scholarly journals ADAM17-Deficient Pluripotent Stem Cell-Derived Natural Killer Cells Possess Improved Antibody-Dependent Cellular Cytotoxicity and Antitumor Activity

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-2
Author(s):  
Kenta Yamamoto ◽  
Robert Blum ◽  
Dan S Kaufman

Antibody-dependent cellular cytotoxicity (ADCC) is a key pathway that mediates natural killer (NK) cell cytotoxicity against antibody-opsonized target cells. This process helps mediate the therapeutic efficacy of anti-tumor antibodies. On NK cells, ADCC occurs via engagement of antibody-coated target cells with activating receptor FcγRIIIa, or CD16a, leading to proinflammatory cytokine upregulation, degranulation, and target cell death. Upon cellular activation, the CD16a ectodomain is cleaved from the NK cell surface by A Disintegrin and Metalloprotease-17 (ADAM17). Cleavage of the ectodomain prevents further antibody binding and signaling through CD16a, which dampens NK cell activity. Blocking activation-induced ADAM17-mediated CD16a cleavage has been previously demonstrated to augment ADCC activity and provides a novel strategy to improve efficacy of therapeutic antibodies in combination with adoptive transfer of engineered NK cells. To further define the ability of ADAM17 to regulate NK cell activity, we have generated and characterized ADAM17-deficient (ADAM17-KO) NK cells derived from CRISPR/Cas9-modified human induced pluripotent stem cells (iPSCs). ADAM17-KO iPSCs successfully differentiate into hematopoietic progenitor cells, then to NK cells that uniformly express typical NK cell surface markers including CD56, CD94, NKG2D, NKp44, and NKp46. ADAM17-KO iPSC-NKs are functional and kill K562 erythroleukemia cells comparable to wildtype iPSC-derived NK cells (WT iPSC-NK cells) and healthy donor-derived peripheral blood NK cells (PB-NK cells) in vitro. Surprisingly, upon differentiation, ADAM17-KO iPSC-NK cells express ~20% lower CD16a surface expression compared to WT iPSC-NK cells, but stably retain CD16a expression after enrichment for CD16a+ cells and over 6 weeks of expansion in culture. WT iPSC-NKs and PB-NKs rapidly lose CD16a surface expression upon stimulation with phorbol esters, while ADAM17 KO iPSC-NK cells maintain over 90% CD16a expression after this stimulation. Additionally, a significantly higher proportion of ADAM17-KO iPSCs express TNF-α (71%) and CD62L (L-Selectin) (36%) - two other known ADAM17 substrates, on the cell surface after stimulation with phorbol esters for 4 hours compared to WT iPSC-NK (7% TNF-α+, 2% L-Selectin+) and PB-NK (2% TNF-α+, 1% L-Selectin+). CD16a+ ADAM17-KO iPSC-NK cells mediate increased CD107a (45%) and IFNγ (39%) expression when co-incubated with RAJI B-lymphoma cells in the presence of the anti-CD20 antibody rituximab, compared to CD16a+ WT iPSC-NK (32% CD107a+, 11% IFNγ) and PB-NK (37% CD107a+, 7% IFNγ) cells. Similarly, CD16a+ ADAM17-KO iPSC-NK cells upregulate increased CD107a (29%) and IFNγ (42%) expression when co-incubated with CAL27 squamous cell carcinoma cells in the presence of the anti-EGFR antibody cetuximab, compared to CD16a+ WT iPSC-NK (12% CD107a+, 8% IFNγ) and PB-NK (14% CD107a+, 6% IFNγ). Long-term (24 hour) cytotoxicity assay against RAJI cells in the presence of rituximab demonstrates higher cytotoxicity in CD16a+ ADAM17-KO iPSC-NK cells compared to CD16a+ WT iPSC-NK and CD16a+ PB-NK cells over time (see associated figure). In vivo studies to determine the therapeutic efficacy of ADAM17-KO iPSC-NK cells compared to WT iPSC-NK and PB-NK cells are ongoing. Together, these studies demonstrate ADAM17-KO iPSC-NK cells derived from a renewable source of gene-edited iPSCs possess enhanced ADCC potential, and provide a promising candidate to be used for standardized, off-the-shelf NK cell-based therapies in conjunction with therapeutic antibodies. Figure Disclosures Blum: Fate Therapeutics: Current Employment. Kaufman:Fate Therapeutics: Consultancy.

