scholarly journals Novel CoupledCARTM Technology for Treating Colorectal Cancer

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 54-54
Author(s):  
Lei Xiao ◽  
Song Li ◽  
Chengfei Pu ◽  
Zhiyuan Cao ◽  
Xinyi Yang ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy has made significant progress in the treatment of blood cancers such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and limited reactive cell expansion in vivo. Conventional CAR T cell therapy has thus far shown weak cell expansion in solid tumor patients and achieved little or no therapeutic responses. Here, we developed CAR T cells based on a novel CoupledCAR® technology to treat solid tumors. In contrast to conventional CAR T cells, CoupledCAR T cells significantly improved the expansion of the CAR T cells in vivo and enhanced the CAR T cells' migration ability and resistance to immunosuppression by the tumor microenvironment. The enhanced migration ability and resistance allow the CAR T cells to infiltrate to tumor tissue sites and increase anti-tumor activities. Specifically, we engineered CoupledCAR T cells with lentiviral vectors encoding an anti-GCC (guanylate cyclase 2C) CAR molecule. Furthermore, anti-GCC CAR T cells showed anti-tumor activities in vitro and in vivo experiments. To verify the safety and efficacy of CoupledCAR T cells for treating solid tumors, we conducted several clinical trials for different solid tumors, including seven patients with colorectal cancer. These seven patients failed multiple rounds of chemotherapy and radiotherapy. In the clinical trial, the patients were infused with autologous anti-GCC CoupledCAR T cells range from 4.9×10^5/kg to 2.9×10^6/kg. All patients using anti-GCC CoupledCAR T cells showed rapid expansion of CoupledCAR T cells and killing of tumor cells. Specifically, we observed that CoupledCAR T cells expanded significantly in the patients and infiltrated tumor tissue sites, demonstrating enhanced anti-tumor activities. PET/CT showed significant tumor shrinkage and SUV max declined, and the ongoing responses were monitored. Patient 3 achieved complete response and the best overall response rate (ORR, include complete remission, complete metabolic response, partial response, and partial metabolic response.) was 71.4% (5/7), complete remission (CR) rate was 14.3% (1/7). The clinical data demonstrated that CoupledCAR T cells effectively expanded, infiltrated tumor tissue sites, and kill tumor cells in patients with colorectal cancer. We used immunotherapy to achieve complete remission in patients with advanced colorectal cancer for the first time. We are recruiting more colorectal cancer patients to further test the safety and efficacy of anti-GCC CoupledCAR T cells. Since our CoupledCAR® technology is a platform technology, we are expanding it to treat other solid tumors using different target tumor markers . Disclosures Xiao: Innovative Cellular Therapeutics: Other: stockholder.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A361-A361
Author(s):  
Song Li ◽  
Chengfei Pu ◽  
Zhiyuan Cao ◽  
Ning Li ◽  
Xinyi Yang ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cell therapy has made significant progress in the treatment of blood cancers such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and limited reactive cell expansion in vivo.Conventional CAR T cell therapy has thus far shown weak cell expansion in solid tumor patients and achieved little or no therapeutic responses. Here, we developed CAR T cells based on a novel CoupledCAR® technology to treat solid tumors. In contrast to conventional CAR T cells, CoupledCAR T cells significantly improved the expansion of the CAR T cells in vivo and enhanced the CAR T cells’ migration ability and resistance to immunosuppression by the tumor microenvironment. The enhanced migration ability and resistance allow the CAR T cells to infiltrate to tumor tissue sites and increase anti-tumor activities.MethodsWe designed a ‘CoupledCAR’ lentivirus vector containing a single-chain variable fragment (scFv) targeting human TSHR. The lentivirus was produced by transfecting HEK-293T cells with ‘CoupledCAR’ lentiviral vectors and viral packaging plasmids. Patient‘s CD3 T cells were cultured in X-VIVO medium containing 125U/mL 1interleukin-2 (IL-2), and transduced with ‘CoupledCAR’ lentivirus at certain MOI. Transduction efficiency and was evaluated at 7 to 9 days after ‘CoupledCAR’ lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR. The evaluation of response level for patients were performed at month 1,month 3,and month 6 by PET/CT.ResultsSpecifically, we engineered CoupledCAR T cells with lentiviral vectors encoding an anti-GCC (guanylate cyclase 2C) CAR molecule. Furthermore, anti-GCC CAR T cells showed anti-tumor activities in vitro and in vivo experiments.To verify the safety and efficacy of CoupledCAR T cells for treating solid tumors, we conducted several clinical trials for different solid tumors, including seven patients with colorectal cancer. These seven patients failed multiple rounds of chemotherapy and radiotherapy. In the clinical trial, the patients were infused with autologous anti-GCC CoupledCAR T cells range from 4.9×105/kg to 2.9×106/kg. All patients using anti-GCC CoupledCAR T cells showed rapid expansion of CoupledCAR T cells and killing of tumor cells. Specifically, we observed that CoupledCAR T cells expanded significantly in the patients and infiltrated tumor tissue sites, demonstrating enhanced anti-tumor activities. PET/CT showed significant tumor shrinkage and SUV max declined, and the ongoing responses were monitored. Patient 3 achieved complete response and the best overall response rate (ORR, include complete remission, complete metabolic response, partial response, and partial metabolic response.) was 71.4% (5/7), complete remission (CR) rate was 14.3% (1/7).ConclusionsThe clinical data demonstrated that CoupledCAR T cells effectively expanded, infiltrated tumor tissue sites, and kill tumor cells in patients with colorectal cancer. We used immunotherapy to achieve complete remission in patients with advanced colorectal cancer for the first time. We are recruiting more colorectal cancer patients to further test the safety and efficacy of anti-GCC CoupledCAR T cells. Since our CoupledCAR® technology is a platform technology, we are expanding it to treat other solid tumors using different target tumor markers.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15035-e15035 ◽  
Author(s):  
Lei Xiao ◽  
Song Li ◽  
Chengfei Pu ◽  
Zhiyuan Cao ◽  
Cheng Lu ◽  
...  

