scholarly journals The Mechanism of Activated TGF-β1 Inhibiting GVL Effects of Bone Marrow NK Cells Leading to Early Relapse after Transplantation

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 48-49
Author(s):  
Dongyao Wang ◽  
Xiaoyu Zhu ◽  
Zimin Sun

Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is one of the best ways to cure acute myeloid leukemia (AML). However, patients with AML undergoing allo-HSCT are at risk of relapse, the mechanism remains poorly understood. Here, we demonstrated the significant decrease of nature killer (NK) cells, and the declined proportion of multi-functional effector NK cells in bone marrow from patients who had a relapse in 3 months after allo-HSCT. Furthermore, we verified the levels of activated Transforming growth factor-β1 (TGF-β1), not the total TGF-β1, increased in bone marrow of these patients. This high level activated TGF-β1 was correlated with reduced cytotoxicity of NK cell, and contributed to immune escape of tumor cells. Moreover, the expression of glycoprotein A repetitions predominant (GARP), which is critical to TGF-β1 activation, high expressed in CD4+ T cells of patients who had a relapse. These data reveal a mechanism of immune escape and proposes approaches for therapeutic administration of NK cells in order to reverse suppression of activated TGF-β1 during early allo-HSCT. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1493-1493
Author(s):  
Derek Zachman ◽  
Devorah C Goldman ◽  
Chandan Guha ◽  
Beth Wilmot ◽  
William H. Fleming

Abstract Endothelial cells (EC) are known to be essential for hematopoietic regeneration; however, little is known about the pathways that regulate this activity. By modeling endothelial-dependent HSC interactions in vitro, we found that human umbilical vein endothelial cells (HUVEC) had a markedly reduced capacity to regenerate functional CD150+LSK cells (HSC) compared to other sources of arterial and venous EC. Transcriptional profiling revealed the overexpression of transforming growth factor- β1 (TGF-β1) in HUVEC and indicated that TGF-β1 driven transcriptional programs are highly active in these cells, a finding consistent with autocrine TGF-β1 signaling. Functional studies demonstrated that HSC regeneration by EC was potently inhibited by TGF-β1 and augmented by the ALK5 inhibitor SB431542, in a dose-dependent manner. Importantly, exposure of EC alone to TGF- β1 was sufficient to attenuate subsequent HSC self-renewal. Transcriptome analysis also identified hepatocyte growth factor (HGF) as a candidate EC-derived factor with the potential to enhance hematopoietic regeneration. HGF treatment of HUVEC activated endothelial Akt signaling and led to a >10-fold increase in HSC regeneration that could be blocked by the c-Met inhibitor PF04217903. HGF treatment also dramatically increased long-term multi-lineage hematopoiesis from HUVEC regenerated HSC. Our findings reveal a novel suppressive role for TGF-β1 in the vascular niche and demonstrate that EC-derived growth factors such as HGF have the potential to attenuate this suppression and significantly enhance HSC regeneration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 815-825 ◽  
Author(s):  
Hui-Li Yang ◽  
Wen-Jie Zhou ◽  
Kai-Kai Chang ◽  
Jie Mei ◽  
Li-Qing Huang ◽  
...  

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviorsin vitrowere analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cellsin vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4858-4858
Author(s):  
Guanghua Chen ◽  
De Pei Wu ◽  
Ming Zhen Yang ◽  
Xiao Wen Tang ◽  
Ai-ning Sun

Abstract Natural killer(NK) cells are innate effector cells of the immune system, believed to limit viremia and tumor burden before the onset of adaptive T and B cell immunity. NK cells are potent effector cells in allogeneic bone marrow transplantation. NK cell activity is partially controlled through interactions between killer Ig-like receptors on NK cells and their respective HLA class I ligands. Immunosuppressive agents including cyclosporin, FK506 and Rapamune are utilized in clinical hematopoietic stem cell transplantation. Little is known about the effects of immunosuppressive agents on NK cells post bone marrow transplantation. The in vivo effects of Rapamune on NK cells were determined in an allogeneic bone marrow transplantation model. Splenic NK cell levels in recipients treated with Rapamune decrease markedly. NK cell proliferation and function are significantly decreased in the presence of Rapamune. Studying the differential effects of immunosuppressive drugs on NK cell function is critical in clinical hematopoietic stem cell transplantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4314-4314
Author(s):  
Akm Khyrul Wara ◽  
Kevin Croce ◽  
ShiYin Foo ◽  
Xinghui Sun ◽  
Basak Icli ◽  
...  