1995 ◽  
Vol 79 (3) ◽  
pp. 732-737 ◽  
Author(s):  
S. J. Won ◽  
M. T. Lin

The effects of different ambient temperatures (Ta) on the splenic natural killer (NK) cell activity, effector-target cell conjugation activity, and NK cell numbers were assessed in male inbred C3H/HeNCrj mice (7–10 wk old). The splenic NK cytotoxic activities were examined in a 4-h 51Cr release assay in mouse spleen cells that were obtained 1, 2, 4, 8, or 16 days after exposure to Ta of 22, 4, or 35 degrees C. The percentage of conjugating lymphocytes was calculated by counting the number of single lymphocytes bound to single target cells per 400 effector cells. The numbers of NK cells were expressed by the percentage of 5E6-positive cells. The 5E6 identifies only a subset of NK cells. It was found that the splenic NK cell activity, the effector-target cell conjugation activity, or the NK cell number began to fall 1 day after cold (Ta 4 degrees C) or heat (Ta 35 degrees C) stress. After a 16-day period of either cold or heat exposure, the fall in the splenic NK cell activity, the effector-target cell conjugation activity, or the number of 5E6-positive subsets of NK cells was still evident. Compared with those of the control group (Ta 22 degrees C), the cold-stressed mice had higher adrenal cortisol concentration and lower colonic temperature, whereas the heat-stressed animals had higher adrenal cortisol concentration and higher colonic temperature during a 16-day period of thermal exposure. However, neither cold nor heat stress affected both the body weight gain and the spleen weight in our mice.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3870-3870 ◽  
Author(s):  
Don Benson ◽  
Courtney E Bakan ◽  
Shuhong Zhang ◽  
Lana Alghothani ◽  
Jing Liang ◽  
...  

Abstract Abstract 3870 Poster Board III-806 Background NK cell activity against tumor cells is regulated by a balance of inhibitory and activating signals mediated by receptors on NK cells that recognize inhibitory and activating ligands expressed by cancer cells. IPH2101 (1-7F9) is a novel monoclonal anti-inhibitor KIR blocking antibody that has been shown to augment NK cell function against MM targets. Moreover, lenalidomide has been shown to expand and activate NK cells in vivo and in vitro. We have previously reported that the combination of IPH2101 and lenalidomide enhances NK cell mediated cytotoxicity against MM cells compared to each agent alone (Zhang et al., AACR 2009). We expand our studies to investigate potential mechanisms for the enhancement of NK cell activity by the combination of IPH2101 and lenalidomide. Methods The effects of IPH2101 and lenalidomide alone and in combination were studied using primary human NK cells from healthy donors as well as from MM patients. The MM cell lines U266 and RPMI 8226 as well as primary tumor cells from marrow aspirates of MM patients served as target cells. The effect of lenalidomide on MM activating and inhibitory ligand expression was studied by flow cytometry. NK cell trafficking was investigated with standard transwell plate migration assay. Immune complex formation between NK cell effectors and MM tumor targets was characterized by flow cytometry in control conditions and with NK cells pre-treated with IPH2101 and lenalidomide. The effects of IPH2101 and lenalidomide were studied regarding interferon-gamma and granzyme B production by ELISPOT and target-specific cytotoxicity studies were conducted to complement effector-based assays. Results IPH2101 (30 ug/ml) significantly enhanced cytotoxicity against U266 cells and primary MM tumor cells by both purified NK cells at effector:target (E:T) ratios of 10:1 or less, and also of freshly isolated peripheral blood mononuclear cells (PBMC) at E:T ratios of 60:1 or less, from more than 10 random donors. In addition, treatment of PBMC with 5-10 μmol/L lenalidomide for 72h without interleukin (IL)-2 increased NK cell lysis of U266. Treatment of PBMC from normal donors did not enhance the expression of the NK receptors KIR, NKG2D, NCR, TRAIL, and DNAM-1. Incubation of U266 cells with lenalidomide (5 uM) for 3-5 days resulted in significant enhancement of cytotoxicity by normal donor NK cells. This was associated with upregulation of the activating ligands, MICA, ULBP-2, DR4, and CD112. Using blocking antibodies to NKG2D, TRAIL, and DNAM-1, lenalidomide enhancement of MM cell killing was abrogated indicating the importance of the modulation of the ligands to the latter receptors by lenalidomide. Although IPH2101 and lenalidomide did not significantly increase NK cell migration into normal media, migration was enhanced 2.98-fold (+/− 0.36, p < 0.05) towards U266 cell targets (n= 3, p < 0.05) and MM patient serum 3.2-fold (+/− 0.4, n=3, p < 0.05). IPH2101 and lenalidomide also led to a 2.3-fold (+/− 0.43, p < 0.05) increase in immune complex formation between NK cells and MM tumor cells. IPH2101 and lenalidomide also augmented NK cell interferon gamma production against MM (control mean 303 spots/well +/− 13 versus 525 +/− 83, n=3, p < 0.05) and granzyme B production (control mean 115 +/− 98 versus 449 +/−72, n=3, p < 0.05). Importantly, in all experiments described herein, the effects of IPH2101 and lenalidomide together were greater than either agent alone. Conclusions Taken together, our data suggest that IPH2101 and lenalidomide may exert complementary mechanisms on both effector and target cells to enhance NK cell mediated killing of MM cells. Moreover, these agents have no predicted clinical cross-toxicities. A single-agent phase 1 clinical trial of IPH2101 has shown the mAb to be safe and well tolerated in MM patients. These findings support a phase 1/2 clinical trial of IPH2101 with lenalidomide as a first dual-innate immunotherapy for patients with MM. Disclosures: Andre: Innate Pharma: Employment. Squiban:Innate pharma: Employment. Romagne:Innate Pharma: Employment.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 65-70 ◽  
Author(s):  
HW Ziegler-Heitbrock ◽  
H Rumpold ◽  
D Kraft ◽  
C Wagenpfeil ◽  
R Munker ◽  
...  

