scholarly journals Capture Rate of the Adaptive Next Generation Sequencing VDJ Assay in Multiple Myeloma

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3184-3184 ◽  
Author(s):  
Malin Hultcrantz ◽  
Even H Rustad ◽  
Venkata Yellapantula ◽  
Theresia Akhlaghi ◽  
Allison Jacob ◽  
...  

Abstract Background Minimal residual disease (MRD) negativity is a strong predictor for outcome in multiple myeloma. Next generation sequencing (NGS) for immunoglobulin heavy chain and kappa light chain VDJ rearrangements has become increasingly more common for MRD assessment. One of the known challenges with NGS for VDJ rearrangements is the vast diversity of sequences that are present, resulting in a need for a multiplex approach as common primers cannot be used to amplify all rearrangements. Also, somatic hypermutation may affect the annealing of primers and decrease the capture rate. The NGS VDJ assay developed by Adaptive Biotechnologies targets all theoretical combinations of VDJ sequences and has been used in several recent large randomized trials in multiple myeloma. The reported ~80% capture rate of the first version of the Sequenta/Adaptive 1.3 assay limited the ability to track MRD status post therapy. The assay has recently been updated and validated to increase resilience to somatic hypermutation. As there is no published reference data using this assay, we were motivated to assess VDJ capture in the clinical setting. Methods In total, 147 patients with newly diagnosed multiple myeloma (NDMM, n=101) or relapse/refractory multiple myeloma (RRMM, n=46) seen at Memorial Sloan Kettering Cancer Center were identified and included in the study. At bone marrow collection, patient samples were sorted for mononuclear cells and a subset of samples were sorted for CD138+ plasma cells. Stored bone marrow samples from these patients underwent DNA extraction and were sequenced with the Adaptive NGS VDJ assay. The same samples were also sequenced for genomic events using our internal NGS panel myTYPE. myTYPE is a custom capture panel targeting the most frequent multiple myeloma associated-somatic mutations, copy number alterations, and IGH translocations. Logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) of detection success in relation to clinical parameters such as age, gender, percent bone marrow plasma cells, as well as immunoglobulin heavy and light chain types, and myTYPE positivity. Results There overall capture rate for a unique VDJ sequence was 80%, 75% in NDMM samples and 89% in RRMM samples, respectively. The VDJ capture rate in samples that were myTYPE positive, e.g. samples with at least one genomic aberration detected by myTYPE, was 94%. In univariate analysis, the ORs of detecting a clonal VDJ sequence was 1.8 (95% CI 1.3-2.5) and 1.5 (1.2-1.9) for every 10% increase in plasma cells on bone marrow aspirate and biopsy, respectively. For every 1g/dL increase in M-spike, the OR of VDJ capture was 1.6 (1.2-2.2). Samples with at least one genomic aberration detected by myTYPE had a significantly higher detection rate of VDJ sequence, the OR of VDJ capture in myTYPE positive samples was 8.8 (3.2-31.3). Conversely, age, gender, type of immunoglobulin heavy chain (IgG or IgA), or light chain type (kappa or lambda) had no significant effect on the VDJ detection rate (Table). In multivariate analysis, myTYPE positivity was found to be an independent predictor of VDJ capture, with an OR of 4.9 (1.6-18.4, p=0.009) for myTYPE positive samples. The ORs were 1.4 (1.1-2.2, p=0.052) for an increase in 10% plasma cells on bone marrow aspirate and 1.5 (0.97-2.3, p=0.083) every 1g/dL increase in M-spike. Conclusion The VDJ capture rate using the updated Adaptive NGS VDJ assay was 94% in multiple myeloma samples of high quality as indicated by myTYPE positivity. The capture success rate was higher in samples with a greater disease burden. As expected, the assay was less sensitive in samples with insufficient DNA content. Our results are supportive of the use of this NGS VDJ in multiple myeloma, but also illustrate the importance of optimal sample ascertainment and processing. Disclosures Jacob: Adaptive Biotechnologies: Employment, Equity Ownership. Korde:Amgen: Research Funding. Mailankody:Juno: Research Funding; Physician Education Resource: Honoraria; Janssen: Research Funding; Takeda: Research Funding. Lesokhin:Serametrix, inc.: Patents & Royalties: Royalties; Squibb: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; Genentech: Research Funding. Hassoun:Oncopeptides AB: Research Funding. Smith:Celgene: Consultancy, Patents & Royalties: CAR T cell therapies for MM, Research Funding. Landgren:Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy; Amgen: Consultancy, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy; Merck: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5452-5452
Author(s):  
Susan Bal ◽  
Allison Sigler ◽  
Alexander Chan ◽  
David J. Chung ◽  
Ahmet Dogan ◽  
...  

Background B-cell maturation antigen (BCMA) is a transmembrane protein belonging to the tumor necrosis factor (TNF) superfamily involved in the regulation of B cell proliferation and survival as well as maturation/differentiation into plasma cells. In multiple myeloma cells, overexpression of BCMA has been shown to activate mitogen activated protein kinase pathways (AKT, ERK1/2, and NF-κB) and upregulates anti-apoptotic proteins (MCL1, BCL2, BCL-xL) resulting in cellular proliferation. Immunotherapeutic strategies targeting BCMA are showing great promise in heavily pre-treated refractory multiple myeloma. Light Chain Amyloidosis (AL) is a multisystem disorder of clonal plasma cells that results in the production of an abnormal light chain which misfolds and deposits in the organs leading to disruption of tissue architecture, cellular stress, dysfunction and eventually, death. The smaller burden and lower proliferative potential of the offending clonal plasma cells in amyloidosis may potentially lend itself favorably to immunotherapeutic strategies targeting BCMA. Given the efficacy of this approach in MM, the evaluation of BCMA expression on the surface of amyloidogenic plasma cells is warranted. Methods All patients diagnosed with Light chain Amyloidosis at Memorial Sloan Kettering Cancer Center, NY between January 1, 2012, and December 31, 2018, who had unstained bone marrow samples were identified. These unstained BM biopsy samples were prospectively stained for BCMA expression using Immunohistochemistry (IHC). We utilized a clinical-grade assay (clone D6; catalog sc-390147; company Santa-Cruz; monoclonal antibody; dilution 1:400) in a CLIA compliant setting. We scored the biopsies for BCMA expression, intensity, and site of staining. We also obtained their demographic details, staging, and cytogenetic information for the patients with available samples. Results During the queried period, 28 unstained samples were available for testing from the time of disease diagnosis. The median age of the population was 63 years (range 41-73). 64% of patients were male and consistent with the literature; a majority of patients (75%) had lambda-typic clonal plasma cells. Cytogenetic abnormalities using fluorescence in situ hybridization (FISH) were reviewed, t(11;14) was seen in 36% patients, and chromosome 1q and del 13q were each seen in 32% of patients. No patient had t(4;14) or del 17p. The median clonal PC burden in BM at diagnosis was 10% (range2-80%) and 36% had > 10% plasma cells. In clonal PCs, the median BCMA expression was 80% (range 20-100%). Only one patient had a staining intensity under 50% (20%). Membranous staining was noted in 82% of patients and a Golgi pattern in 11%. The median staining intensity was 2 (range 1-3). Of the patients with baseline diagnostic samples available for testing, six patients had additional unstained bone marrow samples for staining at the time of relapse. The majority of patients (83%) who relapsed had >10% plasma cells with a higher median plasma cell burden of 35% (range 10-80). The median BCMA expression was 65% (range 50-80) with no patient having <50% expression. The staining pattern was membranous in 50%, Golgi in 17%, and Golgi-membranous in 33%. At the time of relapse, the median clonal PC burden was 13% (range 5-30). BCMA expression continued to be present at the time of relapse with a median 75% (range 50-100) with predominantly membranous staining (83%). The median staining intensity in both diagnostic and relapsed tissue within the six samples studied was 1. Conclusions Our study represents the first description of BCMA expression on the surface of amyloidogenic plasma cells to our knowledge. BCMA is uniformly expressed by pathologic PCs in AL amyloidosis both at the time of diagnosis and relapse. Given the efficacy of BCMA directed therapy in multiple myeloma, further investigation of these agents in light-chain amyloidosis are warranted and may provide an effective therapeutic strategy in this devastating disease. Figure Disclosures Dogan: Corvus Pharmaceuticals: Consultancy; Celgene: Consultancy; Seattle Genetics: Consultancy; Novartis: Consultancy; Takeda: Consultancy; Roche: Consultancy, Research Funding. Giralt:Takeda: Consultancy, Research Funding; Johnson & Johnson: Consultancy, Research Funding; Kite: Consultancy; Novartis: Consultancy; Actinium: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Miltenyi: Research Funding; Spectrum Pharmaceuticals: Consultancy. Hassoun:Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Landau:Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees; Caelum: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 951-951 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
John T Patton ◽  
...  

