hla ligand
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3232
Author(s):  
Femke A. I. Ehlers ◽  
Nicky A. Beelen ◽  
Michel van van Gelder ◽  
Tom M. J. Evers ◽  
Marjolein L. Smidt ◽  
...  

Natural killer (NK)-cell-based immunotherapies are an attractive treatment option for cancer. We previously showed that alloreactive mouse NK cells cured mice of 4T1 breast cancer. However, the tumor microenvironment can inhibit immune responses, and these suppressive factors must be overcome to unfold the NK cells’ full anti-tumor potential. Here, we investigated the combination of antibody-dependent cellular cytotoxicity (ADDC) and the selection of KIR-HLA-ligand mismatched NK cells to enhance NK cell anti-breast cancer responses in clinically relevant settings. Donor-derived and IL-2-activated NK cells were co-cultured with patient-derived breast cancer cells or cell lines MCF7 or SKBR3 together with the anti-HER2 antibody trastuzumab. NK cells mediated anti-breast cancer cytotoxicity under normoxic and hypoxic conditions. Under both conditions, trastuzumab vigorously enhanced NK cell degranulation (CD107a) against HER2-overexpressing SKBR3 cells, but we observed a discrepancy between highly degranulating NK cells and a rather modest increase in cytotoxicity of SKBR3. Against patient-derived breast cancer cells, the anti-tumor efficacy was rather limited, and HLA class I expression seemed to contribute to inhibited NK cell functionality. KIR-ligand-mismatched NK cells degranulated stronger compared to the matched NK cells, further highlighting the role of HLA. In summary, trastuzumab and KIR-ligand-mismatched NK cells could be two strategies to potently enhance NK cell responses to breast cancer.


2021 ◽  
Vol 9 (4) ◽  
pp. e002071
Author(s):  
Ana Marcu ◽  
Leon Bichmann ◽  
Leon Kuchenbecker ◽  
Daniel Johannes Kowalewski ◽  
Lena Katharina Freudenmann ◽  
...  

BackgroundThe human leucocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Understanding the benign HLA ligand repertoire is a prerequisite to define safe T-cell-based immunotherapies against cancer. Due to the poor availability of benign tissues, if available, normal tissue adjacent to the tumor has been used as a benign surrogate when defining tumor-associated antigens. However, this comparison has proven to be insufficient and even resulted in lethal outcomes. In order to match the tumor immunopeptidome with an equivalent counterpart, we created the HLA Ligand Atlas, the first extensive collection of paired HLA-I and HLA-II immunopeptidomes from 227 benign human tissue samples. This dataset facilitates a balanced comparison between tumor and benign tissues on HLA ligand level.MethodsHuman tissue samples were obtained from 16 subjects at autopsy, five thymus samples and two ovary samples originating from living donors. HLA ligands were isolated via immunoaffinity purification and analyzed in over 1200 liquid chromatography mass spectrometry runs. Experimentally and computationally reproducible protocols were employed for data acquisition and processing.ResultsThe initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 90,428 HLA-I- and 142,625 HLA-II ligands. The HLA allotypes are representative for the world population. We observe that immunopeptidomes differ considerably between tissues and individuals on source protein and HLA-ligand level. Moreover, we discover 1407 HLA-I ligands from non-canonical genomic regions. Such peptides were previously described in tumors, peripheral blood mononuclear cells (PBMCs), healthy lung tissues and cell lines. In a case study in glioblastoma, we show that potential on-target off-tumor adverse events in immunotherapy can be avoided by comparing tumor immunopeptidomes to the provided multi-tissue reference.ConclusionGiven that T-cell-based immunotherapies, such as CAR-T cells, affinity-enhanced T cell transfer, cancer vaccines and immune checkpoint inhibition, have significant side effects, the HLA Ligand Atlas is the first step toward defining tumor-associated targets with an improved safety profile. The resource provides insights into basic and applied immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy and autoimmunity. It is publicly available and can be browsed in an easy-to-use web interface at https://hla-ligand-atlas.org.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Martin G. Klatt ◽  
Zhiyuan Yang ◽  
Jianying Liu ◽  
Tatyana Korontsvit ◽  
Sung Soo Mun ◽  
...  

Chimeric antigen receptor (CAR) T cells represent a novel class of FDA-approved drugs with high efficacy against refractory B cell derived malignancies and potentially other cancer types. However, target selection for CAR T cell therapy remains challenging as cell surface proteins are not cancer-specific and therefore often not adaptable for CAR T cell therapy. In contrast, many intracellular proteins can be highly tumor specific and are targetable after proteasomal degradation and presentation on human leukocyte antigen (HLA) complexes recognized by T cell receptor mimic antibodies. This class of antibodies recognizes peptide:HLA complexes with a similar mode of recognition as a TCR, but with the clinical versatility and applicability of an antibody. To identify a tumor specific target that is presented as a peptide in conjunction with the highly prevalent HLA allele A*02:01, we immunopurified peptide:HLA complexes from various cancer cell lines of different origins, separated HLA ligands from complexes and identified their peptide sequences via mass spectrometry. Network analysis of the resulting HLA ligand datasets identified shared biological processes among the tumor cell lines that were not present in network analyses of published datasets of healthy human tissue HLA ligandomes. Through this filtering process several potential targets were identified and an HLA ligand derived from kinetochore NDC80 protein homolog (NDC80) was selected as a target. The NDC80 derived peptide was detected in over 90% of the A*02 positive cell lines tested and never reported to be present in HLA ligand datasets of healthy human tissues. Furthermore, NDC80 has been shown to be differentially expressed in malignant compared to adjacent non-malignant tissues and is associated with poor prognosis in many cancer types. After utilizing E-ALPHA®phage library screening, one clone (NDC80-L1) was selected as the lead TCR mimic antibody. Overall, NDC80-L1 showed high specificity for the target HLA:peptide complex in both antibody and CAR T cell format in vitro and demonstrated binding primarily to the central region of the HLA ligand as determined by alanine screening assays. The exquisite specificity of NDC80-L1 was further illustrated by NDC80 knockdown experiments as well as successful immunopurification of the target peptide together with no relevant off-targets from BV173 ALL cells in mass spectrometry assays. Given the high specificity, sensitivity was assessed primarily in a potent CAR T cell format: Multiple tumor cell lines of different origin (e.g. ALL, AML, lymphoma, melanoma, mesothelioma, pancreatic and thyroid cancer) were successfully killed in vitro by NDC80-L1 CAR T cells, but no toxicity towards A*02:01 positive CAR T cells, healthy PBMCs or NDC80 target negative cell lines was observed. Interestingly, NDC80-L1 CAR T cells demonstrated highest efficacy in hematological malignancies most likely correlating with elevated expression of antigen presentation machinery and rapid cell division which leads to strong surface expression of NDC80 peptides. In summary, CAR T cells directed against peptide/HLA-A*02 derived from the NDC80 protein effectively kill multiple cancer cell lines in vitro without evidence of relevant off-target killing. However, the improved killing especially against ALL, AML and lymphomas highlights the potential of these CAR T cells to preferentially eliminate cancer cells with high proliferative capacity. Future in vivo studies with CAR T cell and antibody format will further investigate this TCR mimic antibody's potential as a tumor-agnostic therapeutic agent. Disclosures Klatt: MSKCC/EUREKA: Patents & Royalties: MSKCC AND EUREKA THERAPUETICS HAVE FILED A PATENT FOR THIS ANTIBODY/SCFV. Yang:Eureka Therapuetics: Current Employment, Current equity holder in private company, