scholarly journals An Open-Label Phase I/IIa Study to Evaluate the Safety and Efficacy of CCS1477, a First in Clinic Inhibitor of the p300/CPB Bromodomains, As Monotherapy in Patients with Advanced Haematological Malignancies

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1266-1266 ◽  
Author(s):  
Tomasz Knurowski ◽  
Karen Clegg ◽  
Nigel Brooks ◽  
Fay Ashby ◽  
Neil A Pegg ◽  
...  

Background CCS1477 is a first in class potent, selective and orally bioavailable inhibitor of the bromodomains of p300 and CBP, two closely related histone acetyl transferases with oncogenic roles in haematological malignancies. In pre-clinical studies, CCS1477 was found to be a potent inhibitor of cell proliferation in acute myeloid leukaemia (AML) multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) cell lines. In primary patient AML blast cells CCS1477 inhibited proliferation through a combination of cell cycle arrest at the G1/S transition and an induction of differentiation (up-regulation of CD11b and CD86). CCS1477 has significant anti-tumour activity, inducing tumour regressions in xenograft models of AML and MM. These effects were accompanied by significant reductions in tumour MYC and IRF4 expression. Additionally, there are molecular features of certain haematological malignancies that are likely to increase the sensitivity to p300/CBP inhibition with CCS1477. For example, in B-cell lymphomas there are frequent loss of function mutations in CBP that are associated with heightened sensitivity to pre-clinical inhibition of corresponding non-mutated p300. CCS1477 represents a novel and differentiated approach to inhibiting cell proliferation and survival and offers a potential new therapeutic option for patients who have relapsed or are refractory to current standard of care therapies in AML, MM or NHL. Study Design and Methods This study is the first time that CCS1477 is being dosed in patients with haematological malignancies. The Phase I/IIa study aims to determine the maximum tolerated dose (MTD) and/or recommended Phase II dose (RP2D) and schedule(s) of CCS1477 and investigate clinical activity of CCS1477 monotherapy in patients with haematological malignancies. This study will also characterise the pharmacokinetics (PK) of CCS1477 and explore potential biological activity by assessing pharmacodynamic and exploratory biomarkers. The trial aims to enrol approximately 90 patients and is currently recruiting in the UK with plans to open additional sites in the USA. Key inclusion criteria include patients with confirmed (per standard disease specific diagnostic criteria), relapsed or refractory haematological malignancies (AML, MM and NHL). Patients must have received standard therapy which for the majority of therapeutic indications is at least 2 prior lines of therapy. Single dose and steady state pharmacokinetics will be determined in all patients. AML response will be measured in bone marrow samples. Myeloma response will be evaluated according to the 'International Myeloma Working Group Response Criteria' based on changes in M protein in blood and/or urine, changes in serum free light chains if measurable, and changes on imaging and/or bone marrow if applicable and according to the guidelines. In NHL patients, tumour assessments will be done for measurable disease, non-measurable disease, and new lesions on CT (or magnetic resonance imaging [MRI]) and/or combined with visual assessment of [18F]2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) for response assessment per recent International Working Group consensus criteria (RECIL 2017), until progression The study will begin with two parallel monotherapy dose-escalation arms; Arm 1: Relapsed or refractory NHL and MM; Arm2: Relapsed or refractory AML/high-risk MDS. Once a recommended phase 2 dose/schedule is reached, three monotherapy expansion arms will be opened in AML/high-risk MDS (15 patients), MM (15 patients) and NHL (30 patients). Blood samples along with bone marrow biopsies and aspirates will be collected for exploratory biomarker analysis to understand mechanisms of response to treatment or disease progression. This will include the analysis of tumour-specific and circulating biomarkers, such as tumour DNA, mRNA, proteins or metabolites. In NHL patients, analysis of CBP (and p300) mutations will be undertaken to allow retrospective correlation with tumour response and to determine if loss of function mutations in the genes for either proteins can be utilised as response predictive biomarkers in future studies. Disclosures Clegg: CellCentric Ltd: Employment, Equity Ownership. Brooks:CellCentric Ltd: Employment, Equity Ownership. Ashby:CellCentric Ltd: Employment, Equity Ownership. Pegg:CellCentric Ltd: Employment, Equity Ownership. West:CellCentric Ltd: Employment, Equity Ownership. Somervaille:Novartis: Consultancy. Knapper:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Daiichi Sankyo: Honoraria; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Tolero: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees. Davies:ADCT Therapeutics: Honoraria, Research Funding; MorphoSys AG: Honoraria, Membership on an entity's Board of Directors or advisory committees; BioInvent: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Karyopharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Honoraria, Research Funding; GSK: Research Funding; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Research Funding; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1882-1882 ◽  
Author(s):  
Samuel A Danziger ◽  
Mark McConnell ◽  
Jake Gockley ◽  
Mary Young ◽  
Adam Rosenthal ◽  
...  