Abstract Abstract 951 INTRODUCTION: Multiple Myeloma (MM) is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous re-circulation of the MM cells in the peripheral blood and re-entrance into the BM. Selectins are adhesion molecules expressed by activated endothelium of venules and leukocytes, and are involved in the primary interaction of lymphocytes with the endothelium of blood vessels. The binding of selectins serves as a biologic brake, making leukocyte quickly decelerate by rolling on endothelial cells, as the first step of extravasation. In this study, we have investigated the role of selectins and their ligands in the regulation of homing of MM Cells to the BM and the therapeutic implications of this role. METHODS AND RESULTS: We have used flow cytometry to characterize the expression of E, L and P-selectins and their ligands on MM cell lines, patient samples and on plasma cells from normal subjects. We found that all MM cell lines and patient samples showed high expression of L and P, but little of no E-selectin. While normal plasma cells showed low expression of all selectins and ligands.(give numbers) A pan-selectin inhibitor GMI-1070 (GlycoMimetics Inc., Gaithersburg, MD) inhibited the interaction of recombinant selectins with the selectin-ligands on the MM cells in a dose response manner. We have tested the role of the selectins and their ligands on the adhesion of MM cells to endothelial cells and found that MM cells adhered preferentially to endothelial cells expressing P-selectin compared to control endothelial cells and endothelial cells expressing E-selectin (p<0.05). Moreover, we found that blockade of P-selectin on endothelial cells reduced their interaction with MM cells (p<0.01), while blockade of E and L-selectin did not show any effect. Treating endothelial cells with GMI-1070 mimicked the effect of blocking P-selectin. Moreover, we found that treating endothelial cells with the chemokine stroma cell-derived factor-1-alpha (SDF1) increased their expression of P but not E or L-selectin detected by flow cytometry. Neither the blockade of each of the selectins and their ligands nor the GMI-1070 inhibited the trans-well chemotaxis of MM cells towards SDF1-alpha. However, blockade of P-selectin (p<0.001) on endothelial cells by GMI-1070 inhibited the trans-endothelial chemotaxis of MM cells towards SDF1-alpha. Both adhesion to endothelial cells and activation with recombinant P-selectin induced phosphorylation of cell adhesion related molecules including FAK, SRC, Cadherins, Cofilin, AKT and GSK3. GMI-1070 decreased the activation of cell adhesion molecules induced by both recombinant P-selectin and endothelial cells. Using in vivo flow cytometry we found that both anti P-selectin antibody and GMI-1070 prevented the extravasation of MM cells out of blood vessels into the bone marrow in mice. Moreover, we found that, in a co-culture system, endothelial cells protected MM cells from bortezomib induced apoptosis, an effect which was reversed by using GMI-1070, showing synergistic effect with bortezomib. CONCLUSION: In summary, we showed that P-selectin ligand is highly expressed in MM cells compared to normal plasma cells, and that it plays a major role in homing of MM cells to the BM, an effect which was inhibited by the pan-selectin inhibitor GMI-1070. This provides a basis for testing the effect of selectin inhibition on tumor initiation and tumor response to therapeutic agents such as bortezomib. Moreover, it provides a basis for future clinical trials for prevention of MM metastasis and increasing efficacy of existing therapies by using selectin inhibitors for the treatment of myeloma. Disclosures: Patton: GlycoMimetics, Inc: Employment. Smith:GlycoMimetics, Inc: Employment. Sarkar:GlycoMimetics, Inc: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Magnani:GlycoMimetics, Inc.: Employment. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1649-1649
Author(s):  
Omar Nadeem ◽  
Robert A. Redd ◽  
Michael Z. Koontz ◽  
Jeffrey V. Matous ◽  
Andrew J. Yee ◽  
...  