Abstract Abstract 4314 Background: Emerging evidence demonstrates that endothelial progenitor cells (EPCs) may originate from the bone marrow and are capable of being recruited to sites of ischemic injury and contribute to neovascularization. However, the identities of these bone marrow cells and the signaling pathways that regulate their differentiation into functional EPCs remain poorly understood. Methods and Results: We previously identified that among hematopoietic progenitor stem cells, common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) can preferentially differentiate into EPCs and possess high angiogenic activity under ischemic conditions compared to megakaryocyte-erythrocyte progenitors (MEPs), hematopoietic stem cells (HSCs), and common lymphoid progenitors (CLPs). Herein, we identify that a TGF-β1-responsive Kruppel-like Factor, KLF10, is robustly expressed in EPCs derived from CMPs and GMPs, compared to progenitors lacking EPC markers. KLF10–/– mice have marked defects in circulating EPCs (–23.6% vs. WT, P<0.004). In addition, EPC differentiation and TGF-β induced KDR responsiveness is markedly impaired (CMPs: WT 22.3% vs. KO 8.64%, P<0.0001; GMPs: WT 32.8% vs. KO 8.97%, P<0.00001). Functionally, KLF10–/– EPCs derived from CMPs and GMPs adhered less to fibronectin-coated plates (CMPs: WT 285 vs. KO 144.25, P< 0.0004; GMPs: WT 275.25 vs. KO 108.75, P <0.0003) and had decreased rates of migration in transwell Boyden chambers (CMPs: WT 692 vs. KO 298.66, P<0.00004; GMPs: WT 635.66 vs. KO 263.66, P<0.00001). KLF10–/– mice displayed impaired blood flow recovery after hindlimb ischemia (day 14, WT 0.827 vs. KO 0.640, P <0.009), an effect completely rescued by WT EPCs, but not KLF10–/– EPCs. Matrigel plug implantation studies demonstrated impaired angiogenesis in KLF10–/– mice compared to WT mice (WT 158 vs. KO 39.83, P<0.00000004). Overexpression studies revealed that KLF10 rescued EPC formation from TGF-β1+/– CMPs and GMPs. Mechanistically, TGF-β1 and KLF10 target the VEGFR2 promoter in EPCs which may underlie these effects. Background: Collectively, these observations identify that TGF-β1 signaling and KLF10 are part of a key signaling pathway that regulates EPC differentiation from CMPs and GMPs and may provide a therapeutic target during cardiovascular ischemic states. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4831-4831
Author(s):  
Stefanie Bugl ◽  
Stefan Wirths ◽  
R Müller Martin ◽  
Märklin Melanie ◽  
Tina Wiesner ◽  
...  

Abstract Abstract 4831 Introduction: Previously it was demonstrated that lymphopoiesis is rapidly established after transplantation of wild type stem cells into lymphopenic NODSCIDcγ−/− mice. These data were interpreted as evidence for an “empty” preformed lymphopoietic niche being replenished by lymphoid progenitors. We hypothesized that antibody-induced neutropenia might influence early post transplant fate decision to myeloid rather than lymphoid differentiation resulting in delayed lymphoid reconstitution. Materials and Methods: 25,000 flow sorted CD45.2-expressing wild type Lin-/Sca1+/c-Kit+ (LSK) cells from C57BL/6 mice were transplanted into sublethally irradiated B-/T-/NK-cell deficient NODSCIDcγ−/− mice (CD45.1). Three groups of n = 7 mice received anti-Gr1 or anti-1A8 i.p. every 48 h to induce continuous antibody-mediated neutropenia vs. PBS as control. Blood was harvested at regular intervals to monitor the engraftment. After 16, 22, and 34 days, animals were sacrificed and underwent blood and bone marrow analysis. Results: Hematopoietic regeneration started with the emergence of donor-derived monocytes in all groups as well as neutrophils in the control group as early as 9 days after transplantation. On day 14, B cells were to be detected for the first time, followed by T lymphocytes approximately 20 days after transplantation. Besides the fact that neutrophils were undetectable in the antibody treated groups, the peripheral blood revealed no significant changes between the neutropenic mice and the control group at any point of time. At the bone marrow level, an increase of LSK and granulocyte-macrophage progenitors (GMPs) at the expense of megakaryocyte erythrocyte progenitor cells (MEPs) was found in neutropenic mice. Common lymphoid progenitors (CLPs), however, were not significantly different. Conclusions: The engraftment of wild type donor cells after hematopoietic stem cell transplantation into NODSCIDcγ−/− mice started with the production of monocytes and neutrophils. B-lymphocytes were detectable by day 14 after transplantation. The production of T-cells started around day 20. Continuous antibody-mediated neutropenia did not significantly delay lymphoid regeneration. Although the marrow of neutropenic mice displayed increased proliferation of granulocyte progenitors, CLPs were unchanged. We conclude that the detection of donor-derived lymphocytes in the host peripheral blood is a relatively early event after LSK transplantation. Moreover, antibody induced neutropenia is not sufficient to induce sustainable changes in early hematopoietic fate decisions on the bone marrow level. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4557-4557 ◽  
Author(s):  
Isabel Gonzalez-Gascon y Marin ◽  
Ana Maria Perez-Corral ◽  
Jorge Gayoso ◽  
Javier Anguita ◽  
Cristina Pascual ◽  
...  