Many patients with B-type chronic lymphocytic leukemia (CLL) exhibit a profound defect in their natural killer (NK) cell activity, the basis of which is still obscure. Hence, we analyzed the NK cells from peripheral blood samples from 11 patients with CLL for phenotype and function, after removal of the leukemic cells with a monoclonal antibody (BA-1) plus complement. Phenotypic analysis of these nonleukemic cells with monoclonal antibodies (MoAbs) against NK cells revealed that the CLL patients had higher percentages of HNK-1-positive cells (23.5% compared to controls with 14.7%). In contrast, VEP13- positive cells were absent or low in seven patients (0.8% compared to controls with 11.2%) and normal in four patients (10.5%). When testing NK cell activities against K562 or MOLT 4 target cells, patients with no or minimal numbers of VEP13-positive cells were found to be deficient, while patients with normal percentages of VEP13-positive cells had NK cell activity comparable to controls. Isolation by fluorescence-activated cell sorter of HNK-1-positive cells from patients lacking VEP13-positive cells and NK cell activity indicated that the majority of the HNK-1-positive cells in these patients had the large granular lymphocyte morphology that is characteristic of NK cells. Thus, the deficiency of NK cell activity in CLL patients appears to result from the absence of cells carrying the VEP13 marker.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2540-2540
Author(s):  
Yoshiyuki Takahashi ◽  
Itzel Bustos Villalobos ◽  
Sayoko Doisaki ◽  
Hideki Muramatsu ◽  
Akira Shimada ◽  
...  

