the laboratory from normal donors (FMC63-41BBζ CART cells). Our findings indicate that CLL-derived EVs impair normal donor CART19 antigen-specific proliferation against the CD19+ mantle cell lymphoma cell line Jeko-1 (Figure 1A). Next, we characterized CLL-derived EVs using nanoscale flow cytometric analysis of surface proteins and compared to healthy controls. Although the total EV particle count was not different between CLL and healthy controls (Figure 1B), there were significantly higher PD-L1+ EVs in patients with CLL (Figure 1C). Based on these results, we sought to assess the physical interaction between CLL-derived EVs and CART cells from normal individuals. When CLL-derived EVs were co-cultured with CART19 and CLL B cells and imaged with super-resolution microscopy, EVs were localized at the T cell-tumor junction (Figure 1D). Furthermore, CLL-derived EVs are captured by T cells as indicated by a significant reduction in the absolute count of EVs when co-cultured with resting T cells (Figure 1E). Having demonstrated that 1) there is an excess of PD-L1+ EVs in patients with CLL (Figure 1C) and 2) CLL-derived EVs physically interact with CART cells (Figures 1D-E), we sought to establish their functional impact on CART19 cells. Here, CART19 cells were stimulated with irradiated CD19+ JeKo-1 cells at a 1:1 ratio in the presence of increasing concentrations of CLL-derived EVs. There was a significant upregulation of inhibitory receptors such as PD-1 and CTLA-4 on the T cells (Figure 1F). This is associated with a reduction in CART effector cytokines (i.e., TNFβ) at higher concentrations of EVs (Figure 1G), suggesting a state of exhaustion in activated CART19 cells in the presence of CLL-derived EVs. This was further supported by transcriptome interrogation of CART19 cells. Here, CART19 cells were stimulated via 24-hour co-culture with the irradiated CD19+ cell line JeKo-1, in the presence of CLL-derived EVs at ratios of 10:1 and 1:1 EV:CART19 and then isolated by magnetic sorting. RNA sequencing of these activated CART19 cells indicated a significant upregulation of AP-1 (FOS-JUN) and YY1 (Figures 1H), known critical pathways in inducing T cell exhaustion. Finally, to confirm the impact of CLL-derived EVs on CART19 functions in vivo, we used our xenograft model for relapsed mantle cell lymphoma. Here, immunocompromised NOD-SCID-ɣ-/- mice were engrafted with the CD19+ luciferase+ cell line JeKo-1 (1x106 cells I.V. via tail vein injection). Engraftment was confirmed through bioluminescent imaging and mice were randomized to treatment with 1) untreated, 2) CART19 cells, or 3) CART19 cells co-cultured ex vivo with CLL-derived EVs for six hours prior to injection. A single low dose of CAR19 (2.5x105) was injected, to induce relapse. Treatment with CART19 cells that were co-cultured ex vivo with CLL-derived EVs resulted in reduced anti-tumor activity compared to treatment with CART19 alone (Figure 1I). Our results indicate that CLL-derived EVs induce significant CART19 cell dysfunction in vitro and in vivo, through a direct interaction with CART cells resulting in a downstream alteration of their exhaustion pathways. These studies illuminate a novel way through which circulating and potentially systemic EVs can lead to CART cell dysfunction in CLL patients. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura:Humanigen: Patents & Royalties. Parikh:Ascentage Pharma: Research Funding; Janssen: Research Funding; AstraZeneca: Honoraria, Research Funding; Genentech: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; AbbVie: Honoraria, Research Funding; Acerta Pharma: Research Funding. Kay:Agios: Other: DSMB; Celgene: Other: Data Safety Monitoring Board; Infinity Pharmaceuticals: Other: DSMB; MorphoSys: Other: Data Safety Monitoring Board. Kenderian:Humanigen: Other: Scientific advisory board , Patents & Royalties, Research Funding; Lentigen: Research Funding; Novartis: Patents & Royalties, Research Funding; Tolero: Research Funding; Morphosys: Research Funding; Kite/Gilead: Research Funding.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3077-3077
Author(s):  
Davis Yuri Torrejon ◽  
Jesse Meir Zaretsky ◽  
Daniel Sanghoon Shin ◽  
Mykola Onyshchenko ◽  
Gabriel Abril-Rodriguez ◽  
...  