e15035 Background: Conventional CAR-T cell therapy has thus far shown weak cell expansion in solid tumor patients and achieved little or no therapeutic responses. Methods: We developed CAR T cells based on a novel CoupledCAR technology to treat solid tumors. We engineered CoupledCAR-T cells with lentiviral vectors encoding an anti- colorectal cancer specific protein CAR molecule, and anti- colorectal cancer specific protein (CRCSP) CAR-T cells showed anti-tumor activities in vitro and in vivo experiments. Further, we conducted several clinical trials for various solid tumors, including two patients with colorectal cancer. After the infusion of CoupledCAR T cells, these two patients showed rapid expansion of CoupledCAR T cells and the killing of tumor cells. Specifically, we observed that CoupledCAR T cells expanded significantly in the patients and infiltrated tumor tissue sites. Results: Both patients achieved PR (Partial Response). Patient Profile: Patient 1: Male, 55Y, Colon Adenocarcinoma. In May 2016, 8 cycles of XELOX chemotherapy and 1 dose of radiotherapy were performed. In Step 2016, “radical rectal resection and terminal ileum double ileostomy” was performed. After surgery, gemcitabine chemotherapy was performed for 2 cycles. In January 2018, relapse and metastasis of prostate and left lung were observed. In April 2019, relapse and metastasis were observed. Patient 2: Female, 57Y, Colon Adenocarcinoma. In December 2014, DT46Gy/2Gy/23 radiotherapy was performed. In December 2014 and January 2015, the single drug chemotherapy of Xeloda was taken orally. In February 2015, laparoscopic radical resection of rectal cancer was performed. In April, May, June, and July 2015, mFOLFOX6 chemotherapy was performed. In June 2019, CT showed tumor metastasis. Observations and Results: Patient 1: One month after infusion (M1), the patient was evaluated as PR; most of the target lesions were significantly reduced by more than 50%, and the primary tumor volume was reduced by ~45%. Patient 2: M1, the patient was also evaluated as PR; the tumor in the left upper lobe tip posterior segment was reduced by approximately 75%. Conclusions: The clinical data demonstrated that CoupledCAR-T cells effectively expanded, infiltrated tumor tissue sites, and kill tumor cells in patients with colorectal cancer. We are recruiting more colorectal cancer patients to further test the safety and efficacy of anti-CRCSP CoupledCAR T cells. Further, since our CoupledCAR technology is a platform technology, we are developing it to treat other solid tumors using different target markers.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A152-A153
Author(s):  
Shihong Zhang ◽  
Karan Kohli ◽  
R Graeme Black ◽  
Brian Hayes ◽  
Cassandra Miller ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cell therapy has transformed therapy for hematological malignancies but has not yet been established as standard of care for any solid tumors. One obstacle for human solid tumor immunotherapy research is the lack of clinically relevant, immunocompetent animal models. In this study, we sought to establish CAR T cells for naturally occurring canine sarcomas in client owned animals as a model for human CAR T cell therapy.MethodsArchived FFPE, freshly isolated canine solid tumor samples as well as tumor lines were tested for B7H3 expression by immunohistochemistry (IHC) and flow cytometry analysis. We designed CARs using the scFv from the human B7H3-specific antibody MGA271 and confirmed the cross-reactivity to canine B7H3 (construct information see figure 1A). A truncated EGFR (tEGFR) was included in the construct to