Abstract Abstract 2540 Introduction: Hematopoietic stem cell transplantation (HSCT) from HLA haplo-identical family donors is promising as a therapy for patients with leukemia who are at high risk for relapse. The lower relapse rates and improved survival, especially for patients with acute myelogenous leukemia (AML) who have received HSCT from killer cell immunoglobulin-like receptor (KIR) ligand-mismatched donors, suggest that donor NK cells that are alloreactive against the recipient's cells cause graft-versus-leukemia effects. An Italian group and we identified genomic loss of the patient-specific HLA haplotype in leukemic cells after haplo-identical HSCT. Analysis using SNP arrays revealed that the HLA loss in 29 to 66% of relapsed patients after haplo-identical HSCT was caused by segmental uniparental disomy (UPD) of the HLA region on chromosome 6. This suggested that leukemic cells often escape immunosurveillance through the loss of the mismatched HLA haplotype via the UDP mechanism after haplo-identical HSCT (Vago et al. N Engl J Med. 2009, Villalobos, IB et al. Blood 2010). Since NK cell effector function is tightly regulated by inhibitory KIRs on NK cells that bind to MHC class I on target cells, the escape of leukemic cells from immune surveillance by losing a mismatched HLA antigen might enhance the cytotoxicity of NK cells towards target cells. We examined alterations in donor-derived alloreactive NK cell activity against leukemic blasts of AML patients who relapsed after HLA haplo-identical HSCT. Patients and methods: We enrolled three patients with AML, aged 2, 3 and 12 years, who relapsed after HLA haplo-identical HSCT with T cell depletion of rabbit ATG in vivo. Two patients had AML M7 and the other had M0. Only one donor was KIR ligand-mismatched. Engraftment was achieved in all three patients within 28 days. Relapse occurred 35, 372 and 445 days after HSCT. Mononuclear cells were obtained from both donors and patients before and after HSCT. The NK cells were purified using NK cell selection kits (DYNAL) and measured by conventional 51Cr release assays of leukemic blasts from the patients and the control cell line K562. The mismatched HLA expression between patients and donors on hematopoietic cells was monitored by flow cytometry using anti-HLA antibody (One Lambda). Results: The mean of NK cell killing of the patients' leukemic cells at the same effector target ratio of 10 was significantly higher in donors (50.3%) than in relapsed patients (9.7%). Monitoring of alloreactive NK cell activity after HSCT showed that donor-derived NK cell killing against the patients' leukemic cells gradually decreased in the KIR ligand-mismatched setting. Relapse was minimal but obvious according to HLA monitoring of hematopoietic cells on day 98, which was 7 days after alloreactive NK cell activity was diminished in the patients. Monitoring HLA expression after HSCT also revealed that one patient had leukemic blasts at relapse with loss of the patient's specific HLA haplotype caused by UDP of the HLA region on chromosome 6. Notably, primary leukemic blasts in this patient were not killed by the donor NK cells (2.3%), but leukemic blasts at relapse were efficiently killed (69.0%) after HLA loss of leukemic cells. On the other hand, killing of leukemic blasts at relapse by the patient's NK cells after transplantation was much less effective (19.0%) than that by donor NK cells, although they originated from the same donor (Figure). Because haplotype loss of HLA caused by UDP does not change the status of the KIR ligand in patients with homozygous HLA-Cw, we further examined the expression of ULBP1-3 that are ligands for the activating NK receptor, NKG2D, on leukemic blasts before and after HLA loss. We found upregulated ULBP-2 expression on leukemic cells after the loss of HLA. Conclusions: Donor NK cells efficiently killed patients' AML blasts at relapse but NK cell activity in patients against their own leukemic blasts was impaired after HSCT. These findings indicate a rationale for donor NK cell infusions after HLA haplo-identical HSCT to avoid decreasing NK cell alloreactivity and to prevent the escape of leukemic cells from allo-immune surveillance by donor cytotoxic T lymphocytes. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ilona Hromadnikova ◽  
Petra Pirkova ◽  
Lucie Sedlackova

NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3−CD56+cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.


2011 ◽  
Vol 108 (3) ◽  
pp. 459-470 ◽  
Author(s):  
Honglin Dong ◽  
Ian Rowland ◽  
Parveen Yaqoob