Abstract Introduction The multiple myeloma (MM) tumor microenvironment (TME) strongly influences patient outcomes as evidenced by the success of immunomodulatory therapies. To develop precision immunotherapeutic approaches, it is essential to identify and enumerate TME cell types and understand their dynamics. Methods We estimated the population of immune and other non-tumor cell types during the course of MM treatment at a single institution using gene expression of paired CD138-selected bone marrow aspirates and whole bone marrow (WBM) core biopsies from 867 samples of 436 newly diagnosed MM patients collected at 5 time points: pre-treatment (N=354), post-induction (N=245), post-transplant (N=83), post-consolidation (N=51), and post-maintenance (N=134). Expression profiles from the aspirates were used to infer the transcriptome contribution of immune and stromal cells in the WBM array data. Unsupervised clustering of these non-tumor gene expression profiles across all time points was performed using the R package ConsensusClusterPlus with Bayesian Information Criterion (BIC) to select the number of clusters. Individual cell types in these TMEs were estimated using the DCQ algorithm and a gene expression signature matrix based on the published LM22 leukocyte matrix (Newman et al., 2015) augmented with 5 bone marrow- and myeloma-specific cell types. Results Our deconvolution approach accurately estimated percent tumor cells in the paired samples compared to estimates from microscopy and flow cytometry (PCC = 0.63, RMSE = 9.99%). TME clusters built on gene expression data from all 867 samples resulted in 5 unsupervised clusters covering 91% of samples. While the fraction of patients in each cluster changed during treatment, no new TME clusters emerged as treatment progressed. These clusters were associated with progression free survival (PFS) (p-Val = 0.020) and overall survival (OS) (p-Val = 0.067) when measured in pre-transplant samples. The most striking outcomes were represented by Cluster 5 (N = 106) characterized by a low innate to adaptive cell ratio and shortened patient survival (Figure 1, 2). This cluster had worse outcomes than others (estimated mean PFS = 58 months compared to 71+ months for other clusters, p-Val = 0.002; estimate mean OS = 105 months compared with 113+ months for other clusters, p-Val = 0.040). Compared to other immune clusters, the adaptive-skewed TME of Cluster 5 is characterized by low granulocyte populations and high antigen-presenting, CD8 T, and B cell populations. As might be expected, this cluster was also significantly enriched for ISS3 and GEP70 high risk patients, as well as Del1p, Del1q, t12;14, and t14:16. Importantly, this TME persisted even when the induction therapy significantly reduced the tumor load (Table 1). At post-induction, outcomes for the 69 / 245 patients in Cluster 5 remain significantly worse (estimate mean PFS = 56 months compared to 71+ months for other clusters, p-Val = 0.004; estimate mean OS = 100 months compared to 121+ months for other clusters, p-Val = 0.002). The analysis of on-treatment samples showed that the number of patients in Cluster 5 decreases from 30% before treatment to 12% after transplant, and of the 63 patients for whom we have both pre-treatment and post-transplant samples, 18/20 of the Cluster 5 patients moved into other immune clusters; 13 into Cluster 4. The non-5 clusters (with better PFS and OS overall) had higher amounts of granulocytes and lower amounts of CD8 T cells. Some clusters (1 and 4) had increased natural killer (NK) cells and decreased dendritic cells, while other clusters (2 and 3) had increased adipocytes and increases in M2 macrophages (Cluster 2) or NK cells (Cluster 3). Taken together, the gain of granulocytes and adipocytes was associated with improved outcome, while increases in the adaptive immune compartment was associated with poorer outcome. Conclusions We identified distinct clusters of patient TMEs from bulk transcriptome profiles by computationally estimating the CD138- fraction of TMEs. Our findings identified differential immune and stromal compositions in patient clusters with opposing clinical outcomes and tracked membership in those clusters during treatment. Adding this layer of TME to the analysis of myeloma patient baseline and on-treatment samples enables us to formulate biological hypotheses and may eventually guide therapeutic interventions to improve outcomes for patients. Disclosures Danziger: Celgene Corporation: Employment, Equity Ownership. McConnell:Celgene Corporation: Employment. Gockley:Celgene Corporation: Employment. Young:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Reiss:Celgene Corporation: Employment, Equity Ownership. Davies:MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; TRM Oncology: Honoraria; Abbvie: Consultancy; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Copeland:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Barlogie:Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Multiple Myeloma Research Foundation: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Trotter:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Dervan:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 690-690 ◽  
Author(s):  
Srdan Verstovsek ◽  
Alessandro M. Vannucchi ◽  
Alessandro Rambaldi ◽  
Jason R. Gotlib ◽  
Adam J. Mead ◽  
...  

