scholarly journals First Description of B Cell Maturation Antigen Expression in Light Chain Amyloidosis

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5452-5452
Author(s):  
Susan Bal ◽  
Allison Sigler ◽  
Alexander Chan ◽  
David J. Chung ◽  
Ahmet Dogan ◽  
...  

Background B-cell maturation antigen (BCMA) is a transmembrane protein belonging to the tumor necrosis factor (TNF) superfamily involved in the regulation of B cell proliferation and survival as well as maturation/differentiation into plasma cells. In multiple myeloma cells, overexpression of BCMA has been shown to activate mitogen activated protein kinase pathways (AKT, ERK1/2, and NF-κB) and upregulates anti-apoptotic proteins (MCL1, BCL2, BCL-xL) resulting in cellular proliferation. Immunotherapeutic strategies targeting BCMA are showing great promise in heavily pre-treated refractory multiple myeloma. Light Chain Amyloidosis (AL) is a multisystem disorder of clonal plasma cells that results in the production of an abnormal light chain which misfolds and deposits in the organs leading to disruption of tissue architecture, cellular stress, dysfunction and eventually, death. The smaller burden and lower proliferative potential of the offending clonal plasma cells in amyloidosis may potentially lend itself favorably to immunotherapeutic strategies targeting BCMA. Given the efficacy of this approach in MM, the evaluation of BCMA expression on the surface of amyloidogenic plasma cells is warranted. Methods All patients diagnosed with Light chain Amyloidosis at Memorial Sloan Kettering Cancer Center, NY between January 1, 2012, and December 31, 2018, who had unstained bone marrow samples were identified. These unstained BM biopsy samples were prospectively stained for BCMA expression using Immunohistochemistry (IHC). We utilized a clinical-grade assay (clone D6; catalog sc-390147; company Santa-Cruz; monoclonal antibody; dilution 1:400) in a CLIA compliant setting. We scored the biopsies for BCMA expression, intensity, and site of staining. We also obtained their demographic details, staging, and cytogenetic information for the patients with available samples. Results During the queried period, 28 unstained samples were available for testing from the time of disease diagnosis. The median age of the population was 63 years (range 41-73). 64% of patients were male and consistent with the literature; a majority of patients (75%) had lambda-typic clonal plasma cells. Cytogenetic abnormalities using fluorescence in situ hybridization (FISH) were reviewed, t(11;14) was seen in 36% patients, and chromosome 1q and del 13q were each seen in 32% of patients. No patient had t(4;14) or del 17p. The median clonal PC burden in BM at diagnosis was 10% (range2-80%) and 36% had > 10% plasma cells. In clonal PCs, the median BCMA expression was 80% (range 20-100%). Only one patient had a staining intensity under 50% (20%). Membranous staining was noted in 82% of patients and a Golgi pattern in 11%. The median staining intensity was 2 (range 1-3). Of the patients with baseline diagnostic samples available for testing, six patients had additional unstained bone marrow samples for staining at the time of relapse. The majority of patients (83%) who relapsed had >10% plasma cells with a higher median plasma cell burden of 35% (range 10-80). The median BCMA expression was 65% (range 50-80) with no patient having <50% expression. The staining pattern was membranous in 50%, Golgi in 17%, and Golgi-membranous in 33%. At the time of relapse, the median clonal PC burden was 13% (range 5-30). BCMA expression continued to be present at the time of relapse with a median 75% (range 50-100) with predominantly membranous staining (83%). The median staining intensity in both diagnostic and relapsed tissue within the six samples studied was 1. Conclusions Our study represents the first description of BCMA expression on the surface of amyloidogenic plasma cells to our knowledge. BCMA is uniformly expressed by pathologic PCs in AL amyloidosis both at the time of diagnosis and relapse. Given the efficacy of BCMA directed therapy in multiple myeloma, further investigation of these agents in light-chain amyloidosis are warranted and may provide an effective therapeutic strategy in this devastating disease. Figure Disclosures Dogan: Corvus Pharmaceuticals: Consultancy; Celgene: Consultancy; Seattle Genetics: Consultancy; Novartis: Consultancy; Takeda: Consultancy; Roche: Consultancy, Research Funding. Giralt:Takeda: Consultancy, Research Funding; Johnson & Johnson: Consultancy, Research Funding; Kite: Consultancy; Novartis: Consultancy; Actinium: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Miltenyi: Research Funding; Spectrum Pharmaceuticals: Consultancy. Hassoun:Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Landau:Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees; Caelum: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4354-4354
Author(s):  
Jana Jakubikova ◽  
Danka Cholujova ◽  
Gabor Beke ◽  
Zachary R Hunter ◽  
Teru Hideshima ◽  
...  

