scholarly journals This Is a Title in Title Case: Prediction of CML Evolution By Telomere Length Analysis at the Single-Chromosome Level

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2937-2937
Author(s):  
Jingyuan Lu ◽  
Yingxing Zhou ◽  
Xiaomei Yan ◽  
Quanyi Lu

Telomeresplay a vital role in DNA repair activities and protecting chromosomes from degradation[1]. Telomeres are shortened during each cell division because of the end replication problem. After several cell division, telomeres are shortened to a critical length (< 3 kb), and eventually lead to overall genomic instability and triggering the DNA damage response[2-3], which is related to the cancerization of numerous cancers. The commonly used method to estimate telomere length isterminal restriction fragment (TRF) basedon southern blot, which requires thousands of cells and provides only a crude estimate of the average telomere length of all cells analyzed. However, it is believed that the frequency of critically short telomeres, rather than the mean telomere length, is a crucial factor for telomere dysfunction. Therefore, analysis of telomere length at the single-chromosome level is necessary to determine the frequency of critically short telomeres. Here, we describe the development of a high-throughput method for telomere length analysis at the single-chromosome level by using a laboratory-built high-sensitivity flow cytometer (HSFCM)[4] combined with targeted fluorescent peptide nucleic acid (PNA) probes. The unambiguous detection of the telomere signalsfrom a single chromosome was achieved via HSFCM analysis. The fluorescence intensity of single chromosome was converted to the probe number by a calibration curve, and was further transformed to the base pair number of the telomere. Five representative cell lines were analyzed to compare their telomere length and the ratio of critically short telomeres at the single-chromosome level. The potential of using frequency of short telomere for disease treatment monitoring is examined by analyzing the telomere length in lymphocyte of leukemia patients. The abundance of short telomeres was compared between healthy donors and patients with chronic myeloid leukemia (CML) to see whether it can be used to predict the efficacy of therapeutics. Moreover, the quantity of short telomeres was compared among patients with acute leukemia, patients in different phases of CML and healthy donors to see whether it can be used as a marker for disease progression prediction in CML. Reference [1] Blackburn E. H., Epel E. S., Lin J., Science,2015, 350, 1193-1198. [2]Collado M., Blasco M. A., Serrano M., Cell, 2007, 130, 223-233. [3] Deng Y., Chan S. S., Chang S., Nat. Rev. Cancer, 2008, 8, 450-458. [4] Yang LL, Zhu SB, Hang W, Wu LN, Yan XM, Anal. Chem., 2009, 81, 2555-2563. Figure 1 Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2449-2449
Author(s):  
Mark Hills ◽  
Kai Lucke ◽  
Connie J. Eaves ◽  
Peter M. Lansdorp

Abstract In most somatic cells, telomeres shorten with each round of cell division. As a result telomere length can be used to assess the mitotic history of cells with some important caveats: the telomere length at birth is highly variable (presumably reflecting different alleles of genes regulating telomere length in the germline), telomere losses can be compensated by telomerase and the overall decline in telomere length includes sporadic, variable losses of telomere repeats resulting from damage to telomeric DNA and/or replication errors. The first caveat can be circumvented by testing cells from the same individual and sporadic telomere losses can be analyzed by single telomere length analysis (STELA). It is more difficult to exclude the effect of telomerase on telomere length but we have previously shown that, despite readily detectable expression of telomerase, hematopoietic stem and progenitor cells show a progressive decline in telomere length with cell division and with age. The clinical relevance of telomere shortening is illustrated in several recent studies linking very short telomeres to bone marrow failure and pulmonary fibrosis. We now show that purified human hematopoietic populations from mobilized peripheral blood (MPB) and cord blood (CB) enriched for stem cells (Lin−CD34+CD38−Rho−) and successively more mature cells display progressively shorter telomeres, pointing to the utility of this method for studies of the mitotic relationship between various stem and progenitor cells. Ultra-short telomeres were readily observed (and found to be significantly more frequent) in terminally differentiated cell populations of MPB, suggesting that sporadic telomere losses occur more frequently during differentiation. When 1000 Lin−CD34+CD38−Rho− cord blood cells were transplanted into two immuno-deficient mice, the most primitive human hematopoietic cells with a CD34+CD38− phenotype lost 3970 and 2790 bp respectively following regeneration in vivo, indicative of ~ 30–80 cell divisions assuming a telomere loss of 50–100 bp/division. Further losses in more differentiated cells were similar to those observed in cells before transplantation. These results illustrate the power of STELA for analysis of telomeres in rare cells and point to a novel strategy to study the turnover and replicative history of cells. Furthermore, these data demonstrate that self-renewal divisions in stem cells rather than additional cell divisions in downstream progenitors are the primary cause of telomere loss following transplantation.