There is considerable interest in the strain specificity of immune modulation by probiotics. The present study compared the immunomodulatory properties of six probiotic strains of different species and two genera in a human peripheral blood mononuclear cell (PBMC) modelin vitro. Live cells of lactobacilli (Lactobacillus caseiShirota,L. rhamnosusGG,L. plantarumNCIMB 8826 andL. reuteriNCIMB 11951) and bifidobacteria (Bifidobacterium longumSP 07/3 andB. bifidumMF 20/5) were individually incubated with PBMC from seven healthy subjects for 24 h. Probiotic strains increased the proportion of CD69+on lymphocytes, T cells, T cell subsets and natural killer (NK) cells, and increased the proportion of CD25+, mainly on lymphocytes and NK cells. The effects on activation marker expression did not appear to be strain specific. NK cell activity was significantly increased by all six strains, without any significant difference between strains. Probiotic strains increased production of IL-1β, IL-6, IL-10, TNF-α, granulocyte-macrophage colony-stimulating factor and macrophage inflammatory protein 1α to different extents, but had no effect on the production of IL-2, IL-4, IL-5 or TNF-β. The cytokines that showed strain-specific modulation included IL-10, interferon-γ, TNF-α, IL-12p70, IL-6 and monocyte chemotactic protein-1. TheLactobacillusstrains tended to promote T helper 1 cytokines, whereas bifidobacterial strains tended to produce a more anti-inflammatory profile. The results suggest that there was limited evidence of strain-specific effects of probiotics with respect to T cell and NK cell activation or NK cell activity, whereas production of some cytokines was differentially influenced by probiotic strains.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3223-3223
Author(s):  
Michael Boyiadzis ◽  
Chang Sook Hong ◽  
Theresa L Whiteside

Introduction: Exosomes are 30-150 nm-sized extracellular vesicles originating from the endocytic compartment of parent cells. The exosome molecular cargo reflects the content of its cells of origin and is delivered to recipient cells in a protective glycol-lipid bilayer without degradation. Because of their small size, exosomes freely circulate within the body, can reach the bone marrow, and can cross biological barriers. Natural killer (NK) cells play a critical role in the innate immune response through their capacity to lyse malignant cells without prior antigen-specific priming. Importantly, NK cell activity is reduced in patients with acute myeloid leukemia (AML) relative to that in healthy donors. To overcome the decreased NK cell activity in AML, several therapeutic strategies have been evaluated for safety and efficacy, both in transplant and non-transplant settings, using autologous and allogeneic activated NK cells. Since NK cell-derived exosomes acquire tumor-killing abilities from the parent NK cells, we hypothesize that NK cell-derived exosomes by transferring exosome content to leukemia blasts can induce the death of these target cells. In the current study, we evaluated the in vitro anti-leukemia effects of NK cell-derived exosomes. Methods: Exosomes were isolated from the supernatants of NK cells obtained from healthy donors (n=12) using mini-size exclusion chromatography (mini-SEC). Protein levels, number and size (qNano), and exosome morphology using transmission electron microscopy were determined. The exosome cargo was studied by Western blots and on-bead flow cytometry for NK cell activating and inhibitory receptors, immune inhibitory molecules, and for perforin and granzyme B. Cytotoxicity of the NK cell-derived exosomes for AML cell lines (Kasumi, MLL-1) and primary leukemia blasts was measured using flow cytometry-based assays. Results: Activated human NK cells produced large quantities of exosomes. Transmission electron microscopy showed the presence of vesicles that were uniform in size (30-150nm in diameter) by NanoSight measurement. Confocal imaging of labeled NK cell-derived exosomes interacting with leukemia cells showed that they are rapidly internalized by leukemic targets. NK cell-derived exosomes carried activating NK cell receptor NKG2D, natural cytotoxicity receptors, perforin, granzyme B, transforming growth factor beta (TGF-β), killer-cell immunoglobulin-like receptors, and PD-1. NK cell-derived exosomes were co-incubated with target cells, AML cell lines and primary leukemia cells, at different exosome:target (E:T) ratios using escalating doses of exosomes (10-70 µg). NK cell-derived exosomes mediated strong anti-leukemic activity against AML cell lines and primary leukemic blasts. Importantly, with higher doses of exosomes, higher levels of cytotoxicity were observed, suggesting that exosome-mediated lysis is concentration dependent. NK cell-derived exosomes mediated leukemia killing via different cell death pathways including apoptosis and necroptosis. Conclusion: NK cell-derived exosomes mediating cytotoxicity against leukemic targets represents a novel therapeutic modality for patients with AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1525-1525
Author(s):  
Jumei Shi ◽  
Guido J. Tricot ◽  
Priyangi A. Malaviarachchi ◽  
Tarun K. Garg ◽  
Susann M. Szmania ◽  
...  