Abstract Introduction : Daratumumab (Dara) is an anti-CD38 monoclonal antibody that is approved for use in patients with newly diagnosed and relapsed multiple myeloma (MM). We hypothesized that early therapeutic intervention with Dara in patients with high-risk MGUS (HR-MGUS) or low-risk SMM (LR-SMM) would lead to eradication of the tumor clone by achieving deep responses, resulting in prevention of progression to MM. We present results of our phase II, single arm study of Dara in HR-MGUS and LR-SMM. Methods : Patients enrolled on this study met eligibility for either HR-MGUS or LR-SMM. HR-MGUS is defined as &lt;10% bone marrow plasma cells and &lt;3g/dL M protein and at least 2 of the following 3 high-risk criteria: Abnormal serum free light chain ratio (SFLC) of &lt;0.26 or &gt;1.65, M protein ≥ 1.5g/dL or non-IgG M protein. LR-SMM is defined by one of the following 3 criteria: M protein ≥3g/dL, ≥10% bone marrow plasma cells, SFLC ratio &lt;0.125 or &gt;8. Dara (16mg/kg) was administered intravenously on a weekly schedule for cycles 1-2, every other week cycles 3-6, and monthly during cycles 7-20. The primary objective of this study was to determine the proportion of patients who achieve very good partial response (VGPR) or greater after 20 cycles of Dara. Secondary objectives included duration of response, safety, and rates of minimal residual disease (MRD)-negativity in VGPR or greater patients. Correlative studies included assessing changes in immune microenvironment, evaluating clonal heterogeneity using deep sequencing, and determining association of genomic aberrations correlating with either response to therapy or progression of disease. Results : At the time of data cutoff, a total of 42 patients were enrolled on this study from 2018 to 2020 with participation of 5 sites. The median age for all patients at enrolment was 60 years (range 38 to 76), with 22 males (52.4%) and 20 females (47.6%). Majority of patients enrolled were classified as LR-SMM (n = 37, 88.1%) and the remaining 5 patients had HR-MGUS (11.9%). 41 patients have started treatment and are included in toxicity assessment, and 40 patients have at least completed 16 cycles (range 6-20). Grade 3 toxicities were rare and only experienced in 5/41 patients including diarrhea (n =1/41; 2%), flu like symptoms (n = 1/41; 2%), headache (n=1/41; 2%), and hypertension (n=2/41; 5%). Most common toxicities of any grade included fatigue (n = 24/41, 51%), cough (n = 19/41, 46%), nasal congestion (n = 18/41, 44%), headache (n = 14/41, 34%), hypertension (n = 11/41, 27%), nausea (n = 13/41, 32%), and leukopenia (n = 13/41, 32%). No patients have discontinued therapy due to toxicity. Minimal response or better was observed in 82.9% of patients (34/41) and PR or better was observed in 51.2% of patients (21/41). This included overall CR (n = 4, 9.8%), VGPR (n = 1, 2.4%), PR (n = 16, 39.0%), MR (n = 13, 31.7%), and SD (n = 7, 17.1%). In the 40 patients who completed at least 16 cycles, response rates were as follows: MR or better 85% (34/40), PR or better 52.5% (21/40) and VGPR or better 12.5% (5/40). Median time to VGPR was 7 months. Median overall survival and progression-free survival have not been reached and no patients have progressed to overt multiple myeloma while on study. Conclusion : Dara is very well tolerated among patients with HR-MGUS and LR-SMM with minimal toxicities. Responses are seen in majority of patients. Early therapeutic intervention in this precursor patient population appears promising but longer follow up is required to define the role of single agent Dara in preventing progression to MM, therefore avoiding more toxic interventions in this low-risk patient population. Disclosures Nadeem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Yee: GSK: Consultancy; Oncopeptides: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Sanofi: Consultancy; Bristol Myers Squibb: Consultancy; Adaptive: Consultancy; Takeda: Consultancy; Karyopharm: Consultancy. Zonder: Caelum Biosciences: Consultancy; Amgen: Consultancy; BMS: Consultancy, Research Funding; Intellia: Consultancy; Alnylam: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Regeneron: Consultancy. Rosenblatt: Attivare Therapeutics: Consultancy; Imaging Endpoints: Consultancy; Parexel: Consultancy; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Wolters Kluwer Health: Consultancy, Patents & Royalties. Mo: AbbVIE: Consultancy; BMS: Membership on an entity's Board of Directors or advisory committees; Eli Lilly: Consultancy; Epizyme: Consultancy; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sperling: Adaptive: Consultancy. Richardson: Karyopharm: Consultancy, Research Funding; AstraZeneca: Consultancy; AbbVie: Consultancy; Takeda: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Janssen: Consultancy; GlaxoSmithKline: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; Regeneron: Consultancy; Sanofi: Consultancy; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4354-4354
Author(s):  
Jana Jakubikova ◽  
Danka Cholujova ◽  
Gabor Beke ◽  
Zachary R Hunter ◽  
Teru Hideshima ◽  
...  