Abstract Abstract 4557 BACKGROUND: Natural killer (NK) cells are innate immune effectors that directly lyse virally infected or malignant cells. There are 2 different subsets of NK cells with distinct phenotypic and functional characteristics: the CD56dim subset, which composes 90% of peripheral blood NK cells and has a cytotoxic function, and the CD56bright subset, which cooperates with dendritic cells and T cells in lymph nodes to secrete interferon and promote adaptive immune responses. NK cells are the first donor-derived lymphocyte subset to reconstitute after hematopoietic stem cell transplantation, reaching normal levels after 1 month. Nearly all phenotyping studies of NK subsets after haploidentical hematopoietic stem cell transplantation (HHSCT) reveal a rapid reconstitution of NK cells towards the CD56bright subset. In addition, Y.-J. Chang et al found the highest 2-year survival in patients with a high number of CD56bright NK cells after unmanipulated HHSCT. We analyzed reconstitution of the NK compartment between days 90 and 180 after unmanipulated bone marrow HHSCT with reduced intensity conditioning (RIC). METHODS: Six adults received unmanipulated bone marrow HHSCT after RIC (fludarabine 30 mg/m2 [day –6 to –2], cyclophosphamide 14.5 mg/kg [day –6 and –5], and busulfan i.v. 3.2mg/kg [day –3]) at our institution between July 2007 and July 2010. Prophylaxis for acute graft-versus-host disease (GvHD) consisted of cyclophosphamide 50mg/kg (days +3 and +4) and cyclosporine A and mycophenolate mofetil from day +5 onwards. We monitored the reconstitution kinetics of circulating NK cells (CD56+, CD3–), and the CD56bright and CD56dim subsets by multiparametric flow cytometry (FC 500 Beckman® Coulter) at day +90 and day +180 after transplantation. Patient characteristics and clinical outcomes are shown in Table 1. 6 patients who underwent allogeneic HLA-identical sibling HSCT with RIC during the same period were used as controls. RESULTS: After HHSCT, NK cells reached normal levels in all patients but one at day +90, with a median number of NK cells of 111/mm3 (range, 25–195/mm3). At day +180 the median number of NK cells was 92/mm3 (range, 4–272/mm3). When we analyzed the absolute number of CD56bright and CD56dim subsets at day +90, we observed 2 patterns: Two patients showed skewed NK cell reconstitution towards CD56bright (Patient no. 3: 54 CD56bright/mm3; 11 CD56dim/mm3. Patient no. 4: 70 CD56bright/mm3; 17 CD56dim/mm3). Three patients reconstituted with a CD56dim/CD56bright ratio towards the CD56dim cell subset, similar to that of healthy adults (Patient no. 1: 17 CD56bright/mm3; 178 CD56dim/mm3. Patient no. 5: 9 CD56brigh/mm3; 135 CD56dim/mm3. Patient no. 6: 20 CD56bright/mm3; 116 CD56dim/mm3). One patient did not achieve adequate NK cell reconstitution (Patient no. 2: 15 CD56bright/mm3; 10 CD56dim/mm3). In contrast, in the control group, an increase in the CD56bright NK cell subset was not observed in any of the patients at any point. It is worth noting that 2 of the 3 patients with better clinical outcome (no GvHD, no relapse), namely patients no. 3 and no. 4 were the ones with skewed NK cell reconstitution towards the CD56bright NK cell subset. The other patient with a better clinical outcome (patient no. 6) had a normal CD56dim/CD56bright ratio at day +90. However, he showed an early CD56bright reconstitution (363 CD56bright/mm3; 34 CD56dim/mm3) in an additional determination on day +30. NK cell subsets reconstitution kinetics is shown in Figure 1. CONCLUSIONS: In our experience, NK cell reconstitution is adequate after RIC unmanipulated bone marrow HHSCT. Some patients recovered with a high proportion of CD56bright NK cells, as previously reported in other studies on HHSCT. Although limited by the sample size, our results are consistent with the previously observed survival advantage of patients with high early levels of CD56bright NK cells after unmanipulated haploidentical transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2288-2288
Author(s):  
Dean A. Lee ◽  
Vladimir V Senyukov ◽  
Jerome R Trembley