Abstract Introduction: Myeloid/lymphoid neoplasms (MLNs) with rearrangement of FGFR1 on chromosome band 8p11 are rare but aggressive neoplasms characterized by heterogeneous presentation with myeloid and/or lymphoid proliferation, extramedullary involvement, and rapid progression to blast phase (Strati P, et al., Leuk Lymphoma. 2018;59:1672-1676). FGFR1 gets constitutively activated through fusion genes involving various partner genes, most frequently ZMYM2-FGFR1 or BCR-FGFR1 as consequence of a t(8;13)(p11;q12) or a t(8;22)(p11;q11), respectively. Chemotherapy is usually ineffective, effective targeted treatment has not been described, and allogeneic hematopoietic stem cell transplant (alloHSCT) is the only potentially curative option. Pemigatinib, a selective, potent, oral inhibitor of FGFR1, 2, and 3, has shown efficacy in patients with FGF/FGFR-activated tumors, including cholangiocarcinoma and urothelial carcinoma. We report interim results from the ongoing fight-203 study (NCT03011372) of pemigatinib in patients with FGFR1-rearranged MLNs. Methods: Fight-203 is a phase 2, open-label study enrolling patients ≥ 18 years of age with FGFR1-rearranged MLN. Patients enrolled in the study must have progressed on ≥ 1 prior treatment and be ineligible for alloHSCT. Patients receive a daily oral dose of pemigatinib 13.5 mg on a 21-day cycle (2 weeks on, 1 week off) until disease progression or unacceptable toxicity. The primary endpoint is overall clinical benefit rate, which includes complete clinical (CR) or partial clinical response (PR), and either complete or partial cytogenetic response (CCyR, PCyR). Secondary endpoints include duration of response/benefit, progression-free survival, overall survival, and safety/tolerability. Efficacy is assessed by evaluation of bone marrow histomorphology changes, standard cytogenetic and FISH evaluation of the FGFR1 rearrangement, and PET/CT scan. Results: At data cutoff (July 23, 2018), 14 patients were enrolled. Ten patients who had ≥ 1 response assessment were included in the analysis (Table). Patients received an average of 6.9 cycles of pemigatinib (range, 2-12 cycles). Median number of prior lines of therapy was 3 (range, 0-5), including 2 patients who received alloHSCT. Eight patients (80%) had a major CyR, including 6 patients with CCyR and 2 with PCyR. Eight patients (80%) had a CR or PR in bone marrow, peripheral blood, and extramedullary disease. One patient died of progression to myeloid blast crisis, 2 patients were bridged to alloHSCT, and 7 patients are ongoing. The most common treatment-emergent adverse events (AEs) were hyperphosphatemia (n=7 [70%]), diarrhea (n=5 [50%]) and anemia (n=5 [50%]); hyperphosphatemia was managed with diet and phosphate binders. Nine events in 4 patients (40%) were grade 3/4; 2 of these events (diarrhea and leukopenia) in 2 patients were related to pemigatinib. There were no drug-related AEs leading to dose interruption, dose reduction, or discontinuation. Conclusions: Pemigatinib showed promising efficacy, with an 80% major CyR rate accompanied by complete or partial remission, and was generally well tolerated by patients with FGFR1-rearranged MLN. The protocol was amended to allow continuous dosing, and the study is currently enrolling. Disclosures Verstovsek: Celgene: Membership on an entity's Board of Directors or advisory committees; Italfarmaco: Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Gotlib:Blueprint Medicines: Consultancy, Honoraria, Research Funding; Deciphera: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Gilead: Consultancy, Research Funding; Promedior: Research Funding; Kartos: Consultancy; Incyte: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Mead:Celgene: Research Funding; Bristol-Myers Squibb: Consultancy; Evotek: Research Funding; ARIAD: Consultancy; Cell Therapeutics: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Elstar: Research Funding. Hochhaus:Bristol-Myers Squibb: Research Funding; Novartis: Research Funding; Incyte: Research Funding; Takeda: Research Funding; Pfizer: Research Funding. Kiladjian:AOP Orphan: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Hernandez Boluda:Incyte: Consultancy; Novartis: Consultancy. Asatiani:Incyte: Employment, Equity Ownership. Lihou:Incyte: Employment, Equity Ownership. Zhen:Incyte: Employment, Equity Ownership. Reiter:Incyte: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2509-2509
Author(s):  
Gretchen Johnston ◽  
Haley E. Ramsey ◽  
Kristy Stengel ◽  
Shilpa Sampathi ◽  
Pankaj Acharya ◽  
...  

Drugs targeting chromatin-modifying enzymes have entered clinical trials for myeloid malignancies, including INCB059872, a selective irreversible inhibitor of Lysine-Specific Demethylase 1 (LSD1). LSD1 is a component of the CoREST complex, in which it associates with histone deacetylases 1 and 2, the transcriptional co-repressor, mSin3A or mSin3B, and the REST corepressor (RCOR1), so a role in gene expression was expected. While initial studies of LSD1 inhibitors have suggested these compounds may be used to induce differentiation of acute myeloid leukemia, the mechanisms underlying this effect and dose-limiting toxicities are not well understood. Here, we have used precision nuclear run-on sequencing (PROseq) and single-cell RNA-sequencing (scRNAseq) to show that INCB059872 de-represses GFI1/GFI1B-regulated genes to promote a myeloid differentiation gene signature in AML cells while stalling maturation of megakaryocyte progenitor cells. Within 3 days of treatment with INCB059872, the majority of THP-1, which contain an the MLL-translocation, undergo myeloid differentiation. RNAseq analysis indicated that 24h drug treatment upregulated genes involved in hematopoietic cell lineage, which is consistent with the differentiation. In addition, PROseq was used to measure the effects of INCB059872 on nascent transcription at genes and enhancers, as this is one of the best methods to define enhancer activity. In THP-1 cells after 24h treatment, there were 203 genes with at least a 1.5-fold increase in transcription, while there are nearly 1300 