Multiple myeloma (MM), the second most common hematologic malignancy worldwide, is a B cell malignancy characterized by high frequency of intra-clonal diversity within malignant plasma cells (PC) in the bone marrow (BM). To better understand the myeloma heterogeneity within its complex pathophysiology, we performed large-scale data-driven mass cytometry (CyTOF) analysis in cohort of 188 bone marrow (BM) samples from multiple myeloma (MM) patients compared to 10 age-matched healthy donors (HD). Our design focused on profiling of PC intra and inter-neoplastic heterogeneity based on molecular perturbations of transcriptional factors and signaling regulators and stemness-controlling markers ensuring development of B cell lymphopoiesis within myelomagenesis encompassing the different clinical spectra of pre-malignant/asymptomatic (16 MGUS and 25 SMM) and active symptomatic stages (43 NDMM and 104 relapsed or relapsed/refractory MM patients) of MM pathogenesis. Moreover, interaction of PC disease status with the immune ecosystem of myeloma microenvironment was evaluated as well. To distinguish tumor-driven specific immune changes from myeloma immune ecosystem, we observed that cell frequency of cytotoxic naïve and effector cells, g/dT, and early monocytes, myelocytes and erythroblasts immune subsets was significantly reduced in both premalignant and active MM stages. In contrast, mostly innate immune clusters including non-canonical monocytes, myeloblasts, and mature neutrophils, erythroblasts and platelets were present at a higher frequency across all MM stages versus HD. To evaluate cell distribution of B lymphopoiesis in MM disease stages, switched memory B cells and plasmablasts clusters were upregulated in premalignant stage MGUS compared to HD. Similar observations were detected in SMM and NDMM versus HD, with the highest abundance of PC clusters in NDMM. The downregulation of cell distribution in B cell progenies, immature and transitional B cells, and un-switched memory B cell clusters was observed in NDMM and relapsed/refractory MM patients. Furthermore, MM patients treated with Revlimid-Velcade-Dexamethasone therapy had decrease frequency of specific PC clusters and un-switched and transitional B cell clusters. In addition, our data revealed immunophenotyping aberrancies present not only in PC clusters but also across all myeloma B lymphomagenesis in BM samples from MM patients. In-depth characterization of malignant plasma cells, significant variations were detected in PC clusters of MM cohort based on different expression of IRF4, c-Myc, CD28, CD117, and FGFR-3, however with homogenous expression of sXBP1, and MMSET which differ in all 4 MM stages compared to HD. Significant upregulation of CD47 was showed in all PC clusters of MM cohort. Moreover, PC clusters differ in intra-clonal expression of self-renewing/stemness markers CD184, Notch-1, Oct3/4, KLF-4, Sox-2, and Nanog, supporting the idea of sub-clonal variations insight of MM tumor. This study might provide the rational for prediction of MM patient status and design of targeted therapy in MM on personalized bases. This work was supported by REA grant agreement No. 609427-SASPRO 0064/01/02, TRS-2015-00000170, APVV-16-0484 and VEGA 2/0076/17. Disclosures Hunter: Janssen: Consultancy. Jamroziak:Amgen: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Richardson:Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding. Kastritis:Prothena: Honoraria; Genesis: Honoraria; Takeda: Honoraria; Janssen: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Pfizer: Honoraria. Anderson:Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3184-3184 ◽  
Author(s):  
Malin Hultcrantz ◽  
Even H Rustad ◽  
Venkata Yellapantula ◽  
Theresia Akhlaghi ◽  
Allison Jacob ◽  
...  

Abstract Background Minimal residual disease (MRD) negativity is a strong predictor for outcome in multiple myeloma. Next generation sequencing (NGS) for immunoglobulin heavy chain and kappa light chain VDJ rearrangements has become increasingly more common for MRD assessment. One of the known challenges with NGS for VDJ rearrangements is the vast diversity of sequences that are present, resulting in a need for a multiplex approach as common primers cannot be used to amplify all rearrangements. Also, somatic hypermutation may affect the annealing of primers and decrease the capture rate. The NGS VDJ assay developed by Adaptive Biotechnologies targets all theoretical combinations of VDJ sequences and has been used in several recent large randomized trials in multiple myeloma. The reported ~80% capture rate of the first version of the Sequenta/Adaptive 1.3 assay limited the ability to track MRD status post therapy. The assay has recently been updated and validated to increase resilience to somatic hypermutation. As there is no published reference data using this assay, we were motivated to assess VDJ capture in the clinical setting. Methods In total, 147 patients with newly diagnosed multiple myeloma (NDMM, n=101) or relapse/refractory multiple myeloma (RRMM, n=46) seen at Memorial Sloan Kettering Cancer Center were identified and included in the study. At bone marrow collection, patient samples were sorted for mononuclear cells and a subset of samples were sorted for CD138+ plasma cells. Stored bone marrow samples from these patients underwent DNA extraction and were sequenced with the Adaptive NGS VDJ assay. The same samples were also sequenced for genomic events using our internal NGS panel myTYPE. myTYPE is a custom capture panel targeting the most frequent multiple myeloma associated-somatic mutations, copy number alterations, and IGH translocations. Logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) of detection success in relation to clinical parameters such as age, gender, percent bone marrow plasma cells, as well as