allow for IHC and flow cytometry testing for the presence of CAR T cells. Killing efficiency was evaluated using 3D tumor spheroid killing assays to monitor dynamics. Safety of the CAR products following lymphodepletion was confirmed in two healthy dogs (figure 1B).ResultsCanine solid tumors were confirmed to be B7H3 positive in almost all cases. Using the GALV-pseudotyped retrovirus system, transduction was efficient with up to 70% CAR+ cells. Post-transduction expansion was over 100 folds. B7H3 CAR transduced canine T cells were able to eliminate B7H3+ canine tumor spheroids effectively (figure 2). Safety of the CAR T cells (dose: 1 × 109/m2) were confirmed in both healthy animals following cyclophosphamide lymphodepletion. After week 6, cetuximab was given to the subjects to deplete EGFR+ cells. Subject 2 experienced fever after CAR T cell administration. Both dogs showed elevated serum ALP and ALT levels and returned to normal (figure 3). No other treatment-related adverse events were observed. Information of the CAR T cell products can be found in table 1.Abstract 139 Figure 1Construct information and safety trial design(A) Four 2nd generation CAR constructs were generated. Two B7H3 CARs were candidates for the treatment, and two HER2 CARs served as controls, as they have been shown to kill canine cancer cells. The CARs are consisted of a single chain variable fragment (scFv, either B7H3-specific MGA271 or HER2-specific FRP5), a short hinge, a transmembrane domain (tm), a canine costimulatory signaling domain (either canine CD28 or 4-1BB) and canine CD3? signaling domain. Truncated EGFR is added in the construct for CAR+ T cell detection and facilitate the depletion of CAR T cells in vivo as a safety measure. (B) Blood from the subjects were drawn 3 weeks prior to the treatment for CAR T cell production. Cyclophosphamide (Cy, 400 mg/m2) and Fludarabine (Flu, 10 mg/m2) were given to the subjects for 2 days for lymphodepletion. CAR T cells (1 × 109/m2) and cetuximab (200 mg/m2) were given to the subjects as indicated. Blood, lymph node (LN) and bone marrow (BM) aspirates were collected for CAR T cell homing and persistence analysisAbstract 139 Figure 2Killing of canine OSA spheroids by canine CAR T ce(A) Scheme of tumor cell spheroid forming and killing. The loss of GFP can be measured for cytotoxicity readout (B) FRP5 and MGA271 CAR T cells can effectively kill canine cancer spheroids. Experiments were done in triplicates and error bars indicate SDAbstract 139 Figure 3Dynamics of peripheral lymphocytes, serum ALP and Current treatment regimen effectively decreased peripheral lymphocytes number after cyclophosphamide and fludarabine administration (D-4 and D-3) and increased serum ALP and ALT level after CAR T cell infusion (D0). Dashed line in both graphs show the upper limit of ALP and ALT levels, which are both 68U/LAbstract 139 Table 1Infused CAR T cell product informationBoth subjects are adult male beagle mixConclusionsWe demonstrated that, similar to human cancers, B7H3 is a target in canine solid tumors. We successfully generated canine B7H3 specific CAR T cell products that are highly efficient at killing canine 3D tumor spheroids using a production protocol that closely models human CAR T cell production procedure and confirmed the safety in vivo. We plan to test and optimize various approaches to enhance CAR T cell efficacy for solid tumor treatment both in vitro and in canine sarcoma patients.Ethics ApprovalThe study was approved by Fred Hutchinson Cancer Research Center‘s Institutional Animal Care and Use Committee (IACUC), approval number PROTO201900860