enhancers meeting this threshold. Upregulated genes include those associated with myeloid cell differentiation, such as CSF1R and CD86. Given that LSD1 catalyzes the removal of mono- and di-methyl marks from histone H3, we expected that INCB059872 would cause a buildup of histone methylation. Surprisingly, ChIPseq for H3K4me2 and H3K4me1 showed only subtle changes in these marks after 48h drug treatment in THP-1. Only a handful of LSD1i-induced enhancers overlapped with detectable changes in H3K4 methylation. However, our PROseq data is consistent with the increases in H3K27 acetylation seen with OG86 (a compound that disrupts the LSD1:GFI1 interaction) at GFI1 binding sites (PMID: 29590629). Indeed, motif analysis of INCB059872-upregulated enhancers identified the GFI1 recognition sequence as the most highly enriched. Moreover, siRNA inhibition of key components of LSD1-containing chromatin remodeling complexes pinpointed the CoREST complex as mediating the THP-1 myeloid differentiation effects of INCB059872. To investigate on-target thrombocytopenia seen with LSD1 inhibitors in preclinical studies, we analyzed the bone marrow of wild-type mice treated daily with INCB059872 for 0, 4, or 6 days before harvesting and sorting lin-bone marrow cells for scRNA-seq. Notably, one of the most highly upregulated genes in treated cells was Gfi1b. Unsupervised clustering identified 22 clusters, corresponding to unique subpopulations (Fig. 1A). While the distribution of cells into different progenitor populations was mostly unaffected by drug treatment, these data revealed a striking increase in the proportion of cells from treated mice assigned to a megakaryocyte stem/progenitor cluster. Cells within this expanded cluster expressed stem cell markers such as MYCN and PBX1, but also expressed VWF (Fig. 1B). Thus, LSD1 inhibition caused accumulation of megakaryopoiesis-biased stem cells that failed to mature into efficient platelet producers. Finally, we used scRNAseq to analyze bone marrow from an AML patient who responded to treatment with INCB059872 plus azacytidine (AZA). A pre-treatment bone marrow sample was divided into separate cultures to study the effects of INCB059872, AZA, or the combination. Remarkably, unsupervised clustering of patient cells assigned the majority of INCB059872 and combination-treated cells to clusters that were not found in control- or AZA-treated samples. Cells exposed to INCB059872 had upregulated GFI1 and GFI1B, as well as differentiation-related genes that were also observed in AML cell lines. Overall, these data indicate that INCB059872 affects gene expression with kinetics consistent with a loss of CoREST activity to stimulate differentiation of AML blasts, but the inactivation of GFI1/GFI1B impairs megakaryocyte maturation likely explaining thrombocytopenia seen in preclinical models. Disclosures Stubbs: Incyte Corporation: Employment, Equity Ownership. Burn:Incyte: Employment, Equity Ownership. Hiebert:Incyte Corporation: Research Funding. Savona:Karyopharm Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Selvita: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sunesis: Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer Ingelheim: Patents & Royalties; AbbVie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2195-2195 ◽  
Author(s):  
Russell K. Brynes ◽  
Attilio Orazi ◽  
Raymond S.M. Wong ◽  
Kalpana Bakshi ◽  
Christine K Bailey ◽  
...  

Abstract Abstract 2195 Introduction: Eltrombopag (epag), a thrombopoietin receptor agonist (TPO-RA), increases platelet counts in patients with chronic immune thrombocytopenia (cITP). TPO-RAs have been associated with varying degrees of increases in bone marrow reticulin (Brynes 2011; Ghanima 2011). Due to lack of pretreatment evaluations, the incidence and clinical significance of these findings have not been established. Inconsistencies in specimen preparation, staining, and analysis across institutions further confound conclusions. The purpose of this 2-year (y) study (NCT01098487) is to assess for bone marrow fibrosis (reticulin and/or collagen) in patients treated with epag for cITP. Baseline and 1y findings are presented. Methods: Bone marrow biopsies are being collected at baseline (before treatment with epag) and at 1 and 2y of treatment. Specimens are centrally processed and stained for reticulin (silver) and collagen (trichrome) and undergo central independent pathology review of cellularity; megakaryocyte, erythroid, and myeloid quantity and appearance; trabecular bone quality; reticulin grade; and presence of collagen (European Consensus scale-MF; Thiele 2005). Results: Baseline and 1y (10–14 months) data are available for 101 patients. Median age is 42y (18–78); 70 patients are female; 50% are Caucasian/European, 22% are East Asian, and 29% are Central South Asian. Median time since ITP diagnosis is 4.2y (0.2–45.7). All patients had received prior ITP therapy, and 8 patients had received prior TPO-RA treatment (epag [7], romiplostim [1]), the last dose ≥6 months before enrollment. At baseline, 91 patients had reticulin grade 0 (MF-0), 10 MF-1, and 0 MF≥2. At 1y, 59 patients had MF-0, 38 MF-1, 3 MF-2, and 1 MF-3 (Figure). Compared with baseline, there was no change at 1y in MF grade in 61 patients, a decrease by 1 grade in 3, an increase by 1 grade in 35, and an increase in 2 or 3 grades in 1 patient each (Table). Three patients had collagen at 1y (1 patient each with MF-1, MF-2, and MF-3). None of the 4 patients with MF≥2 had adverse events or hematologic abnormalities considered related to impaired bone marrow function, and none withdrew due to bone marrow findings. Among the 8 patients with prior TPO-RA treatment, all had baseline reticulin of MF-0 and none had collagen; at 1y, 6 remained MF-0, 1 was MF-1, and 1 MF-3 (collagen demonstrated). Cellularity was normal in 83% and 80% of patients at baseline and 1y, respectively. Other than normalization of erythroid lineage numbers, no changes occurred in marrow cellular composition. In 3 of 4 patients with MF≥2, cellularity was increased at 1y. Trabecular bone thinning was found