Abstract Introduction: Natural killer (NK) cell activity is regulated by a dynamic balance between inhibitory and activating receptors that recognize ligands on target cells. Human leukocyte antigen (HLA)-class I, particularly HLA-C and -Bw4 molecules, are key ligands transmitting inhibitory signals to NK cells. NK cells avidly lyse tumor cells that do not display such inhibitory KIR-ligands. The proteasome is responsible for the generation of peptides that bind to and stabilize class I molecules at the cell surface. We hypothesized that bortezomib, a partial proteasome inhibitor that is clinically approved for the treatment of refractory/relapsed myeloma (MM), could reduce HLA expression on MM cells and thus enhance NK cell-mediated cytotoxicity. Methods: HLA-class I or HLA-C expression was assessed using flow cytometry, after gating on AnnexinV/PI double negative cells, and/or confocal microscopy. Expression of other proteins was measured by flow cytometry using specific mAb. NK cell-mediated lysis of myeloma cells was measured by 51Cr-release. Results: Bortezomib at clinically attainable concentrations down-regulated HLA-class I expression on MM cells in a time- and dose-dependent fashion. Reduction of class I post-10 nM bortezomib treatment was observed in all myeloma cell lines tested (n=10), by a median of 49% (range: 19–66%). A similar decrease of HLA-class I was obtained in 10–50 nM bortezomib treated primary MM cells (n=6). Bortezomib significantly enhanced the sensitivity of MM cells to allogeneic and autologous NK cell-mediated lysis. Further, the level of reduction in HLA-class I expression correlated well with increased susceptibility to lysis by NK cells. The level of down-regulation of HLA-class I induced by bortezomib was reproduced by incubating MM cells with HLA-blocking antibody and resulted in equipotent enhancement of NK cell-mediated lysis (Figure 1). The extent of HLA-class I down-regulation by bortezomib was therefore biologically relevant. Down-regulation of HLA-class I was also observed in vivo on purified MM cells 48 hours after a single dose of bortezomib, by a median of 47% (range: 16–63%, n=6, P= .002). HLA-C expression (the principal NK cell inhibitory ligand) was rescued by exogenous provision of HLA-C binding peptides providing a mechanistic explanation for the effect of bortezomib on HLA-class I expression. Finally, we did not observe bortezomib-mediated enhancement of NK cell-mediated lysis of myeloma through receptors other than the KIR receptor family, including tumor necrosis factor related apoptosis-inducing ligand, NKG2D and natural cytotoxicity receptors. HLA-class I down-regulation was not observed in renal cell and breast carcinoma cell lines, which is in keeping with the remarkable activity of bortezomib in myeloma. Our findings have clear therapeutic implications for MM and other NK cell-sensitive malignancies in the context of both allogeneic and autologous adoptively transferred NK cells. Figure 1. Reduced class I on MM cell surface results in NK cell-mediated recognition and lysis Figure 1. Reduced class I on MM cell surface results in NK cell-mediated recognition and lysis


2020 ◽  
Vol 21 (21) ◽  
pp. 8112
Author(s):  
Jung Min Kim ◽  
Eunbi Yi ◽  
Hyungwoo Cho ◽  
Woo Seon Choi ◽  
Dae-Hyun Ko ◽  
...  

Natural killer (NK) cells are cytotoxic innate lymphocytes endowed with a unique ability to kill a broad spectrum of cancer and virus-infected cells. Given their key contribution to diverse diseases, the measurement of NK cell activity (NKA) has been used to estimate disease prognosis or the effect of therapeutic treatment. Currently, NKA assays are primarily based on cumbersome procedures related to careful labeling and handling of target cells and/or NK cells, and they require a rapid isolation of peripheral blood mononuclear cells (PBMCs) which often necessitates a large amount of blood. Here, we developed an ELISA-based whole blood (WB) NKA assay involving engineered target cells (P815-ULBP1+CD48) providing defined and synergistic stimulation for NK cells via NKG2D and 2B4. WB collected from healthy donors (HDs) and patients with multiple myeloma (MM) was stimulated with P815-ULBP1+CD48 cells combined with IL-2. Thereafter, it utilized the serum concentrations of granzyme B and IFN-γ originating in NK cells as independent and complementary indicators of NKA. This WB NKA assay demonstrated that MM patients exhibit a significantly lower NKA than HDs following stimulation with P815-ULBP1+CD48 cells and had a good correlation with the commonly used flow cytometry-based PBMC NKA assay. Moreover, the use of P815-ULBP1+CD48 cells in relation to assessing the levels of NKG2D and 2B4 receptors on NK cells facilitated the mechanistic study and led to the identification of TGF-β1 as a potential mediator of compromised NKA in MM. Thus, our proposed WB NKA assay facilitates the reliable measurement of NKA and holds promise for further development as both a clinical and research tool.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 18-18
Author(s):  
Kyohei Nakamura ◽  
Masafumi Nakayama ◽  
Mitsuko Kawano ◽  
Tomonori Ishii ◽  
Hideo Harigae ◽  
...  