Multiple myeloma (MM), the second most common hematologic malignancy worldwide, is a B cell malignancy characterized by high frequency of intra-clonal diversity within malignant plasma cells (PC) in the bone marrow (BM). To better understand the myeloma heterogeneity within its complex pathophysiology, we performed large-scale data-driven mass cytometry (CyTOF) analysis in cohort of 188 bone marrow (BM) samples from multiple myeloma (MM) patients compared to 10 age-matched healthy donors (HD). Our design focused on profiling of PC intra and inter-neoplastic heterogeneity based on molecular perturbations of transcriptional factors and signaling regulators and stemness-controlling markers ensuring development of B cell lymphopoiesis within myelomagenesis encompassing the different clinical spectra of pre-malignant/asymptomatic (16 MGUS and 25 SMM) and active symptomatic stages (43 NDMM and 104 relapsed or relapsed/refractory MM patients) of MM pathogenesis. Moreover, interaction of PC disease status with the immune ecosystem of myeloma microenvironment was evaluated as well. To distinguish tumor-driven specific immune changes from myeloma immune ecosystem, we observed that cell frequency of cytotoxic naïve and effector cells, g/dT, and early monocytes, myelocytes and erythroblasts immune subsets was significantly reduced in both premalignant and active MM stages. In contrast, mostly innate immune clusters including non-canonical monocytes, myeloblasts, and mature neutrophils, erythroblasts and platelets were present at a higher frequency across all MM stages versus HD. To evaluate cell distribution of B lymphopoiesis in MM disease stages, switched memory B cells and plasmablasts clusters were upregulated in premalignant stage MGUS compared to HD. Similar observations were detected in SMM and NDMM versus HD, with the highest abundance of PC clusters in NDMM. The downregulation of cell distribution in B cell progenies, immature and transitional B cells, and un-switched memory B cell clusters was observed in NDMM and relapsed/refractory MM patients. Furthermore, MM patients treated with Revlimid-Velcade-Dexamethasone therapy had decrease frequency of specific PC clusters and un-switched and transitional B cell clusters. In addition, our data revealed immunophenotyping aberrancies present not only in PC clusters but also across all myeloma B lymphomagenesis in BM samples from MM patients. In-depth characterization of malignant plasma cells, significant variations were detected in PC clusters of MM cohort based on different expression of IRF4, c-Myc, CD28, CD117, and FGFR-3, however with homogenous expression of sXBP1, and MMSET which differ in all 4 MM stages compared to HD. Significant upregulation of CD47 was showed in all PC clusters of MM cohort. Moreover, PC clusters differ in intra-clonal expression of self-renewing/stemness markers CD184, Notch-1, Oct3/4, KLF-4, Sox-2, and Nanog, supporting the idea of sub-clonal variations insight of MM tumor. This study might provide the rational for prediction of MM patient status and design of targeted therapy in MM on personalized bases. This work was supported by REA grant agreement No. 609427-SASPRO 0064/01/02, TRS-2015-00000170, APVV-16-0484 and VEGA 2/0076/17. Disclosures Hunter: Janssen: Consultancy. Jamroziak:Amgen: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Richardson:Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding. Kastritis:Prothena: Honoraria; Genesis: Honoraria; Takeda: Honoraria; Janssen: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Pfizer: Honoraria. Anderson:Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4782-4782
Author(s):  
Omar Nadeem ◽  
Robert A. Redd ◽  
Julia Prescott ◽  
Amada Metivier ◽  
Kelsey Tague ◽  
...  