at baseline in 28 patients (the majority with prior steroid use) and 51 patients at 1y. Discussion: 10% of patients had MF-1 at baseline. After 1y of treatment, no increase or a mild increase in reticulin was observed in 63% and 35% of patients. No patient with MF≥2 (n=4) had clinical signs or symptoms indicative of bone marrow dysfunction and none withdrew from the study. Results were similar to those reported for EXTEND, an eltrombopag extension study (median treatment duration >2 years; Brynes 2011). Conclusion: These data suggest that treatment with epag is generally not associated with clinically relevant increases in bone marrow reticulin or collagen. The potential association of TPO-RAs and increased bone marrow reticulin needs further study. Disclosures: Brynes: GlaxoSmithKline: Research Funding. Orazi:GlaxoSmithKline: Research Funding. Wong:Roche: Research Funding; MSD: Research Funding; Johnson & Johnson: Research Funding; Bayer: Consultancy, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Biogen-Idec: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding; GlaxoSmithKline: Research Funding; Bristol-Myers Squibb: Research Funding. Bakshi:GlaxoSmithKline: Employment, Equity Ownership. Bailey:GlaxoSmithKline: Employment, Equity Ownership. Brainsky:GlaxoSmithKline: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3418-3418 ◽  
Author(s):  
Christoph Heuck ◽  
Donald Johann ◽  
Brian A Walker ◽  
Caleb K Stein ◽  
Yogesh Jethava ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a neoplastic disease of the bone marrow characterized by a malignant transformation of plasma cells. Many patients relapse after initial treatment and require additional therapies. Impaired cell cycle regulation and DNA repair mechanisms as well as exposure to genotoxic drugs leads to accumulation of genomic alterations with progressive disease. Pressure from antineoplastic agents, including novel agents, eventually leads to the selection of resistant clones. Assessing acquired somatic mutations in MM patients can identify key genomic drivers and guide the development of a rational, individualized therapy plan for each patient with advanced disease. Here we report on the mutational landscape of cancer-associated genes in 214 patients who underwent comprehensive genomic profiling. Methods: Review of this data was approved by the UAMS institutional review board. DNA and RNA were extracted from CD138+ selected cells from bone marrow aspirates. Adaptor ligated sequencing libraries from extracted nucleic acids were captured by solution hybridization using bait sets targeting 405 cancer-related and 265 frequently rearranged genes (FoundationOne Heme®; Foundation Medicine ). For samples with low cell yield only the DNA portion was performed. All samples were sequenced in a CLIA-certified, CAP-accredited laboratory to an average depth >500x. Results We identified 147 clinically relevant alterations with an average of 3 alterations per patient ranging from 1 to 8. The most frequently altered genes were KRAS (29% of cases), NRAS (23%), TP53 (19%), RB1 (10%), BRAF (8%), TRAF3(8%), CDKN2C (7%), DNMT3A (5%), NF1, FAF1 and TET2 (4% each). While RAS, RAF, RB1 and TP53 mutations are also found in previously untreated patients, albeit in lower frequencies, mutations of DNTM3A and TET2 are rarely reported in the early phase of the disease, arguing for the accumulation of genomic alterations over time. We found concomitant alterations in KRAS and BRAF in 5, KRAS and NRAS in 3, and NRAS and BRAF in 2 patients. The vast majority of RAS alterations occurred at hotspots resulting in activating alterations at codons 12, 13 or 61 with mutant allele frequencies ranging from 0.01 to 0.92 with an average of 0.30. In the 17 patients with BRAF alterations the hotspot mutation V600E was found in 7 with mutant allele frequencies ranging from 0.01 to 0.48 with an average of 0.32. Overall the MAPK pathway was affected in 128 of 214 patients. 61 patients had alterations of genes associated with DNA damage repair. Among the 10 patients with DNMT3A alterations 2 also had alterations of TET2 suggesting significant epigenetic deregulation in a subset of patients. Data on subclonal structure and correlation of mutation status with paired gene expression profiles will be presented as well, as will be selected responses of patients treated on the basis of these results. Conclusion Subjecting CD138 selected bone marrow cells to comprehensive genomic profiling allows for the identification of clinically relevant alterations, which deregulate critical pathways in multiple myeloma. Small molecule inhibitors that target key genes in these affected pathways (MEK, BRAF) have recently been approved for therapy in other cancers or are being actively developed (PI3K, AKT, PARP). This comprehensive genomic characterization allows rational development of individualized clinical strategies using molecular targets for MM patients who are refractory to standard of care therapies. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria. van Rhee:Senesco: PI Other. Zangari:Norvartis: Membership on an entity's Board of Directors or advisory committees; Onyx: Research Funding; Millennium: Research Funding. Ali:Foundation Medicine, Inc.: Employment, Equity Ownership. Stephens:Foundation Medicine: Employment, Equity Ownership. Miller:Foundation Medicine, Inc: Employment. Morgan:Celgene Corp: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Myeloma UK: Membership on an entity's Board of Directors or advisory committees; International Myeloma Foundation: Membership on an entity's Board of Directors or advisory committees; The Binding Site: Membership on an entity's Board of Directors or advisory committees; MMRF: Membership on an entity's Board of Directors or advisory committees. Barlogie:Celgene: Consultancy, Patents & Royalties, Research Funding; Millenium: Consultancy, Patents & Royalties, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1410-1410 ◽  
Author(s):  
John E. Godwin ◽  
Carmen Ballesteros-Merino ◽  
Nikhil Lonberg ◽  
Shawn Jensen ◽  
Tarsem Moudgil ◽  
...  