immunoglobulin heavy and light chain types, and myTYPE positivity. Results There overall capture rate for a unique VDJ sequence was 80%, 75% in NDMM samples and 89% in RRMM samples, respectively. The VDJ capture rate in samples that were myTYPE positive, e.g. samples with at least one genomic aberration detected by myTYPE, was 94%. In univariate analysis, the ORs of detecting a clonal VDJ sequence was 1.8 (95% CI 1.3-2.5) and 1.5 (1.2-1.9) for every 10% increase in plasma cells on bone marrow aspirate and biopsy, respectively. For every 1g/dL increase in M-spike, the OR of VDJ capture was 1.6 (1.2-2.2). Samples with at least one genomic aberration detected by myTYPE had a significantly higher detection rate of VDJ sequence, the OR of VDJ capture in myTYPE positive samples was 8.8 (3.2-31.3). Conversely, age, gender, type of immunoglobulin heavy chain (IgG or IgA), or light chain type (kappa or lambda) had no significant effect on the VDJ detection rate (Table). In multivariate analysis, myTYPE positivity was found to be an independent predictor of VDJ capture, with an OR of 4.9 (1.6-18.4, p=0.009) for myTYPE positive samples. The ORs were 1.4 (1.1-2.2, p=0.052) for an increase in 10% plasma cells on bone marrow aspirate and 1.5 (0.97-2.3, p=0.083) every 1g/dL increase in M-spike. Conclusion The VDJ capture rate using the updated Adaptive NGS VDJ assay was 94% in multiple myeloma samples of high quality as indicated by myTYPE positivity. The capture success rate was higher in samples with a greater disease burden. As expected, the assay was less sensitive in samples with insufficient DNA content. Our results are supportive of the use of this NGS VDJ in multiple myeloma, but also illustrate the importance of optimal sample ascertainment and processing. Disclosures Jacob: Adaptive Biotechnologies: Employment, Equity Ownership. Korde:Amgen: Research Funding. Mailankody:Juno: Research Funding; Physician Education Resource: Honoraria; Janssen: Research Funding; Takeda: Research Funding. Lesokhin:Serametrix, inc.: Patents & Royalties: Royalties; Squibb: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; Genentech: Research Funding. Hassoun:Oncopeptides AB: Research Funding. Smith:Celgene: Consultancy, Patents & Royalties: CAR T cell therapies for MM, Research Funding. Landgren:Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy; Amgen: Consultancy, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy; Merck: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1590-1590 ◽  
Author(s):  
Anuj K. Mahindra ◽  
Aliyah R. Sohani ◽  
Christiana E. Toomey ◽  
James S. Michaelson ◽  
Jeffrey A. Barnes ◽  
...  

Abstract Abstract 1590 Background: The occurrence of a secondary lymphoma in patients with a prior history of B-cell lymphomas has been reported.1, 2 There are few reported occurrences of Multiple Myeloma (MM) in patients (pts) with a prior history of lymphoma and the biologic relationship between the two neoplasms in such cases is unknown. Methods: We queried our IRB approved clinicopathologic database of hematologic malignancies for patients with lymphoma and MM. Of the 4165 pts with B-cell lymphoma and 804 pts with MM, 6 pts with a history of B-cell lymphoma developed MM and 1 patient with a prior history of MM developed a B-cell lymphoma. We describe the morphology, immunophenotype, and clinical features of the 7 pts. The clonal relationship of the 2 components was analyzed using sequencing analysis of immunoglobulin heavy chain variable region (IgVH) genes and by light chain restriction. Results: There were 5 men and 2 women (median age of diagnosis of lymphoma, 65 years; median age of diagnosis of MM, 71 years). The pts with lymphoma included 2 pts with diffuse large B cell lymphoma, 2 pts with small lymphocytic lymphoma, 2 pts with follicular lymphoma and 1 patient with lymphoplasmacytic lymphoma. The development of MM was metachronous in 5 cases, following B-cell lymphoma by 3 years to 23 years and synchronous in 1 case. In 1 patient, the B-cell lymphoma developed 6 years after the diagnosis of MM. 6 pts achieved complete remission after treatment for lymphoma and 1 patient is ongoing treatment. 6 of the 7 pts required treatment for MM soon after diagnosis. 1 patient has smoldering MM and continues to be observed 57 months after diagnosis. FISH analysis indicated IgH rearrangement in 3 pts with MM; 1 patient with 17p deletion and monosomy 13; 3 pts had normal FISH and metaphase cytogenetics. In 3 pts, both neoplasms were kappa light chain restricted; in 1 patient both were lambda restricted; in 1 patient, the lymphoma was lambda light chain restricted while the MM was kappa light chain restricted and the reverse in another pt; in 1 patient the B-cell lymphoma was light chain negative and the MM was kappa restricted. IgVH rearrangement studies in 4 patients in whom tissue samples were available indicated that the two were clonally unrelated in 3 patients and related in only 1 patient. Conclusion: Clonality analysis of rearranged immunoglobulin genes from patients with both B-cell lymphoma and MM provide evidence of separate clonal origins of the two tumors in the majority of cases, thus excluding secondary transformation of the original B-cell clone. The presence or absence of a genetic predisposition to the development of multiple B cell malignancies requires further study.3 Disclosures: Off Label Use: The combination of lenalidomide and everolimue is an off label use in multiple myeloma. Abramson:Genentech: Consultancy; Novartis: Consultancy. Raje:Amgen: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Millenium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Acetylon: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 883-883
Author(s):  
Yu-Tzu Tai ◽  
Betty Y Chang ◽  
Sun-Young Kong ◽  
Mariateresa Fulciniti ◽  
Guang Yang ◽  
...  

