scholarly journals Identification of Chemo-Resistant Residual Cell Population in Pediatric AML of Complete Remission By Single Cell RNA Sequencing

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-26
Author(s):  
Shuting Jiang ◽  
Fuhong He ◽  
Li Gao ◽  
Aili Chen ◽  
Yixin Hu ◽  
...  

Although majority of pediatric acute myeloid leukemia (pAML) undergo complete remission (CR) after chemotherapy, more than 30% of which eventually relapse, leading to a dismal outcome. Chemo-resistant cells at CR, measured as minimal residual disease (MRD), are thought to be origin for relapse. Although more sensitive detection of MRD has been achieved through genetic mutations, the pathological and clinical significance for most of the detected mutations remain unknown, largely due to a lack of understanding for the biological context where the mutation resides. The idea of retention of leukemia stem cells (LSCs) as a mechanism of chemo-resistance has not been demonstrated post-therapy in patients. Here we applied single cell RNA sequencing (scRNA-seq) on 14 pAML who met the criteria for clinical CR (n=11) and partial remission (PR, n=3) to determine the cellular heterogeneity and cancerous feature of the residual cells that can survive chemotherapy at remission. These patients carried common genetic mutations such as AML1-ETO, CBFB-MYH11 and FLT3-ITD, which represents genetically diverse WHO subtypes. To maximize the power to detect tumor cells that can survive chemotherapy, we used 54 unsorted total bone marrow (BM) and/or peripheral blood (PB) nucleated cells collected at diagnosis and Day 26 (D26) of the first cycle of chemotherapy for 10X genomics' scRNA-seq. Cells from each pAML were compiled into one UMAP together with normal reference using unsupervised clustering to distinguish tumor clusters from normal. Clusters were defined to be tumor if patient's diagnosis contributed at least 80% of the cells, and were confirmed by the presence of somatic mutations and/or known AML mRNA expression signature associated with chromosome translocations. By projecting onto the closest normal hematopoietic cells based on transcription features, the tumor cells were classified as one of the 12 cell types (HSC/MPP, LMPP, GMP, MEP, E/B/M, CLP, classical/nonclassical Monocyte, cDC, pDC, and pre/inmature Neutrophil like cells). Consistently with findings in adult AML, cell populations were heterogeneous at diagnosis with 5-9 distinct clusters. Interestingly, majority (9/11) of the patients had 1-6 tumor clusters detected (mean 52 cells per cluster) at D26 post-chemotherapy. These D26 residual tumor cells possessed mutations originally detected by genomic sequencing and/or known AML signatures, and consistently clustered with tumor cells from diagnosis. These residual tumor cells accounted for average 1.4% of total BM cells at D26, while the morphological examination and flow cytometry analysis of MRD showed average 4.0% and 0.71% of tumor cells. To further evaluate the chemo-resistant potential of identified residual tumor cells, we focused on three distinct features known to be associated with chemo-resistance in mouse models, including LSC activity, active oxidative phosphorylation (OXPHOS) or leukemic-regenerating cell (LRC) state. Among the total 18 residual tumor clusters detected at D26, 33.3% (6/18) exhibited expression signatures associated with at least one chemo-resistant features. The remaining clusters consisted more differentiated progenitor/monocyte-like cells. Specifically, three patients (1 PR and 2 CR) had the HSC/MPP or LMPP-like clusters possessing strong LSC and OXPHOS-associated signatures. The remaining one patient had cDC-like cluster expressing reported LRC signature. Importantly, all these four patients had either unfavorable cytogenetics or persistence of driver mutations detected by PCR. Taken together, these data showed that pediatric AMLs represented heterogeneous populations at both diagnosis and remission. Among the residual tumor clusters that survived chemotherapy, a small fraction (6/18) were HSC/MPP-like, LMPP-like and cDC-like cells with known chemo-resistant expression features. These findings provide the first in vivo characterization of cellular heterogeneity in chemo-treated pAML with complete remission. Further studies are needed to determine the molecular characteristics of these residual cells that may convey chemo-resistance and to determine whether the presence of these cells are associated with increased risk of relapse. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Junfen Xu ◽  
Yixuan Cen ◽  
Weiguo Lu

Abstract Background Ovarian carcinosarcoma (OCS) is one of rarest and most challenging histologic subtype of ovarian cancer. It features remarkable cellular heterogeneity. Using single-cell RNA sequencing, we characterize the cellular composition of the OCS and identify their molecular characteristics. Methods we applied single-cell RNA sequencing (scRNA-seq) to resected primary OCS for the in-depth analysis of tumor cells and the TME. Immunohistochemistry (IHC) staining was used for validation. Results Malignant epithelial and fibroblast cells displayed a high-degree of intratumoral heterogeneity. We revealed that certain epithelial cell subclusters had high levels of drug resistance scores and many active metabolic pathways. Furthermore, γδ T cells exhibited enriched IFNγ and IFNα response characteristics. Notably, we observed that macrophages were mainly M2-like macrophages with immunosuppressive properties. In addition, we found that the CD1A+/FCER1A+ DC cells were enriched with genes related to cytolytic effector pathway. Analyzing ligand-receptor interaction pairs between cell types, we identified broadly interacting cells and observed an interaction between the ANXA1+ epithelial population and FPR1+/FPR3+ myeloid cells. Conclusion Our findings provide a comprehensive single-cell transcriptomic landscape of human OCS and present a well-established resource for elucidating OCS diversity.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii110-ii110
Author(s):  
Christina Jackson ◽  
Christopher Cherry ◽  
Sadhana Bom ◽  
Hao Zhang ◽  
John Choi ◽  
...  