Abstract NK Cell subpopulations express tremendous diversity through polymorphisms, haplotypes, differential expression, and licensing of the Killer Immunoglobulin-like Receptors (KIR). KIR diversity affects both the predisposition to cancer, and the response to therapies such as hematopoietic stem cell transplantation. Clinical trials that take advantage of the anti-cancer properties of NK cells have been limited to choosing donors on the basis of KIR genotypes and/or HLA haplotypes. Moreover, adoptive immunotherapy approaches have been limited by low NK cell doses. The latter hurdle has been recently mitigated by methods for expanding clinical grade NK cells ex vivo. These approaches for growing large numbers of cells now enable investigation into selecting more potent NK cell subsets for increased therapeutic efficacy. We hypothesized that the desired KIR repertoire could be molded through inhibition of undesirable KIR populations by crosslinking with relevant anti-KIR antibodies during expansion with our previously described method, which produces a mean 30,000-fold expansion of NK cells in 3 weeks. First, we determined that maximum inhibition was obtained when anti-KIR antibodies were applied to previously activated NK cells, crosslinked with secondary antibody, and then restimulated for proliferation. Robust reduction of targeted KIR-positive populations could be achieved for each inhibitory KIR (Fig. 1). When pre-activated with anti-KIR2DL1 for one stimulation cycle, NK cells expressing this KIR were decreased by a median of 70.4% ± 19.3%. Similarly, KIR2DL2/3+ NK cells could be reduced by 56% ± 17.5%, and KIR3DL1+ NK cells could be reduced by 53.5% ± 16.3%. When anti-KIR antibodies were combined, similar suppression of multiple-KIR subpopulations was observed. Other NK cell receptors were not significantly affected during targeted KIR inhibition. We then assessed the resulting NK cell populations for degranulation responses to targets with selected HLA as KIR ligands. Inhibition of KIR-expressing subpopulations during expansion resulted in NK cell populations with enhanced degranulation against tumor cells expressing the HLA ligand of the targeted KIR. Importantly, the cytotoxicity of the bulk NK cell population against HLA-negative targets remained. These results indicate that KIR crosslinking during NK cell propagation enables significant reduction in the targeted KIR subpopulations, resulting in an NK cell population with a selective decrease in KIR inhibition. By utilizing antibody-controlled expansion for molding of the KIR repertoire according to patient HLA type, a personalized NK cell product may be produced with enhanced potency, improving NK cell immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3781-3781
Author(s):  
Eolia Brissot ◽  
Sawa Ito ◽  
Kit Lu ◽  
Carly Cantilena ◽  
B. Douglas Smith ◽  
...  