2021 ◽  
Vol 212 ◽  
pp. 111935
Author(s):  
Milton Quintana-Sosa ◽  
Grethel León-Mejía ◽  
Jaime Luna-Carrascal ◽  
Yurina Sh De moya ◽  
Ibeth Luna Rodríguez ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1372-1373
Author(s):  
G. M. Verstappen ◽  
J. C. Tempany ◽  
H. Cheon ◽  
A. Farchione ◽  
S. Downie-Doyle ◽  
...  

Background:Primary Sjögren’s syndrome (pSS) is a heterogeneous immune disorder with broad clinical phenotypes that can arise from a large number of genetic, hormonal, and environmental causes. B-cell hyperactivity is considered to be a pathogenic hallmark of pSS. However, whether B-cell hyperactivity in pSS patients is a result of polygenic, B cell-intrinsic factors, extrinsic factors, or both, is unclear. Despite controversies about the efficacy of rituximab, new B-cell targeting therapies are under investigation with promising early results. However, for such therapies to be successful, the etiology of B-cell hyperactivity in pSS needs to be clarified at the individual patient level.Objectives:To measure naïve B-cell function in pSS patients and healthy donors using quantitative immunology.Methods:We have developed standardised, quantitative functional assays of B-cell responses that measure division, death, differentiation and isotype switching, to reveal the innate programming of B cells in response to T-independent and dependent stimuli. This novel pipeline to measure B-cell health was developed to reveal the sum total of polygenic defects and underlying B-cell dysfunction at an individual level. For the current study, 25 pSS patients, fulfilling 2016 ACR-EULAR criteria, and 15 age-and gender-matched healthy donors were recruited. Standardized quantitative assays were used to directly measure B cell division, death and differentiation in response to T cell-independent (anti-Ig + CpG) and T-cell dependent (CD40L + IL-21) stimuli. Naïve B cells (IgD+CD27-) were sorted from peripheral blood mononuclear cells and were labeled with Cell Trace Violet at day 0 to track cell division until day 6. B cell differentiation was measured at day 5.Results:Application of our standardized assays, and accompanying parametric models, allowed us to study B cell-intrinsic defects in pSS patients to a range of stimuli. Strikingly, we demonstrated a hyperresponse of naïve B cells to combined B cell receptor (BCR) and Toll-like receptor (TLR)-9 stimulation in pSS patients. This hyperresponse was revealed by an increased mean division number (MDN) at day 5 in pSS patients compared with healthy donors (p=0.021). A higher MDN in pSS patients was observed at the cohort level and was likely attributed to an increased division burst (division destiny) time. The MDN upon BCR/TLR-9 stimulation correlated with serum IgG levels (rs=0.52; p=0.011). No difference in MDN of naïve B cells after T cell-dependent stimulation was observed between pSS patients and healthy donors. B cell differentiation capacity (e.g., plasmablast formation and isotype switching) after T cell-dependent stimulation was also assessed. At the cohort level, no difference in differentiation capacity between groups was observed, although some pSS patients showed higher plasmablast frequencies than healthy donors.Conclusion:Here, we demonstrate defects in B-cell responses both at the cohort level, as well as individual signatures of defective responses. Personalized profiles of B cell health in pSS patients reveal a group of hyperresponsive patients, specifically to combined BCR/TLR stimulation. These patients may benefit most from B-cell targeted therapies. Future studies will address whether profiles of B cell health might serve additional roles, such as prediction of disease trajectories, and thus accelerate early intervention and access to precision therapies.Disclosure of Interests:Gwenny M. Verstappen: None declared, Jessica Catherine Tempany: None declared, HoChan Cheon: None declared, Anthony Farchione: None declared, Sarah Downie-Doyle: None declared, Maureen Rischmueller Consultant of: Abbvie, Bristol-Meyer-Squibb, Celgene, Glaxo Smith Kline, Hospira, Janssen Cilag, MSD, Novartis, Pfizer, Roche, Sanofi, UCB, Ken R. Duffy: None declared, Frans G.M. Kroese Grant/research support from: Unrestricted grant from Bristol-Myers Squibb, Consultant of: Consultant for Bristol-Myers Squibb, Speakers bureau: Speaker for Bristol-Myers Squibb, Roche and Janssen-Cilag, Hendrika Bootsma Grant/research support from: Unrestricted grants from Bristol-Myers Squibb and Roche, Consultant of: Consultant for Bristol-Myers Squibb, Roche, Novartis, Medimmune, Union Chimique Belge, Speakers bureau: Speaker for Bristol-Myers Squibb and Novartis., Philip D. Hodgkin Grant/research support from: Medimmune, Vanessa L. Bryant Grant/research support from: CSL