Abstract Background: Early therapeutic intervention with lenalidomide and dexamethasone in patients with high-risk smoldering multiple myeloma (HR-SMM) has shown to be effective by delaying time to progression to overt myeloma (Lonial J Clin Oncol 2020 Apr 10;38(11):1126-1137). Triplet and quadruplet combination therapies utilizing a proteasome inhibitor, immunomodulatory agent and a CD38 monoclonal antibody are used extensively in patients with multiple myeloma due to far greater efficacy compared to lenalidomide and dexamethasone alone. These combinations have been studied in HR-SMM, demonstrating encouraging activity, including ixazomib, lenalidomide and dexamethasone and elotuzumab, lenalidomide and dexamethasone. There are also current ongoing studies with curative intent utilizing more potent therapy in HR-SMM, including carfilzomib, lenalidomide and dexamethasone with autologous stem cell transplantation (Mateos EHA 2019, abstract S871) and daratumumab, carfilzomib, lenalidomide and dexamethasone (NCT03289299). Daratumumab, bortezomib, lenalidomide and dexamethasone (D-RVD) combination is highly effective and well-tolerated in newly diagnosed multiple myeloma at achieving high response rates as well as minimal residual disease (MRD) negativity based on results from the phase II GRIFFIN trial (Voorhees Blood 2020 Aug 20;136(8):936-945). Thus, we propose to examine the activity and safety of D-RVD in patients with HR-SMM. Study Design and Methods: This is a phase II single center, single-arm, open label study evaluating the combination of D-RVD in HR-SMM. Primary objective of this study is to determine the proportion of HR-SMM patients who are MRD negative at 2 years after receiving D-RVD. Secondary objectives include MRD negativity rate at 6 months, 12 months, 24 months and 36 months, progression-free survival, response rates and safety. Exploratory objectives include assessment of mass spectrometry quantification of M protein, examination of molecular evolution of tumor cells and to determine role of immune cells in progression of SMM. Patients must meet criteria for HR-SMM based on bone marrow clonal plasma cells ≥10% and any one or more of the following: Serum M protein ≥3.0 gm/dL, immunoparesis with reduction of two uninvolved immunoglobulin isotypes, serum involved/uninvolved free light chain ratio ≥8 (but less than 100), progressive increase in M protein level (evolving type of SMM), bone marrow clonal plasma cells 50-60%, abnormal plasma cell immunophenotype (≥95% of bone marrow plasma cells are clonal) and reduction of one or more uninvolved immunoglobulin isotypes, high risk FISH defined as any one or several of the following: t(4;14), t(14;16), t(14;20), del 17p or 1q gain, MRI with diffuse abnormalities or 1 focal lesion (≥5mm), PET-CT with one focal lesion (≥5mm) with increased uptake without underlying osteolytic bone destruction. Patients that meet high risk definition by the new Mayo/IMWG 2018 "20-2-20" criteria are also eligible if they have 2 out of the following 3 criteria: Bone marrow plasmacytosis ≥20% , ≥2g/dl M protein, ≥20 involved: uninvolved serum free light chain ratio. Treatment duration with D-RVD is for 2 years (24 cycles). Daratumumab is administered at a dose of 1800mg subcutaneously (SQ) weekly for cycles 1-2, biweekly for cycles 3-6 and monthly until completion of cycle 24. Bortezomib is given at a dose of 1.3mg/m2 SQ on days 1, 8, 15 for cycles 1-6 and then biweekly until completion of cycle 24. Lenalidomide is administered on days 1-21 at a dose of 25mg for cycles 1-6 and 15mg for cycles 7-24. Dexamethasone is administered weekly at 20mg cycles 1-6 and biweekly during cycles 7-24. All eligible patients will undergo stem cell collection after cycle 6 of therapy. A single-stage design will be employed with 30 eligible patients entered. If 12 or more of the 30 eligible patients are MRD negative at 2 years (observed rate of &gt;=40%), we will conclude that this treatment warrants further study. The probability of concluding that the treatment is effective if the true rate is 25% is 0.051 and is 0.90 if the true rate is 50%. Figure 1 Figure 1. Disclosures Nadeem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees. Mo: Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Epizyme: Consultancy; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Eli Lilly: Consultancy. Sperling: Adaptive: Consultancy. Richardson: Takeda: Consultancy, Research Funding; Sanofi: Consultancy; Celgene/BMS: Consultancy, Research Funding; Janssen: Consultancy; Secura Bio: Consultancy; Protocol Intelligence: Consultancy; GlaxoSmithKline: Consultancy; Regeneron: Consultancy; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; AstraZeneca: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3876-3876 ◽  
Author(s):  
Andrzej J Jakubowiak ◽  
William Bensinger ◽  
David Siegel ◽  
Todd M. Zimmerman ◽  
Jan M. Van Tornout ◽  
...  