Abstract Abstract 883 Specific expression of Bruton's tyrosine kinase (Btk) in osteoclasts (OC), but not osteoblasts (OB), suggests its role in regulating osteoclastogenesis. Although Btk is critical in B cell maturation and myeloid function, it has not been characterized in plasma cell malignancies including multiple myeloma (MM) and Waldenström Macroglobulinemia (WM). We here investigate effects of PCI-32765, an oral, potent, and selective Btk inhibitor with promising clinical activity in B-cell malignancies, on OC differentiation and function within MM bone marrow (BM) microenvironment, as well as on MM and WM cancer cells. We further define molecular targets of Btk signaling cascade in OCs and MM in the BM milieu. In CD14+ OC precursor cells, RANKL and M-CSF stimulate phosphorylation of Btk in a time-dependent fashion; conversely, PCI-32765 abrogates RANKL/M-CSF-induced activation of Btk and downstream PLCγ2. Importantly, PCI-32765 decreased number of multinucleated OC (>3 nuclei) by tartrate-resistant acid phosphatase (TRAP) staining and the secretion of TRAP5b (ED50 = 17 nM), a specific mature OC marker. It increased size of OCs and number of nuclei per OC, with significantly defective bone resorption activity as evidenced by diminished pit formation on dentine slices. Moreover, lack of effect of Dexamethasone on OC activity was overcome by combination of Dexamethasone with PCI-32765. PCI-32765 significantly reduced cytokine and chemokine secretion from OC cultures, including MIP1α, MIP1β, IL-8, TGFβ1, RANTES, APRIL, SDF-1, and activin A (ED50 = 0.1–0.48 nM). It potently decreased IL-6, SDF-1, MIP1α, MIP1β, and M-CSF in CD138-negative cell cultures from active MM patients, associated with decreased TRAP staining in a dose-dependent manner. In MM and WM cells, immunoblotting analysis confirmed a higher Btk expression in CD138+ cells from majority of MM patients (4 out of 5 samples) than MM cell lines (5 out of 9 cell lines), whereas microarray analysis demonstrated a higher expression of Btk and its downstream signaling components in WM cells than in CD19+ normal bone marrow cells. PCI-32765 significantly inhibits SDF-1-induced adhesion and migration of MM cells. It further blocked cytokine expression (MIP1a, MIP-1β) at mRNA level in MM and WM tumor cells, correlated with inhibition of Btk-mediated pPLCγ2, pERK and NF-kB activation. Importantly, PCI-32765 inhibited growth and survival triggered by IL-6 and coculture with BM stromal cells (BMSCs) or OCs in IL-6-dependent INA6 and ANBL6 MM cells. Furthermore, myeloma stem-like cells express Btk and PCI-32765 (10–100 nM) blocks their abilities to form colonies from MM patients (n=5). In contrast, PCI-32765 has no adverse effects on Btk-negative BMSCs and OBs, as well as Btk-expressing dendritic cells. Finally, oral administration of PCI-32765 (12 mg/kg) in mice significantly suppresses MM cell growth (p< 0.03) and MM cell-induced osteolysis on implanted human bone chips in a humanized myeloma (SCID-hu) model. Together, these results provide compelling evidence to target Btk in the BM microenvironment against MM and WM., strongly supporting clinical trials of PCI-32765 to improve patient outcome in MM and WM. Disclosures: Chang: Pharmacyclics Inc: Employment. Buggy:Pharmacyclics, Inc.: Employment, Equity Ownership. Elias:Pharmacyclics Inc: Consultancy. Treon:Millennium: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals, Inc.: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol-Myers Squibb: Consultancy; Actelion: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3897-3897
Author(s):  
Valeriy V Lyzogubov ◽  
Pingping Qu ◽  
Cody Ashby ◽  
Adam Rosenthal ◽  
Antje Hoering ◽  
...  

Abstract Introduction: Poor prognosis and drug resistance in multiple myeloma (MM) is associated with increased mutational load. APOBEC3B is a major contributor to mutagenesis, especially in myeloma patients with t(14;16) MAF subgroup. It was shown recently that presence of the APOBEC signature at diagnosis is an independent prognostic factor for progression free survival (PFS) and overall survival (OS). We hypothesized that high levels of APOBEC3B gene expression at diagnosis may also have a prognostic impact in myeloma. To consider APOBEC3B as a potential target for therapy more studies are necessary to understand how APOBEC3B expression is regulated and how APOBEC3B generates mutations. Methods: Gene expression profiling (GEP, U133 Plus 2.0) of MM patients was performed. APOBEC3B gene expression levels were investigated in plasma cells of healthy donors (HD; n=34), MGUS (n=154), smoldering myeloma (SMM; n=219), MM low risk (LR; n=739), MM high risk (HR; n=129), relapsed MM (RMM; n=74), and primary plasma cell leukemia (pPCL; n=19) samples. The samples from relapse were taken on or after the progression/relapse date but within 30 days after progression/relapse from Total Therapy trials 3, 4, 5 & 6. GEP70 score was used to separate samples into LR and HR groups. We also investigated APOBEC3B expression in different MM molecular subgroups and used logrank statistics with covariate frequency distribution to determine an optimal cut off APOBEC3B expression value. Gene expression was compared in cases with low expression of APOBEC3B (log2<7.5) and high expression of APOBEC3B (log2>10), and an optimal cut-point in APOBEC3B expression was identified with respect to PFS. To explore the role of MAF and the non-canonical NF-ĸB pathway we performed functional studies using a cellular model of MAF downregulation. TRIPZ lentiviral shRNA MAF knockdown in the RPMI8226 cell lines was used to explore MAF-dependent genes. NF-ĸB proteins, p52 and RelB, were investigated in the nuclear fraction by immunoblot analysis. Results: Expression of APOBEC3B in HD