Abstract BACKGROUND Glioma associated myeloid cells (GAMs) can be induced to adopt an immunosuppressive phenotype that can lead to inhibition of anti-tumor responses in glioblastoma (GBM). Understanding the composition and phenotypes of GAMs is essential to modulating the myeloid compartment as a therapeutic adjunct to improve anti-tumor immune response. METHODS We performed single-cell RNA-sequencing (sc-RNAseq) of 435,400 myeloid and tumor cells to identify transcriptomic and phenotypic differences in GAMs across glioma grades. We further correlated the heterogeneity of the GAM landscape with tumor cell transcriptomics to investigate interactions between GAMs and tumor cells. RESULTS sc-RNAseq revealed a diverse landscape of myeloid-lineage cells in gliomas with an increase in preponderance of bone marrow derived myeloid cells (BMDMs) with increasing tumor grade. We identified two populations of BMDMs unique to GBMs; Mac-1and Mac-2. Mac-1 demonstrates upregulation of immature myeloid gene signature and altered metabolic pathways. Mac-2 is characterized by expression of scavenger receptor MARCO. Pseudotime and RNA velocity analysis revealed the ability of Mac-1 to transition and differentiate to Mac-2 and other GAM subtypes. We further found that the presence of these two populations of BMDMs are associated with the presence of tumor cells with stem cell and mesenchymal features. Bulk RNA-sequencing data demonstrates that gene signatures of these populations are associated with worse survival in GBM. CONCLUSION We used sc-RNAseq to identify a novel population of immature BMDMs that is associated with higher glioma grades. This population exhibited altered metabolic pathways and stem-like potentials to differentiate into other GAM populations including GAMs with upregulation of immunosuppressive pathways. Our results elucidate unique interactions between BMDMs and GBM tumor cells that potentially drives GBM progression and the more aggressive mesenchymal subtype. Our discovery of these novel BMDMs have implications in new therapeutic targets in improving the efficacy of immune-based therapies in GBM.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dandan Cao ◽  
Rachel W. S. Chan ◽  
Ernest H. Y. Ng ◽  
Kristina Gemzell-Danielsson ◽  
William S. B. Yeung

Abstract Background Endometrial mesenchymal-like stromal/stem cells (eMSCs) have been proposed as adult stem cells contributing to endometrial regeneration. One set of perivascular markers (CD140b&CD146) has been widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative medicine and have long been studied, their cellular heterogeneity, relationship to primary counterpart, remains largely unclear. Methods In this study, we applied 10X genomics single-cell RNA sequencing (scRNA-seq) to cultured human CD140b+CD146+ endometrial perivascular cells (ePCs) from menstrual and secretory endometrium. We also analyzed publicly available scRNA-seq data of primary endometrium and performed transcriptome comparison between cultured ePCs and primary ePCs at single-cell level. Results Transcriptomic expression-based clustering revealed limited heterogeneity within cultured menstrual and secretory ePCs. A main subpopulation and a small stress-induced subpopulation were identified in secretory and menstrual ePCs. Cell identity analysis demonstrated the similar cellular composition in secretory and menstrual ePCs. Marker gene expression analysis showed that the main subpopulations identified from cultured secretory and menstrual ePCs simultaneously expressed genes marking mesenchymal stem cell (MSC), perivascular cell, smooth muscle cell, and stromal fibroblast. GO enrichment analysis revealed that genes upregulated in the main subpopulation enriched in actin filament organization, cellular division, etc., while genes upregulated in the small subpopulation enriched in extracellular matrix disassembly, stress response, etc. By comparing subpopulations of cultured ePCs to the publicly available primary endometrial cells, it was found that the main subpopulation identified from cultured ePCs was culture-unique which was unlike primary ePCs or primary endometrial stromal fibroblast cells. Conclusion In summary, these data for the first time provides a single-cell atlas of the cultured human CD140b+CD146+ ePCs. The identification of culture-unique relatively homogenous cell population of CD140b+CD146+ ePCs underscores the importance of in vivo microenvironment in maintaining cellular identity.


2021 ◽  
Vol 8 (11) ◽  
pp. 166
Author(s):  
Dimitrios Kouroupis ◽  
Thomas M. Best ◽  
Lee D. Kaplan ◽  
Diego Correa ◽  
Anthony J. Griswold

The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1751 ◽  
Author(s):  
Rishikesh Kumar Gupta ◽  
Jacek Kuznicki

The present review discusses recent progress in single-cell RNA sequencing (scRNA-seq), which can describe cellular heterogeneity in various organs, bodily fluids, and pathologies (e.g., cancer and Alzheimer’s disease). We outline scRNA-seq techniques that are suitable for investigating cellular heterogeneity that is present in cell populations with very high resolution of the transcriptomic landscape. We summarize scRNA-seq findings and applications of this technology to identify cell types, activity, and other features that are important for the function of different bodily organs. We discuss future directions for scRNA-seq techniques that can link gene expression, protein expression, cellular function, and their roles in pathology. We speculate on how the field could develop beyond its present limitations (e.g., performing scRNA-seq in situ and in vivo). Finally, we discuss the integration of machine learning and artificial intelligence with cutting-edge scRNA-seq technology, which could provide a strong basis for designing precision medicine and targeted therapy in the future.


Cell Reports ◽  
2014 ◽  
Vol 8 (6) ◽  
pp. 1905-1918 ◽  
Author(s):  
David T. Ting ◽  
Ben S. Wittner ◽  
Matteo Ligorio ◽  
Nicole Vincent Jordan ◽  
Ajay M. Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document