3077 Background: We tested the biological significance of the loss of function (LOF) mutations in JAK1 or JAK2 within the IFN-receptor-pathway and in beta-2-microglobulin (B2M), which had been found in patient biopsies with resistance to anti-PD-1 therapy. Methods: We used CRISPR/Cas9 genome editing to generate JAK1, JAK2 and B2M knockout (KO) sublines of HLA-A*02:01 MART-1 or NY-ESO-1 positive human melanoma cell lines, tested using in-vitro T cell co-culture systems and in a syngeneic mouse model (MC38) to analyze the in-vivo antitumor activity with anti-PD1 therapy. Results: The JAK2-KO cell line was insensitive to IFN-gamma induced signaling and growth arrest (p < 0.001 compared with IFN-alpha or beta), while the JAK1-KO cell line was insensitive to all three IFNs. Baseline MHC class I expression after JAK1-KO was unaffected (baseline-MFI 1230 JAK1-KO vs 1570 parental, p = 0.66), but the magnitude of change was lower upon IFN-gamma exposure compared to the parental (MFI change with IFN-gamma, 26% decrease for JAK1-KO vs 50% increase for parental). There was no difference in in-vitro cytotoxicity by NY-ESO-1-TCR transgenic T-cells against JAK1-KO-NY-ESO-1+ melanoma cells compared to the parental (78% vs 82% cytotoxicity at 10:1 E:T ratio, p NS). However, B2M-KO was resistant to killing by MART-1 specific T-cells (2% vs 96% cytotoxicity at 10:1 E:T ratio, p < 0.0001). On the other hand, in the MC38 model the significant antitumor activity of anti-PD-1 against the wild type cells was lost in both JAK2-KO and B2M-KO. The percentage of CD8+ T cells has a trend of increase with anti-PD1 compared to untreated in the MC38 wild type (p = 0.1 d12), and a trend of decrease in MC38 B2M-KO (p = 0.2 d12), but no change in JAK2-KO tumors (p = 0.7 d12). Conclusions: JAK1/2 LOF mutations result in insensitivity to IFN induced antitumor effects, but does not impair T cell recognition and cytotoxicity, while B2M LOF results in lack of antigen presentation to T cells and loss of antitumor activity. However both lead to in-vivo resistance to anti-PD-1 therapy, suggesting they do so by independent mechanisms.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4070-4070
Author(s):  
Harbani Malik ◽  
Ben Buelow ◽  
Udaya Rangaswamy ◽  
Aarti Balasubramani ◽  
Andrew Boudreau ◽  
...  