control samples (log2=10.9) was surprisingly higher than in MGUS (log2=9.51), SMM (log2=9.09), and LR (log2=9.40) and was comparable to HR (log2=10.4) and RMM (log2=10.6) groups. Expression levels of APOBEC3B were gradually increased as disease progressed from SMM to pPCL. The high expression of APOBEC3B in HD places plasma cells at risk of APOBEC induced mutagenesis where the regulation of APOBEC3B function is compromised. The correlation between APOBEC3B expression and GEP70 score in MM was 0.37, and there was a significant difference in APOBEC3B expression between GEP70 high and low risk groups (p=0.0003). An optimal cut-point in APOBEC3B expression of log2=10.2 resulted in a significant difference in PFS (median 5.7 yr vs.7.4 yr; p=0.0086) and OS (median 9.1 yr vs. not reached; p<0.0001), between high and low expression. The highest APOBEC3B expression was detected in cases with a t(14;16). We analyzed t(14;16) cases with the APOBEC mutational signature and compared them to t(14;16) cases without the APOBEC signature and found elevated MAF (2-fold) and APOBEC3B (2.7-fold) gene expression in samples with the APOBEC signature. No APOBEC signature was detected in SMM cases, including those with a t(14;16). High APOBEC3B levels in myeloma patients was associated with overexpression of genes related to response to DNA damage and cell cycle control. Significant (p<0.05) increases of NF-κB target genes was seen in high APOBEC3B cases: TNFAIP3 (4.4-fold), NFKB2 (1.7-fold), NFKBIE (1.9-fold), RELB (1.4-fold), NFKBIA (2.0-fold), PLEK (2.5-fold), MALT1 (2.5-fold), WNT10A (2.4-fold). However, in t(14;16) cases there was no significant increase of NF-κB target genes except BIRC3 (2.5-fold) and MALT1 (2.0-fold). MAF downregulation in RPMI8226 cells did not lead to changes in NF-κB target gene expression but MAF-dependent genes were identified, including ETS1, SPP1, RUNX2, HGF, IGFBP2 and IGFBP3. Analysis of nuclear fraction of NF-ĸB proteins did not show significant changes in expression of p52 and RelB in RPMI8226 cells after MAF downregulation. Conclusions: Increased expression of APOBEC3B is a negative prognostic factor in multiple myeloma. MAF is a major factor regulating expression of APOBEC3B in the t(14;16) subgroup. NF-ĸB pathway activation is most likely involved in upregulation of APOBEC3B in non-t(14;16) subgroups. Disclosures Davies: TRM Oncology: Honoraria; MMRF: Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; ASH: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy. Morgan:Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding; Takeda: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Melody R Becnel ◽  
Sandra B. Horowitz ◽  
Sheeba K. Thomas ◽  
Swami P. Iyer ◽  
Krina K. Patel ◽  
...  

Background: Anti-CD38 monoclonal antibodies (mAb) like daratumumab (dara) have become integral in managing relapsed/refractory (RR) and newly diagnosed (ND) multiple myeloma (MM). Isatuximab (isa), a newer CD38 mAb, induces direct rather than indirect apoptosis of MM cells. However, little is known about whether the use of one prior CD38 mAb will alter the efficacy of another in subsequent lines of therapy. Methods: All patients (pts) with MM treated at MD Anderson with isa after receiving dara in prior lines of therapy were identified. We conducted a retrospective analysis with data points including patient and disease characteristics, responses to dara, response to isa, the presence of high risk features, and the presence of t(11,14). Results: 9 pts were identified, ages 56-72. 5 pts (55%) were male. 5 pts (55%) were alive at the time of data cutoff. 5 pts were Hispanic, 3 White, and 1 Black. 8 pts (89%) had high risk features as represented by the presence of del17p, t(4,14), t(14,16), t(14,20), p53 mutations, gain 1q, extramedullary disease (EMD), CNS disease, early relapse (within 1 year) after autologous transplant, or an increased (&gt;5%) peripheral blood plasma cells (PBPC). 2 (22%) had t(11,14). 4 (44%) had IgG MM. 2 (22%) with light chain disease, 2 (22%) with IgA MM, and 1 (11%) with IgD MM. Dara was initially used in lines 2-7. Dara combinations with pomalidomide (pom), bortezomib (bor), thalidomide (thal), lenalidomide (len), or carfilzomib (car); and pom combinations that also included elotuzumab (elo) or Cytoxan (cytox) are noted in table 1. Dara was discontinued (dc'd) in 8 pts due to progressive disease (PD) and in 1 pt due to toxicity. 8 pts (89%) experienced a best overall response (ORR) of partial response (PR) to dara; 1 pt had stable disease (SD). All pts received prior len and 8 pts received prior pom at some time during the treatment of MM. All pts received isa in combination with pom/dexamethasone (dex). Best ORR to isa/pom/dex: 5 pt (55%) had PR, 2 pt with minimal response (MR), 1 SD, 1 PD. Median treatment duration of isa/pom/dex was 5 weeks (2-14 weeks) at data cutoff. 3 pts dc'd isa/pom/dex due to infections, and 2 due to later progression. 2 pts remain on therapy. 