Abstract Abstract 3876 Poster Board III-812 Background Elotuzumab is a humanized monoclonal IgG1 antibody directed against CS1, a cell surface glycoprotein, which is highly and uniformly expressed in multiple myeloma (MM). In mouse xenograft models of MM, elotuzumab demonstrated significantly enhanced anti-tumor activity when combined with bortezomib compared to bortezomib alone (Van Rhee et al., Mol. Cancer Ther., in press, 2009). This phase 1/2 trial will determine the maximum tolerated dose (MTD), overall safety, pharmacokinetics (PK) and clinical response of elotuzumab in combination with bortezomib in patients with relapsed MM following 1-3 prior therapies. Methods The study consists of 4 escalating cohorts of elotuzumab (2.5 mg/kg to 20 mg/kg) administered on Days 1 and 11 and bortezomib (1.3 mg/m2) administered on Days 1, 4, 8 and 11 of a 21-day cycle. Patients with progressive disease at the end of Cycle 2 or 3 also receive oral dexamethasone (20 mg) on Days 1, 2, 4, 5, 8, 9, 11 and 12 of each subsequent cycle. Patients with stable disease or better at the end of 4 cycles will continue treatment for 6 or more cycles unless withdrawn earlier due to unexpected toxicity or disease progression. Key entry criteria: age ≥ 18 years; confirmed diagnosis of MM and documentation of 1 to 3 prior therapies; measurable disease M-protein component in serum and/or in urine; and no prior bortezomib treatment within 2 weeks of first dose. Results To date, a total of 16 MM patients with a median age of 64 years have been enrolled in the study. The median time from initial diagnosis of MM was 3.5 years and patients had received a median of 2 prior MM treatments. Patients have been treated in four cohorts; 3 each in 2.5, 5 and 10 mg/kg elotuzumab cohorts, and 7 in the 20 mg/kg elotuzumab cohort. No dose limiting toxicity (DLT) was observed during the first cycle of the study and the MTD was not established. Five SAEs have been reported in four patients in later treatment cycles; two events, chest pain and gastroenteritis, occurring in one patient, were considered elotuzumab-related. Other SAEs include grade 3 sepsis, vomiting, pneumonia and grade 2 dehydration. The most common AEs reported include Grade 1-3 diarrhea, constipation, nausea, fatigue, thrombocytopenia, neutropenia, anemia and peripheral neuropathy. The best clinical response (EBMT criteria) for the 16 patients who have received at least two cycles of treatment is shown in the table below. Preliminary PK analysis suggests a serum half-life of 10-11 days at higher doses (10 and 20 mg/kg). Preliminary analysis of peripheral blood mononuclear cells and bone marrow of patients on study indicates that objective responses in the study correlate well with complete saturation of CS1 sites by elotuzumab on bone marrow plasma and NK cells. Conclusions The combination of elotuzumab with bortezomib has a manageable adverse event profile and shows promising preliminary efficacy with ≥PR in 44% and ≥MR in 75% of all enrolled patients. Accrual is ongoing in the expanded 20 mg/kg cohort. Updated safety, efficacy, and PK data will be presented at the meeting. Disclosures: Jakubowiak: Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor Ortho Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bortezomib in combination with elotuzumab for the treatment of relapsed/refractory multiple myeloma. Bensinger:Millennium: Membership on an entity's Board of Directors or advisory committees. Siegel:Millennium: Speakers Bureau; Celgene: Speakers Bureau. Zimmerman:Millennium: Speakers Bureau; Centecor: Speakers Bureau. Van Tornout:BMS: Employment. Zhao:Facet Biotech: Employment. Singhal:Facet Biotech: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2946-2946
Author(s):  
Carlos Fernández de Larrea ◽  
Natalia Tovar ◽  
María Rozman ◽  
Laura Rosiñol ◽  
Juan I. Aróstegui ◽  
...  