Introduction The infiltration of immune cells into tumors has been associated with therapeutic effects in preclinical models and patients with cancer. In AML, we have previously reported that immune infiltrated TME is predictive of failure to cytotoxic chemotherapy, but associated with response to immunotherapy, specifically FLZ (Uy ASH 2018, Rutella ASH 2018). Furthermore, FLZ also affects immune infiltration in the TME (Rutella ASH 2018). NK cells play an important role in AML control (Ruggieri Science 2012). FLZ (MGD006/S80880) is a humanized DART® molecule that bridges CD123 on AML with CD3 on T cells and mediates anticancer activity via T-cell activation and cytolytic activity against the bound cancer cell. While this is well described in vitro, little evidence of this interaction is available in vivo. Methods Patients (pts) were treated on the recommended phase 2 dose (RP2D) of FLZ (multi-step lead-in dose followed by 500ng/kg/day, in 28-day cycles). We studied the bone marrow (BM) tissue samples for 6 primary refractory pts at baseline and after treatment. Response assessment was performed at day 25±3 days of each cycle. Serial BM samples were evaluated using 2 different staining panels (PD-L1, FoxP3, CD8, CD3, CD103 / CD123, CD3, CD57, CD16) on consecutive slides. Slides were stained using a Leica BondRx autostainer and fluorescence imaged using a Polaris Vectra 3 and analyzed using inForm software. A density-based clustering algorithm developed and run in QuPath was used to quantify CD3+ T cell clusters. Results Six pts with primary refractory AML were included in this report. Pts were heavily pretreated (median prior lines of therapy was 3, range 2-9), and had adverse cytogenetic risk (ELN 2017). Three pts had a complete remission (CR) after 1 cycle of therapy (CR, CRh, CRi), two went on the receive allogeneic stem cell transplant (HSCT). In baseline BM samples, CD3 and CD8 cell infiltrates were higher in CR vs non-responders (CD3+ 18.3% ±6.9 vs 9.3% ±1.8; CD8+ 9.4% ±3.5 vs 4.8% ±1.2; mean±SEM). Two of the three CR patients, who underwent HSCT, developed clusters (Figure 1) in their on-treatment biopsies with 65 and 22 clusters of an average of 34 and 17 T cells per cluster, respectively. All clusters in CR pts were found on or adjacent to CD123+ cells. The BM biopsy of the CR pt with no detected clusters had no unequivocal evidence of residual/recurrent leukemic blasts. This pt had their dose interrupted early due to non-treatment related AE (infectious complication) and did not receive a full cycle of treatment; the response was transient and the pt relapsed shortly thereafter. NK cells (CD57+CD16+) were increased in post treatment biopsies of CR vs non-responders (0.93 ±0.31 vs 0.27 ±0.13; mean±SEM) with the largest fold increase in CR (28 vs 9). Lastly, post treatment biopsy PD-L1 expression was higher in non-responders than CR (23% vs 16%) with non-responders exhibiting the largest fold change in total PD-L1+ cells (10.9 vs 2.2). Summary Consistent with its proposed mechanism of action, these data highlight for the first time, the dynamic induction of an increase in T-cell infiltration, and clustering around CD123 AML cells in the bone marrow microenvironment of two AML patients that responded to FLZ. In pts with resistance to FLZ (non-responders) PD-L1 induction was significantly higher indicating that in some pts treatment with sequential check point inhibitor could obviate this mechanism of resistance A trial combining FLZ with sequential administration of a PD-1 inhibitor (MGA012) is currently recruiting pts. Figure 1. Baseline and on-treatment IHC of BM biopsies of a FLZ-treated CR pt showing cluster formation following treatment. Disclosures Bifulco: Ventana: Other: advisory board; PrimeVax: Equity Ownership, Other: ScientificBoard; BMS: Other: Advisory Board; Providnece: Patents & Royalties: Imaging processing; Halio Dx: Other: advisory board. Wigginton:macrogenics: Employment, Equity Ownership; western oncolytics: Consultancy, Other: consultancy. Muth:MacroGenics, Inc.: Employment, Equity Ownership. Davidson-Moncada:MacroGenics, Inc.: Employment, Equity Ownership. Fox:Akoya: Research Funding; Bristol Myers Squibb: Research Funding; Definiens: Membership on an entity's Board of Directors or advisory committees; Macrogenics: Research Funding; Ultivue: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1379-1379
Author(s):  
Gautam M. Borthakur ◽  
Tapan M. Kadia ◽  
Hind Al Azzawi ◽  
Daniella Zheleva ◽  
David Blake ◽  
...  