1 pt chose to dc all MM therapy for quality of life purposes despite PR with isa/pom/dex. 1 pt died from cardiac disease unrelated to MM or treatment. Conclusions: Our current study of heavily pretreated pts with RRMM demonstrates that despite prior anti-CD38 therapy with dara, most patients (77%) experienced a response of MR or better with treatment with another anti-CD38 therapy isa. To our knowledge, this is the first report of outcomes to isa in patients with prior dara therapy. Further long term follow up will be needed to determine the length of response. Additional studies are planned to further evaluate this patient population. Table 1 Disclosures Thomas: Pharmacyclics: Other: Advisory Boards; BMS: Research Funding; Ascentage: Membership on an entity's Board of Directors or advisory committees, Research Funding; X4 Pharma: Research Funding; Xencor: Research Funding; Genentech: Research Funding. Iyer:Rhizen: Research Funding; CRISPR: Research Funding; Spectrum: Research Funding; Merck: Research Funding; Curio Biosciences: Honoraria; Target Oncology: Honoraria; Afffimed: Research Funding; Daiichi Sankyo: Consultancy; Legend Biotech: Consultancy; Trillium: Research Funding; Seattle Genetics, Inc.: Research Funding. Patel:Celgene: Consultancy, Research Funding; Cellectis: Research Funding; Nektar: Consultancy, Research Funding; Oncopeptides: Consultancy; Poseida: Research Funding; Precision Biosciences: Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Bristol Myers Squibb: Consultancy, Research Funding. Manasanch:Adaptive Biotechnologies: Honoraria; GSK: Honoraria; Sanofi: Honoraria; BMS: Honoraria; Takeda: Honoraria; Quest Diagnostics: Research Funding; Merck: Research Funding; JW Pharma: Research Funding; Novartis: Research Funding; Sanofi: Research Funding. Kaufman:Janssen: Research Funding; Bristol Myers Squibb: Research Funding; Karyopharm: Honoraria. Lee:Genentech: Consultancy; GlaxoSmithKline: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Regeneron: Research Funding; Genentech: Consultancy. Orlowski:Sanofi-Aventis, Servier, Takeda Pharmaceuticals North America, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen, Inc., AstraZeneca, BMS, Celgene, EcoR1 Capital LLC, Forma Therapeutics, Genzyme, GSK Biologicals, Ionis Pharmaceuticals, Inc., Janssen Biotech, Juno Therapeutics, Kite Pharma, Legend Biotech USA, Molecular Partners, Regeneron Pharmaceuticals, Inc.,: Honoraria, Membership on an entity's Board of Directors or advisory committees; STATinMED Research: Consultancy; Founder of Asylia Therapeutics, Inc., with associated patents and an equity interest, though this technology does not bear on the current submission.: Current equity holder in private company, Patents & Royalties; Laboratory research funding from BioTheryX, and clinical research funding from CARsgen Therapeutics, Celgene, Exelixis, Janssen Biotech, Sanofi-Aventis, Takeda Pharmaceuticals North America, Inc.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 364-364
Author(s):  
Tianjiao Wang ◽  
Hua Sun ◽  
Daniel Cui Zhou ◽  
Ruiyang Liu ◽  
Lijun Yao ◽  
...  

Multiple myeloma (MM) is a hematological malignancy, defined by aberrant monoclonal proliferation of plasma cells in the bone marrow, that to date remains an incurable disease despite advances in treatment. Key genetic and epigenetic alterations that drive MM pathogenesis have been identified, but a comprehensive profile of affected cellular pathways has yet to be fully characterized. In this study, we integrate whole-genome and whole-exome sequencing data with single-cell RNA sequencing (scRNA-seq) data from 13 patients across multiple treatment stages to 1) assess differential pathway enrichment between tumor subpopulations, 2) trace the clonal evolution of dominant disease mechanisms, and 3) investigate signaling interactions between surrounding cell types. We also analyzed bulk genomic and transcriptomic data from 662 additional Multiple Myeloma Research Foundation (MMRF) tumor samples as a large reference cohort for highly prevalent pathway disturbances. To assess whether tumor subpopulations rely on different oncogenic programs for proliferation, we analyzed the differential expression of key genes (FDR-adjusted p-value &lt;0.05) in 12 canonical oncogenic pathways. Cell cycle, Hippo, RTK/RAS, and NFkB pathways contain the highest numbers of differentially expressed genes, with certain subclusters upregulating as many as 25% of annotated cell cycle genes and over 90% of annotated Hippo genes, whereas p53, Notch, Nrf2, and DNA repair genes tend to be uniformly expressed across subpopulations. Next, we evaluated changes in pathway enrichment across different disease timepoints, with the goal of capturing the reorganization of functional profiles through successive treatment and relapse cycles. We assessed statistical enrichment of pathways containing differentially expressed genes (DEGs) unique to Smoldering Multiple Myeloma (SMM), primary, and relapse stages using the KEGG pathway database (n = 2, 17, and 7 pathways, respectively; FDR-adjusted p-value of enrichment &lt; 0.05). SMM is the only stage where hematopoietic differentiation and the PI3K-Akt pathways are variably expressed between plasma cell subpopulations, suggesting that these pathways may play a role in initiating events. Only primary tumor samples show significant intra-tumor variability of p53 regulation, which is lost in the relapsed tumor and may reflect selection due to treatment. Relative to SMM, primary and relapse samples are enriched for changes in the MAPK, NFkB, RAP1, and cell cycle pathways, indicating potential sources of tumor resistance. We then analyzed pathway enrichment within the tumor microenvironment to enhance our understanding of tumor development in the context of surrounding tissues. We see frequent changes in many immune cell types in TLR signaling as the disease progresses, driven by differential expression of NFkB1A, JUN, and FOS, all of which are key upstream regulators of the AP-1 pathway and responders to the MAPK and PI3K signaling cascades. These microenvironment changes may be complementary to the PI3K and MAPK dysregulation observed in tumor plasma cells. Proteasome and ubiquitin genes, which affect secretion, autophagy, and apoptosis pathways that may be relevant to MM pathogenesis are also frequently differentially expressed in immune cells between disease stages. Finally, we integrate bulk whole-exome and whole-genome sequencing analysis (from both the 13-patient cohort and MMRF) to obtain a more complete understanding