Abstract Introduction The activating receptor, NKG2D, plays crucial role in natural killer (NK) cell-mediated effector function. NKG2D is involved not only in host defense against tumor and viral infection, but also in autoimmune diseases by recognizing stress-induced self-ligands (NKG2DLs). However, the negative feedback regulation of NKG2D has not been fully understood. It has been reported that NK cells undergo rapid apoptosis upon interaction with NK-sensitive tumor cells, suggesting that activation-induced NK cell death can be triggered in certain situations. In this study, we aimed to elucidate underlying mechanism of NK cell death, especially focused on NKG2D-NKG2DLs interaction. Methods NK cells were purified from splenocytes of C57BL/6, perforin-/-, and DAP10-/-/12-/- mice, and cultured with rhIL-2 (1000 U/ml) for 5 days. We used these IL-2-activated NK cells as effector cells and three target cell lines: mouse T cell lymphoma RMA cells (RMA), RMA lacking MHCI expression (RMA-S), and RMA stably expressing an NKG2DL, Rae-1δ (RMA/Rae-1δ). CFSE-labeled NK cells were co-cultured with target cells for 2 hours, and stained with anti-NK1.1 mAb propidium iodide (PI). The percentage of PI-positive cells within CFSE+ NK1.1+ population was measured by flowcytometry. The cell surface expression of Rae-1 on NK cells after co-culture with target cells was evaluated by flowcytometry and confocal microscopy. Results NK cells from WT mice rapidly underwent cell death when co-cultured with Rae-1δ, but not with RMA or RMA-S, suggesting that NKG2D-Rae-1 interaction is involved in NK cell death. NK cells from perforin-/-, and DAP10-/-/12-/- mice did not undergo cell death, highlighting the importance of the NKG2D pathway for NK cell death. However, cross-linking of NKG2D receptor failed to induce NK cell death. To understand underlying the mechanism of NK cell death, we evaluated the cell surface expression of NKG2DLs on NK cells after co-culture with tumor cells. We found that cell surface expression of Rae-1 on NK cells was remarkably induced after co-culture with RMA/Rae-1δ, but no with RMA or RMA-S, implying that these Rae-1-positive NK cells may be lysed by NK cells through NKG2D-induced perforin pathway. The cell surface induction of Rae-1 on NK cells was very rapid (within 5min), and it occurred cell-cell contact dependent manner. Interestingly, NK cells from C57/BL6 mice rapidly became BALB/c allele Rae-1γ-positive after co-culture with RMA/Rae-1γ, indicating that NK cells acquire tumor-derived Rae-1. Consistently, acquisition of Rae-1 by NK cells was confirmed by confocal microscopy. Therefore, NK cells rapidly dress tumor-derived Rae-1 after interaction with tumor cells through intercellular membrane transfer, namely trogocytosis. Trogocytosis of Rae-1 was significantly inhibited in NK cells from DAP10-/-/12-/- mice and by chemical inhibitors of PI3K and Syk, indicating that it requires NKG2D-signaling. To confirm whether Rae-1-dressed NK cells can be recognized and lysed by other NK cells, we used sort-purified Rae-1-dressed NK cells as target cells. Rae-1-dressed NK cells were lysed by WT NK cell in an E/T-ratio dependent manner through NKG2D-induced perforin pathway. Furthermore, adoptively transferred Rae-1-dressed NK cells were significantly eliminated in Rag-1-deficient mice, indicating that Rae-1-dressed NK cells are also recognized and lysed in vivo. Conclusion Upon interaction with NKG2DLs-expressing tumor cells NK cells rapidly dress tumor-derived NKG2DLs, and subsequently undergo fratricide. Our results provide novel insights into activation-induced NK cell death via dynamic intercellular communications. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document