Abstract Adult acute lymphoblastic leukemia (ALL) remains a therapeutic challenge with less than 40% long term survival. There is growing evidence that malignant diseases exert an “immune editing” effect which blocks antitumor immunity and permits tumor growth through immune evasion. Such tumor escape represents an obstacle for anticancer immunotherapy. In ALL such immune escape mechanisms are not well characterized. We therefore profiled cellular immunity in ALL, by characterizing the subsets of T cells, regulatory T cells (Treg), natural killers (NK) cells and γd T cells, using various functional markers including T cell exhaustion and NK cell activating or inhibitory molecules. Forty ALL patients were included in the study. The median age was 39 y (range, 18-75). Thirty-six presented with B-lineage ALL and 4 with T-lineage ALL. Mononuclear cells were isolated from blood (n=19) or bone marrow (n=21) at the onset of leukemia or at relapse. The median infiltration of blasts was 85% (range 24-96%). Healthy donor peripheral blood (n=12) and bone marrow (n=9), from age and gender matched population, were simultaneously analyzed as controls. Extra-and intra cellular staining were performed using using antibodies directed against CD3, CD4, CD8, CD45, CD45, CD45RA, CD45RO, CCR7, CD95, CD27, CD19, CD14, CD127, CD25, Foxp3, Helios, αβTCR, HLA-DR, CD117, CD20, CD10, CD22, CD34, LAG3, PD1, PDL1, CD56, NKG2A, NKG2C, NKG2D, KIR2DL1, KIR2DL3, CD57, CD33, CD11b, CD15, CD38 and CD24. Data were acquired on a BD LSRFORTESSA flow cytometer. The expression of programmed cell death 1 (PD-1, CD279) receptor on CD8+T cells was significantly increased in blood and bone marrow of ALL patients compared to healthy donors (p<0.0001 and p=0.004, respectively) (Fig. 1). Focusing on the different subsets, CD8+ effector memory T cells significantly over-expressed PD-1 in blood and bone marrow of ALL patients compared to healthy donors (p=0.008 and p=0.04, respectively). Moreover, there was a significant positive correlation between PD-1 expression on CD8+ effector memory T cells and blast infiltration (R2=0.23, 95%CI 0.026-0.76, p=0.04). Expression of the co-inhibitory receptor lymphocyte-activation gene 3 (LAG-3, CD223) was similar in ALL patients compared to healthy donors. A significantly higher frequency of T regulators (CD25+, CD127 low, Foxp3+) was found in bone marrow microenvironment in ALL patients (4.3% versus 1.6%, p=0.02). Concerning γd T cells, frequency was similar in blood and bone marrow of ALL patients compared with healthy donors. There was a significantly lower frequency of CD56dimNKG2A+KIR-CD57- (p=0.02) in the bone marrow of ALL patients indicating a maturation arrest. Interestingly, expression of the activating receptor NKG2D which plays an important role in triggering the NK cell–mediated tumor cell lysis was significantly reduced in NK cells of ALL patients while no difference in NK cell expression of NKG2C was found(Fig. 2). Adult patients with ALL show evidence of immune-editing of T cells and NK cells. This global immunosuppressive mechanism may contribute to the eventual escape of ALL from immune control. PD-1, overexpression, described in acute myeloid leukemia and chronic myeloid leukemia has been implicated in T-cell exhaustion and subsequent tumor immune evasion. Our data suggests similar immune escape mechanisms pertain in ALL. Effective antileukemia immunotherapy will require targeting one or more of these immunosuppressive pathways to achieve optimum results. Disclosures Fathi: Seattle Genetics, Inc.: Consultancy, Research Funding; Takeda pharmaceuticals International Co.: Research Funding; Exelixis: Research Funding; Ariad: Consultancy.


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 485-493 ◽  
Author(s):  
Sunanda Basu ◽  
Hal E. Broxmeyer

Abstract Disruption of stromal cell-derived factor-1 (SDF-1/CXCL12 [CXC chemokine ligand 12]) interaction leads to mobilization of stem/progenitor cells from bone marrow to circulation. However, prolonged exposure of CD34+ cells to SDF-1 desensitizes them to SDF-1. So how do cells remain responsive to SDF-1 in vivo when they are continuously exposed to SDF-1? We hypothesized that one or more mechanisms mediated by cytokines exist that could modulate SDF-1 responsiveness of CD34+ cells and the desensitization process. We considered transforming growth factor-β1 (TGF-β1) a possible candidate, since TGF-β1 has effects on CD34+ cells and is produced by stromal cells, which provide niches for maintenance and proliferation of stem/progenitor cells. TGF-β1 significantly restored SDF-1–induced chemotaxis and sustained adhesion responses in cord blood CD34+ cells preexposed to SDF-1. Effects of TGF-β1 were dependent on the dose and duration of TGF-β1 pretreatment. Phosphorylation of extracellular signal-regulated kinase 1 (Erk1)/Erk2 was implicated in TGF-β1 modulation of migratory and adhesion responses to SDF-1. Our results indicate that low levels of TGF-β1 can modulate SDF-1 responsiveness of CD34+ cells and thus may facilitate SDF-1–mediated retention and nurturing of stem/progenitor cells in bone marrow.


Sign in / Sign up

Export Citation Format

Share Document