Introduction The restricted expression of CD19 in the B-cell lineage makes it an attractive target for the therapeutic treatment of B-cell malignancies. Many monoclonal antibodies and antibody drug conjugates targeting CD19 have been developed, including bispecific T-cell redirecting antibodies (T-BsAbs). In addition, anti-CD19 chimeric antigen receptor T-cells (CAR-T) have been approved to treat leukemia and lymphoma. However, despite the impressive depth of responses achieved by T-cell redirecting approaches such as T-BsAbs and CAR-T cells, toxicity from over-activation of T-cells remains a substantial limitation for this type of therapy, in particular neurotoxicity. In designing TNB-486, a novel CD19 x CD3 T-BsAb, we endeavored to retain activity against CD19-positive tumor cells while limiting the cytokine secretion thought to underlie toxicity from T-cell redirecting therapies. Utilizing TeneoSeek, a next generation sequencing (NGS)-based discovery pipeline that leverages in silico analysis of heavy chain only/fixed light chain antibody (HCA/Flic, respectively) sequences to enrich for antigen specific antibodies, we made a high affinity αCD19 HCA and a library of αCD3 Flic antibodies that showed a >2 log range of EC50s for T cell activation in vitro. Of note, the library contained a low-activating αCD3 that induced minimal cytokine secretion even at concentrations that mediated saturating T-cell dependent lysis of lymphoma cells (when paired with an αCD19 HCA). We characterized the relative efficacy and potential therapeutic window of this unique molecule, TNB-486, in vitro and in vivo and compared it to two strongly activating bispecific CD19 x CD3 antibodies similar to those currently available and in clinical development. Methods Affinity measurements of the αCD19 moiety were made via Biacore (protein) and flow cytometry (cell surface). Stability measurements were made by subjecting the molecule to thermal stress and the %aggregation was measured by Size Exclusion Chromatography. T-cell activation was measured via flow cytometry (CD69 and CD25 expression) and cytokine was measured by ELISA (IL-2, IL-6, IL-10, INF-ɣ, and TNFα) in vitro. Lysis of B-cell tumor cell lines (Raji, RI-1, and Nalm6) was measured via flow cytometry in vitro. In vivo, NOG mice were engrafted subcutaneously with NALM-6 or SUDHL-10 cells and intravenously with human peripheral blood mononuclear cells (huPBMC), and the mice treated with multiple doses of TNB-486 or negative or positive control antibody. Tumor burden was evaluated via caliper measurement. Pharmacodynamic/Pharmacokinetic (PK/PD) studies were performed in NOG mice. A pharmacokinetic (PK) study was performed in BALB/c mice, and a tolerability and PK study are ongoing in cynomolgus monkeys. Results TNB-486 bound to cell surface CD19 with single digit nanomolar affinity (~3nM). EC50s for cytotoxicity were in the single-digit nanomolar range for TNB-486, and sub-nanomolar for the strongly activating controls; TNB-486 maximum achievable lysis was identical to the positive controls. TNB-486 induced significantly less cytokine release for all cytokines tested compared to the positive controls even at doses saturating for tumor lysis. No off-target activation was observed in the absence of CD19 expressing target cells. In vivo, TNB-486 eradicated all CD19-positive tumors tested (NALM-6 and SUDHL10) at doses as little as 1µg administered every four days after tumors had reached ~200mm3. TNB-486 showed a PK profile consistent with other IgG molecules in mice (T1/2 ~6 days in mice). Conclusions TNB-486 induced comparable lysis of CD19-positive tumor cells as the strongly activating control bispecific antibodies while inducing significantly reduced cytokine secretion, even at doses saturating for tumor lysis in vitro. In vivo TNB-486 eradicated all tested CD19 positive tumor cell lines in established tumor models. No off-target binding was observed. In summary, TNB-486 shows promise as a lymphoma therapeutic differentiated from T-cell targeted therapies currently in the clinic and in clinical trials. Disclosures Malik: Teneobio, Inc.: Employment, Equity Ownership. Buelow:Teneobio, Inc.: Employment, Equity Ownership. Rangaswamy:Teneobio, Inc.: Employment, Equity Ownership. Balasubramani:Teneobio, Inc.: Employment, Equity Ownership. Boudreau:Teneobio, Inc.: Employment, Equity Ownership. Dang:Teneobio, Inc.: Employment, Equity Ownership. Davison:Teneobio, Inc.: Employment, Equity Ownership. Force Aldred:Teneobio, Inc.: Equity Ownership. Iyer:Teneobio, Inc.: Employment, Equity Ownership. Jorgensen:Teneobio, Inc.: Employment, Equity Ownership. Pham:Teneobio, Inc.: Employment, Equity Ownership. Prabhakar:Teneobio, Inc.: Employment, Equity Ownership. Schellenberger:Teneobio, Inc.: Employment, Equity Ownership. Ugamraj:Teneobio, Inc.: Employment, Equity Ownership. Trinklein:Teneobio, Inc.: Employment, Equity Ownership. Van Schooten:Teneobio, Inc.: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document