of how pathways become dysregulated in MM. Our findings advance the understanding of how MM tumor subpopulations differentially regulate cellular pathways and interact within the tumor microenvironment. Disclosures O'Neal: Wugen: Patents & Royalties: Patent Pending; WashU: Patents & Royalties: Patent Pending. Rettig:WashU: Patents & Royalties: Patent Application 16/401,950. Oh:Incyte: Membership on an entity's Board of Directors or advisory committees; Blueprint Medicines: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy. Vij:Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria; Janssen: Honoraria; Karyopharm: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Research Funding. DiPersio:Amphivena Therapeutics: Consultancy, Research Funding; Magenta Therapeutics: Equity Ownership; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3100-3100 ◽  
Author(s):  
Ken Flanagan ◽  
Muntasir M Majumder ◽  
Romika Kumari ◽  
Juho Miettinen ◽  
Ana Slipicevic ◽  
...  

Background: Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by plasma cell secretion of misfolded light chains that assemble as amyloid fibrils and deposit on vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell directed therapeutics, aimed at preferentially eliminating the clonal population of amyloidogenic cells in bone marrow are expected to reduce production of toxic light chain and alleviate deposition of amyloid thereby restoring healthy organ function. Melphalan flufenamide ethyl ester, melflufen, is a peptidase potentiated alkylating agent with potent toxicity in myeloma cells. Melflufen is highly lipophilic, permitting rapid cellular uptake, and is subsequently enzymatically cleaved by aminopeptidases within cells resulting in augmented intracellular concentrations of toxic molecules, providing a more targeted and localized treatment. Previous data demonstrating multiple myeloma plasma cell sensitivity for melflufen suggests that the drug might be useful to directly eliminate amyloidogenic plasma cells, thereby reducing the amyloid load in patients. Furthermore, the increased intracellular concentrations of melflufen in myeloma cells indicates a potential reduction in systemic toxicity in patients, an important factor in the fragile amyloidosis patient population. To assess potential efficacy in amyloidosis patients and to explore the mechanism of action, we examined effects of melflufen on amyloidogenic plasma cells invitro and invivo. Methods: Cellular toxicity and apoptosis were measured in response to either melflufen or melphalan in multiple malignant human plasma cell lines, including the amyloidosis patient derived light chain secreting ALMC-1 and ALMC-2 cells, as well as primary bone marrow cells from AL amyloidosis patients, using annexin V and live/dead cell staining by multicolor flow cytometry, and measurement of cleaved caspases. Lambda light chain was measured in supernatant by ELISA, and intracellular levels were detected by flow cytometry. To assess efficacy of melflufen in vivo, the light chain secreting human myeloma cell line, JJN3, was transduced with luciferase and adoptively transferred into NSG mice. Cell death in response to melflufen or melphalan was measured by in vivo bioluminescence, and serum light chain was monitored. Results: Melflufen demonstrated increased potency against multiple myeloma cell lines compared to melphalan, inducing malignant plasma cell death at lower doses on established light chain secreting plasma cell lines. While ALMC-1 cells were sensitive to both melphalan and melflufen, the IC50 for melphalan at 960 nM was approximately 3-fold higher than melflufen (334 nM). However, ALMC-2 cells were relatively insensitive to melphalan (12600 nM), but maintained a 100-fold increase in sensitivity to melflufen (121 nM). Furthermore, while 40% of primary CD138+ plasma cells from patients with diagnosed AL amyloidosis responded to melflufen treatment in vitro, only 20% responded to melphalan with consistently superior IC50 values for melflufen (Figure 1). Light chain secreting cell lines and AL amyloidosis patient samples were further analyzed by single cell sequencing. We further examined differential effects on apoptosis and the unfolded protein response in vitro in response to either melflufen or melphalan. This is of particular interest in amyloidosis, where malignant antibody producing plasma cells possess an increased requirement for mechanisms to cope with the amplified load of unfolded protein and associated ER stress. As AL amyloidosis is ultimately a disease mediated by secretion of toxic immunoglobulin, we assessed the effects of melflufen on the production of light chain invitro, measuring a decrease in production of light chain in response to melflufen treatment. Finally, we took advantage of a recently described adoptive transfer mouse model of amyloidosis to assess the efficacy of melflufen and melphalan in eliminating amyloidogenic clones and reducing the levels of toxic serum light chain in vivo. Conclusions: These findings provide evidence that melflufen mediated toxicity, previously described in myeloma cells, extends to amyloidogenic plasma cells and further affects the ability of these cells to produce and secrete toxic light chain. This data supports the rationale for the evaluation of melflufen in patients with AL amyloidosis. Figure 1 Disclosures Flanagan: Oncopeptides AB: Employment. Slipicevic:Oncopeptides AB: Employment. Holstein:Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy. Lehmann:Oncopeptides AB: Employment. Nupponen:Oncopeptides AB: Employment. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4409-4409 ◽  
Author(s):  
Amandeep Godara ◽  
Ping Zhou ◽  
Benjamin Rosenthal ◽  
Adin Kugelmass ◽  
Denis Toskic ◽  
...  