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Min Meng ◽  
Yi-chen Wu

Background. Chimeric antigen receptor-modified T cell (CAR-T) therapy has great potential for treating malignant tumors, especially hematological malignancies. However, the therapeutic effect of solid tumors is limited. One of the most important factors is the homing of CAR-T cells to tumor tissues in vivo. Method. a recombinant adeno-associated virus 2 (AAV2) subtype carrying the CCL19 gene was used to pretreat the tumor before the Glypican-3 (GPC3) CAR-T treatment. The tumor tissue continuously expressed CCL19 and analyzed the tumor-suppressive effect of AAV-CCL19 on GPC3 CAR-T by in vitro and in vivo experiments. Result. Under the chemotaxis of CCL19, CAR-T cells had a significant increase in the degree of tumor tissue infiltration; also, the antitumor effect in vitro was significantly enhanced. AAV-CCL19 combined with GPC3 CAR-T significantly increased the survival time of mice. The aforementioned results showed that the combination of AAV-CCL19 and GPC3 CAR-T cells effectively increased the ability of CAR-T cells to go home into the tumor tissue, making the CAR-T cell treatment more effective. Conclusion. This study is expected to solve the dilemma in treating CAR-T cell solid tumors and achieve better clinical results.


2020 ◽  
Author(s):  
Qian Liu ◽  
Cixiao Wang ◽  
Zeyou Jiang ◽  
Su-yang Yue

Abstract While CAR-T therapy has successfully treated hematological malignancies, it has proved sub-optimal for solid tumors. The main limitation is the inability of CAR-T cells to infiltrate and then proliferate within tumors. In this study, we co-expressed IL-7 and PH20, a type of hyaluronidase, with CAR targeting GPC3 (G3CAR-7×20) to address these issues. We found (G3CAR-7×20) exhibited better proliferation in vivo and in vitro than G3CAR, reduced the level of apoptosis after stimulation by tumor cells, and maintained the memory phenotype of CAR-T cells. G3CAR-7×20 also increased the ability of CAR-T cells to infiltrate tumor tissue. G3CAR-7×20 may significantly enhance the efficacy of CAR-T cells in solid tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weizhen Li ◽  
Yang Zhou ◽  
Zhongen Wu ◽  
Yaoping Shi ◽  
Enming Tian ◽  
...  

Colorectal cancer (CRC) patients are still lacking viable treatments. Chimeric antigen receptor (CAR) T cells have shown promise in hematologic malignancies, but their efficacy in solid tumors has been limited due to the immunosuppressive tumor microenvironment. We found that cancer antigen- EpCAM expression increased in the metastatic stage compared with the primary stage in cancers and the activation of Wnt and TGFβ pathways was positively correlated with EpCAM expression in multiple cancers, including colorectal cancer. We constructed CAR T cells targeting EpCAM that successfully showed selective cytotoxicity in highly EpCAM-expressing cancer cell lines. The combination of EpCAM CAR-T with the Wnt inhibitor-hsBCL9CT-24 displayed synergetic effect against EpCAM-positive colon cells in vitro and also in vivo. A mechanistic study showed that hsBCL9CT-24 treatment could modulate the tumor environment and improve infiltration of T cells, while possibly promoting the effector T cells at the early stages and postponing the exhaustion of CAR T cells at advanced stages. Overall, these results demonstrated that the combination of EpCAM CAR T-cell therapy with the Wnt inhibitor can overcome the limitations of CAR T cells in treating solid tumors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A144-A144
Author(s):  
Zhiyuan Cao ◽  
Chengfei Pu ◽  
Xianyang Jiang ◽  
Xiaogang Shen ◽  
Ruihong Zhu ◽  
...  