Cyclin dependent kinases (CDKs) are critical for cell cycle regulation and transcriptional elongation. Dysregulated CDKs have been linked to the cancer hallmarks of uncontrolled proliferation and increased survival. CYC065 is a potent and orally‐available inhibitor of CDK2 and CDK9. CDK9 regulates transcription of genes through phosphorylation of RNA polymerase II (RNAP II) C-terminal domain (CTD). Through inhibition of CDK9, CYC065 suppresses CDK9-dependent gene expression and reduces the level of MCL1, a key anti-apoptotic protein. In the first-in-human study, CYC065 was administered by 4-hour infusion every 3 weeks in patients with advanced cancers. Biomarkers related to CYC065 target inhibition, e.g. phosphorylation of RNAP II CTD Ser2, a direct substrate of CDK9, and protein levels of downstream targets, such as MCL1, were determined in patient's peripheral blood mononuclear cells (PBMCs). Durable MCL1 suppression was observed after a single dose in 11 out of 13 patients treated at the recommended phase 2 dose (RP2D) of 192 mg/m2. Five of these 13 patients achieved stable disease lasting ≥ 6 cycles (Do, KT et al, AACR Annual Meeting 2018 Abs CT037). Acute myeloid leukemia (AML) frequently relapses after initial treatment by intensive or low-intensive therapy. Drug resistance has been attributed to dysregulation in apoptotic pathways. AML cells often upregulate pro-survival members of the BCL2 family, such as BCL2 and MCL1, to avoid apoptosis (Grundy M et al, Oncotarget, 2018). Suppression of MCL1 triggered rapid apoptosis in AML, and cured AML-afflicted mice (Glaser SP et al, Genes Dev. 2012). Preclinically, CYC065 has demonstrated potent anti-tumor effect in various AML cell lines, including those with MLL rearrangements, and xenograft models (Frame S et al, AACR, 2010 Abs 3886; Frame S et al, SOHO, 2014 Abs 209). Venetoclax has modest single agent activity in AML. MCL1 dependence appeared to correlate with resistance to venetoclax (Konopleva M et al, Cancer Discovery, 2016). Preclinical study confirmed synergy of CYC065 and venetoclax, suggesting that the suppression of both BCL2 and MCL1 may be more beneficial than inhibiting either one alone (MacKay C et al. AACR-NCI-EORTC 2015 Abs B182). Based on the above rationale, a clinical study (NCT04017546) has been initiated to evaluate a combination of CYC065 with venetoclax in relapsed/refractory AML and MDS. CYC065 will be administered intravenously via 4-hour infusion on Day 1 and Day 15 in combination with daily venetoclax every 4 weeks. Initial dose escalation is 33% and then 25% upon occurrence of the first dose limiting toxicity (DLT). RP2D is the highest dose level at which less than one-third of at least 6 patients experience a DLT during the first treatment cycle. Eligible patients are ≥18 years with previously treated AML or MDS and ≥10% blasts in bone marrow or peripheral blood; adequate bone marrow, renal and liver functions are required. All patients will be asked to participate in the pharmacokinetic and pharmacodynamic studies. Plasma levels of CYC065 and its metabolites as well as venetoclax will be determined. PBMCs will be collected to assess MCL1 levels and the phosphorylation and protein levels of other downstream targets of CDK9 inhibition. Treatment will continue until progression of disease, unacceptable toxicity or changes in patient condition that renders patients ineligible for further treatment. Laboratory tests and bone marrow aspirate/biopsy will be performed to assess response according to standard criteria. Disclosures Borthakur: AbbVie: Research Funding; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; GSK: Research Funding; Polaris: Research Funding; Tetralogic Pharmaceuticals: Research Funding; Incyte: Research Funding; Cyclacel: Research Funding; Janssen: Research Funding; Bayer Healthcare AG: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; Merck: Research Funding; Oncoceutics, Inc.: Research Funding; Strategia Therapeutics: Research Funding; PTC Therapeutics: Consultancy; BMS: Research Funding; Oncoceutics: Research Funding; Eisai: Research Funding; NKarta: Consultancy; Xbiotech USA: Research Funding; Cantargia AB: Research Funding; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Eli Lilly and Co.: Research Funding; Agensys: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Arvinas: Research Funding. Kadia:BMS: Research Funding; Bioline RX: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Al Azzawi:Cyclacel LTD: Research Funding. Zheleva:Cyclacel Ltd: Employment, Equity Ownership, Patents & Royalties. Blake:Cyclacel Ltd: Employment, Equity Ownership, Patents & Royalties. Chiao:Cyclacel Ltd: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 621-621 ◽  
Author(s):  
Hartmut Döhner ◽  
John F Seymour ◽  
Aleksandra Butrym ◽  
Agnieszka Wierzbowska ◽  
Dominik Selleslag ◽  
...  