Introduction: Systemic light-chain (AL) amyloidosis results from clonal plasma cells that secrete toxic fibril-forming free light chains. Therapies directed at the plasma cell clone form the backbone of its management. Identification of cell-surface receptors on the clonal cells can provide targets for therapy. BCMA is one such cell-surface glycoprotein; it is principally expressed on plasma cells and supports their long-term survival (J Exp Med. 2004;199:91-98). Anti-BCMA immunotherapies are currently being studied in multiple myeloma (N Engl J Med. 2019;380:1726-1737). Membrane-bound BCMA (mBCMA) is also shed as a soluble form, sBCMA, due to γ-secretase activity that can be inhibited by a small molecule (GSI, LY-411575) (Nat Commun. 2015;6:7333; J Immunol. 2017;198(8):3081-3088). We report on mBCMA on the clonal plasma cells of AL patients and its modulation by GSI in vitro, and on sBCMA in the blood of AL patients and of mice xenografted with an AL cell line, demonstrating its correlations in vivo with free light chain (FLC) levels and plasma cell tumor burden. Methods: We analyzed mBCMA and sBCMA levels in marrow aspirate and peripheral blood samples from AL patients under an IRB approved protocol. We isolated mononuclear cells (MNC) from patient marrow aspirates with anti-CD138 microbeads (Miltenyi Biotec, Auburn, CA), and used the CD138-selected cells in culture with LY-411575 (Sigma Aldrich, St Louis, MO). We analyzed mBCMA expression by flow cytometry using APC conjugated anti-CD269 (BCMA) antibody (Biolegend, San Diego, CA, USA) and CD138 expression by PE-conjugated anti-CD138 antibody (Biolegend, San Diego, CA, USA), along with appropriate isotype controls. We injected 107 ALMC-1 reporter cells in the flanks of NOD scid gamma (NSG) mice to create a xenograft model of AL clonal plasma cell disease (Jackson Laboratories, Bar Harbor, ME). sBCMA in patients and mice and FLC in mice were measured by ELISA (R&D Systems, Minneapolis, MN; Bethyl lab Montgomery, TX respectively). Pearson and Spearman correlation analysis was used to examine associations of sBCMA and clinical disease parameters. Paired t-test was applied to compare BCMA expression before and after treatment with GSI. Results: Marrow and blood were obtained from 20 AL patients, 8 newly diagnosed, 4 with progression of disease, and 8 after treatment with >VGPR. Their median age was 65 years (range, 48-77) and 50% were female. Median plasma cells in the marrow aspirates and involved FLC levels were 5% (1-20%) and 33 mg/L (6.6-2220mg/L) respectively. Median mBCMA expression on CD138+ marrow MNC and sBCMA levels in plasma were 39% (4-83) and 28.5 ng/ml (6.6-100.3) respectively (Figure 1A-B). sBCMA levels correlated with bone marrow plasma cell percentage and iFLC (both p<0.001, Figure 1C-D). In culture with LY-411575, the percentages of CD138 cells positive for mBCMA increased from 85% to 100% with ALMC-1 cells and from 36% to 68% (p < 0.01) with patient CD138-selected cells while the sBCMA levels in culture supernatant decreased by over 50%. In NSG mice with ALMC-1 reporter cell xenografts, medians of luciferin-based bioluminescence FLUX (photons/s), λ FLC and sBCMA were 3.9x1010 (2.02x109-1.2x1011), 949.1 mg/L (868.8-23629.2), and 3.8 ng/ml (0.9-23.6) respectively. sBCMA levels correlated with FLC (Pearson r= 0.99, p<0.0001) and with FLUX (Pearson r=0.61, p=0.07). Conclusions: BCMA is expressed on AL plasma cells and sBCMA is detected in the blood of all AL patients. In this light chain disease, sBCMA may be useful as a marker of disease activity even in patients with low FLC. Furthermore, expression of mBCMA can be manipulated by treatment with a GSI, an approach which may be useful therapeutically in AL. These results provide the basis for applying anti-BCMA immunotherapies in clinical trials in relapsed refractory AL patients. Disclosures Comenzo: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Unum: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Research Funding; Caelum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; Prothena Biosciences: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Myself: Patents & Royalties: Patent 9593332, Pending 20170008966.


Sign in / Sign up

Export Citation Format

Share Document