BackgroundCAR T therapy has achieved remarkable results in the treatment of hematological tumors such as leukemia, lymphoma, and multiple myeloma. However, there remains challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity and target specificity. Especially, due to tumor microenvironmental barriers, CAR T cells are not effectively exposed to tumor antigens and cannot activate co-stimulation signals on CAR molecules, thus conventional CAR T cell therapy has thus far shown weak cell expansion in solid tumor patients, achieved little or no therapeutic responses. Here, we developed CAR T cells based on a novel CoupledCAR® technology to overcome the lack of persistence of solid tumor CAR T cells in vivo.MethodsWe designed a ‘CoupledCAR’ lentivirus vector containing a single-chain variable fragment (scFv) targeting human TSHR. The lentivirus was produced by transfecting HEK-293T cells with ‘CoupledCAR’ lentiviral vectors and viral packaging plasmids. Patient‘s CD3 T cells were cultured in X-VIVO medium containing 125U/mL 1interleukin-2 (IL-2), and transduced with ‘CoupledCAR’ lentivirus at certain MOI. Transduction efficiency and was evaluated at 7 to 9 days after ‘CoupledCAR’ lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR. The evaluation of response level for patients were performed at month 1,month 3,and month 6 by PET/CT.ResultsWe used prostatic acid phosphatase (PAP) as an exemplary CAR target for prostate cancer and demonstrated that our CoupledCAR® significantly enhanced the expansion of PAP CAR T cells in vitro and in vivo. Further, we observed that this expansion showed more memory-like phenotypes, and caused little exhaustion of PAP CAR T cells. Also, we find coupled solid tumor CAR T cells have stronger tumor killing ability. We demonstrated this simple expansion to enable the persistence of solid tumor CAR T cells and can be further applied to other kinds of T cell therapy like TCR T and TILs.ConclusionsWe developed a novel platform technology (CoupledCAR®) that allows solid tumor CAR T cells to rapidly expand. This initial CAR T cell expansion enabled enhanced trafficking and infiltration of the tumor tissue whereby further cell expansion occurred and thereby achieved tumor clearance. We have carried clinical trials and obtained early promising clinical data. We will further verify the safety and efficacy of this technology in the treatment of different kinds of solid tumors in the clinic research.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2528-2528
Author(s):  
Lei Xiao ◽  
Song Li ◽  
Chengfei Pu ◽  
Zhiyuan Cao ◽  
Xinyi Yang ◽  
...  

2528 Background: Chimeric antigen receptor (CAR) T cell therapy has made significant progress in the treatment of blood cancers such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and limited expansion in vivo. Methods: We designed a CAR lentivirus vector that consisted of a humanized CD19-specific single-chain variable fragment (scFv), a 4-1BB costimulatory domain, and a CD3ζ signaling domain.The lentivirus was produced by transfecting HEK-293T cells with CAR lentiviral vectors and viral packaging plasmids. Patient’s CD3 T cells was cultured in X-VIVO medium containing 125U/mL 1interleukin-2 (IL-2), and transduced with CAR lentivirus at certain MOI 24h after stimulated by anti-CD3/CD28 magnetic beads. Transduction efficiency was evaluated at 7 to 9 days after CAR lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR,respectively. The evaluation of response level for patients were performed at month 1,month 3,and month 6 by PET/CT. Results: We engineered CoupledCAR T cells with lentiviral vectors encoding an anti-GCC (guanylate cyclase 2C) CAR molecule. To verify the safety and efficacy of CoupledCAR-T cells for treating solid tumors, we conducted several clinical trials for different solid tumors, including seven patients with colorectal cancer. These seven patients failed multiple rounds of chemotherapy and radiotherapy. In the clinical trial, the metastatic colorectal cancer patients were infused with autologous anti-GCC CoupledCAR-T cells range from 4.9×105/kg to 2.9×106/kg. We observed that CoupledCAR-T cells expanded significantly in the patients and infiltrated tumor tissue sites, demonstrating enhanced anti-tumor activities. PET/CT showed significant tumor shrinkage and SUV max declined, and the ongoing responses were monitored. Patient 3 achieved complete response and the best overall response rate (ORR, include complete remission, complete metabolic response, and partial response.) was 57.1% (4/7), complete remission (CR) rate was 14.3% (1/7). Conclusions: In conclusion, the clinical data demonstrated that CoupledCAR-T cells effectively expanded, infiltrated tumor tissue sites, and kill tumor cells in patients with colorectal cancer. We used immunotherapy to achieve complete remission in patients with advanced colorectal cancer for the first time. We are recruiting more colorectal cancer patients to further test the safety and efficacy of anti-GCC CoupledCAR T cells. Since our CoupledCAR technology is a platform technology, we are expanding it to treat other solid tumors using different target tumor markers.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


Sign in / Sign up

Export Citation Format

Share Document