Abstract Abstract 2946 Background: The achievement of complete remission (CR) is the crucial step for a long-lasting response and prolonged survival after autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM). The European Group for Blood and Marrow Transplantation (EBMT) criteria for CR include the negativity of serum and urine immunofixation (IFE) and less than 5% of bone marrow plasma cells (BMPCs). Additionally, the International Myeloma Working Group (IMWG) has even proposed a stringent CR category, which requires to rule out the clonal nature of the BMPCs. However, few studies have addressed this issue in patients with MM and negative IFE. The aim of the present study was to determine the impact of plasma cell count in the bone marrow aspirate on the long-term outcome of patients with MM with negative IFE after ASCT. Methods: Thirty-five patients (16M/19F; median age at ASCT 55 years, range 26–68) with MM who underwent ASCT from March 1994 to December 2008, were studied. All patients had achieved a negative serum and urine IFE after high dose therapy with melphalan-based regimens. Bone marrow aspirate was performed when negative serum and urine IFE was achieved and at least three months from ASCT (median 3.24 months). The analysis was based on microscopic revision for May-Grünwald-Giemsa stained bone marrow smears performed according to standard procedures. BMPC percentage was calculated independently by two observers counting 500 bone marrow total nucleated cells in random areas from two different slides (1000 cells on each patient). Results: Median BMPCs percentage was 0.8 (range 0.1–5.8). Only two patients had more than 3% BPMCs. These results are in contrast with a recent report from the Mayo Clinic group, where 14% of the patients with MM and negative IFE had 5% or more BMPCs. In univariate Cox-model regression analysis, the number of BMPCs significantly correlated with progression-free survival (PFS)(p=0.021) with no impact on overall survival (OS)(p=0.92). This statistical significance on PFS was retained in the multivariate analysis, when baseline prognostic factors such as age, hemoglobin level, serum creatinine, β2-microglobulin and Durie-Salmon stage were added to the model (p=0.003). To establish the best predictive cut-off for progression and survival, a receptor-operator curve (ROC) analysis was developed. It showed the value of 1.5% BMPCs, with a sensitivity of 53%, specificity of 90% and area under the curve of 0.66 for predicting progression. Ten patients had more than 1.5% BMPC, and 25 equal or less than 1.5% BMPC. Median PFS was 8.5 years (CI 95% 2.6 to 14.3) and was not reached in patients with ≤1.5% BMPCs versus 3.1 years in patients with >1.5% BMPCs, with a hazard ratio probability to progression of 3.02 (CI 95% 1.18 to 9.71)(p=0.016) in the group with more than 1.5% of BMPCs (Figure 1). Median OS was not reached in patients with ≤1.5% compared with a median of 9.7 years in those with more than 1.5% BMPCs (p=0.195) (Figure 2). It is likely that serological CR with very low percentage of BMPCs (i.e. ≤1.5%) is equivalent to negative MRD assessed by MFC or molecular studies. In fact, all 8 patients in continued CR between 9 and 16 years beyond ASCT (“operational cures”) are in the group with ≤1.5% BMPCs, while all patients in the group with >1.5% BPMC have relapsed within the first 9 years from ASCT (Figure 1). Conclusion: The percentage of BMPCs in patients with MM in CR after ASCT is a strong predictor of progression. Bone marrow morphology examination is an easy, inexpensive, and non-time consuming test and it should be the first step in the estimation of the residual tumor mass in patients with MM in CR after ASCT. Disclosures: Rosiñol: Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cibeira:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Blade:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document