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lilit Nersisyan ◽  
◽  
Maria Nikoghosyan ◽  
Arsen Arakelyan

AbstractTelomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1731-1731
Author(s):  
Mercè de Frias ◽  
Daniel Iglesias-Serret ◽  
Ana M Cosialls ◽  
Llorenç Coll-Mulet ◽  
Antonio F Santidrián ◽  
...  

Abstract Abstract 1731 Poster Board I-757 Phosphatidylinositol-3-kinase (PI3K)/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia (CLL) cells. Here, we have analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) in the survival of CLL cells. We studied by cytometric analysis the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with CLL and from healthy donors. Both inhibitors induced apoptosis in CLL cells in a dose-dependent manner. Moreover, B cells from CLL samples were more sensitive to Akt inhibitors than T cells from CLL samples, and B or T cells from healthy donors. Survival factors for CLL cells, such as IL-4 and SDF-1a, were not able to block the apoptosis induced by both Akt inhibitors. We studied the changes induced by Akti-1/2 and A-443654 at mRNA level by performing reverse transcriptase multiplex ligation–dependent probe amplification (RT-MLPA). Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on CLL cells by Western blot. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. These results demonstrate that Akt inhibitors induce apoptosis of CLL cells and might be a new therapeutic option for the treatment of CLL. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 68 (10) ◽  
pp. 2053-2058 ◽  
Author(s):  
Rosamond M. Godwin ◽  
Stewart Frusher ◽  
Steven S. Montgomery ◽  
Jennifer Ovenden

Abstract Godwin, R. M., Frusher, S., Montgomery, S. S., and Ovenden, J. 2011. Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii. – ICES Journal of Marine Science, 68: 2053–2058. Estimates of age and growth in crustaceans have been historically problematic and presented significant challenges to researchers. Current techniques of age determination provide valuable data, but also suffer from disadvantages. Telomeric DNA has been proposed as an age biomarker because it shortens with age in some species. In this study, the feasibility of using telomere length (TL) to estimate age was examined in the school prawn Metapenaeus macleayi and the spiny lobsters Sagmariasus verreauxi and Jasus edwardsii. Carapace length (CL) was used as a surrogate for age, and terminal restriction fragment assays were used to test the relationship between TL and size. Degradation of telomeric DNA with time during storage significantly influenced TL estimates, particularly for M. macleayi. TLs obtained from species in this study were 10–20 kb. No relationship between CL and TL was detected for any of the test species, and TL did not differ between male and female M. macleayi. TLs of J. edwardsii pueruli were unexpectedly shorter than those of J. edwardsii adults. The suitability of TL as an age biomarker in crustaceans may be limited, but further research is needed to elucidate telomere dynamics in these species with their different life histories and lifespans.


Sign in / Sign up

Export Citation Format

Share Document