Abstract Background: Overall survival (OS) in older patients (pts) with AML and poor-risk cytogenetics is only ~2-3 months (mos) (Burnett, Cancer, 2007). Often these pts receive only palliative treatment (Tx) with best supportive care (BSC). Low-dose Ara-C (LDAC) provides no OS benefit in pts with poor cytogenetics (Döhner, Blood, 2010). Typically, intensive chemotherapy (IC) is either not suitable for older AML pts with poor cytogenetics or, when it is used, provides no OS benefit (Kantarjian, Blood, 2010). The phase 3, multicenter, randomized, open-label AZA-AML-001 trial showed azacitidine (AZA) Tx in older pts with newly diagnosed AML (>30% bone marrow [BM] blasts) prolonged median OS by ~4 mos vs conventional care regimens (CCR) (10.4 vs 6.5 mos; p=0.1009) and improved 1-year survival (46.5% vs 34.2%) (Dombret, EHA, 2014). Cytogenetic risk is a prognostic indicator in elderly AML and a frequent determinant of Tx approach and outcomes. Objective: To determine the effect of Tx with AZA vs CCR on OS and 1-year survival in AZA-AML-001 pt subgroups based on cytogenetic risk classification. Methods: Pts aged ≥65 years with newly diagnosed de novo or secondary AML who were ineligible for transplant, with intermediate- or poor-risk cytogenetics (pts with favorable cytogenetics were excluded from study), ECOG performance status 0-2, and WBC count ≤15x109/L, were eligible. Before randomization, each pt was preselected to receive 1 of 3 commonly used CCR for older pts with AML, per investigator choice: IC (standard 7+3 regimen), LDAC (20 mg SC BID x 10 days/28-day cycle), or BSC only. Pts were then randomized to AZA (75 mg/m2/day SC x 7 days/28-day cycle) or to CCR, in which case they received their preselected Tx. The primary endpoint was OS. Cytogenetic risk groups were assessed per NCCN criteria by central review: intermediate (INT; all cases), intermediate with normal karyotype (cytogenetic normal [CN]), and poor. Survival at 1 year was compared between Tx. Median OS for AZA vs CCR was calculated using Kaplan-Meier methods, hazard ratios (HR) and 95% confidence intervals (CI) were determined by unstratified Cox proportional hazards model, and p values by log-rank test. Results: In all, 488 pts were randomized, 241 to AZA and 247 to CCR. Cytogenetic risk was balanced between Tx groups: 315 pts had INT-risk cytogenetics (AZA n=155 [64%], CCR n=160 [65%]), including 218 who were CN (AZA n=113 [73%], CCR n=105 [66%]), and 170 pts had poor-risk cytogenetics (AZA n=85 [35%], CCR n=85 [34%]). Within each of the 3 cytogenetic risk subgroups, the distribution of pts receiving individual CCR was very consistent: ~18% of each cytogenetic risk subgroup received BSC, ~64% received LDAC, and ~18% received IC. Baseline characteristics were generally balanced among the AZA and CCR Tx arms and the 3 cytogenetic risk groups (Table). At baseline, proportionately more pts with poor-risk cytogenetics in the AZA group were aged ≥75 years (57.6% vs 47.1% with CCR) and more pts in the CCR group had AML with myelodysplastic changes (45.9% vs 37.6% with AZA). Median OS (95%CI) in poor-risk pts was significantly prolonged with AZA vs CCR: 6.4 mos (4.2, 8.1) vs 3.2 mos (2.2, 4.7), respectively; HR=0.68 (0.50, 0.94), p=0.019 (Figure). Median OS in INT-risk pts was 13.0 mos (11.2, 16.3) vs 10.1 mos (7.1, 13.3) with AZA vs CCR; HR=0.90 (0.70, 1.16), p=0.41. Median OS in the CN subgroup was 14.1 mos (12.6, 19.5) vs 10.0 mos (6.4, 13.3); HR=0.81 (0.59, 1.10), p=0.18. Estimated 1-year survival was higher with AZA vs CCR in all cytogenetic risk subgroups. Twice the proportion of AZA-treated pts in the poor-risk subgroup were alive at 1 year vs. CCR pts (30.9% vs 14.0%, respectively), a clinically meaningful difference of 16.9% (95%CI 4.4, 29.5). Similarly, in the CN subgroup, 60.7% vs 44.1% of pts were alive at 1 year in the AZA and CCR groups, a difference of 16.5% (3.2, 29.8). AZA effect on 1-year survival in the INT-risk subgroup was also favorable (55.2% vs 45.5% with CCR) (difference 9.7% [-1.4, 20.8]). Grade 3-4 hematologic adverse event rates with AZA were consistent with previous reports (Santini, Eur J Haematol, 2010), with no meaningful differences among all cytogenetic risk groups. Conclusions: Median OS in older pts with AML and poor-risk cytogenetics was meaningfully improved with AZA compared with the CCR currently used for AML, with those pts receiving AZA twice as likely to be alive at 1 year as those treated with CCR. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Döhner: Celgene: Consultancy. Off Label Use: Use of azacitidine in AML with blast count >30%. Seymour:Celgene: Consultancy, Honoraria, Speakers Bureau. Wierzbowska:Celgene: Honoraria, Speakers Bureau. Selleslag:Celgene: Consultancy, Research Funding, Speakers Bureau. Cavenagh:Celgene: Honoraria. Kumar:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Schuh:Celgene: Membership on an entity's Board of Directors or advisory committees. Candoni:Celgene: Consultancy, Speakers Bureau. Récher:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Sandhu:Celgene: Honoraria. Bernal del Castillo:Celgene: Consultancy. Al-Ali:Celgene: Honoraria, Research Funding. Martinelli:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy. Falantes:Celgene: Consultancy. Stone:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees. Minden:Celgene: Honoraria. McIntyre:Celgene: Employment. Songer:Celgene: Employment, Equity Ownership. Lucy:Celgene: Employment, Equity Ownership. Beach:Celgene: Employment, Equity Ownership. Dombret:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document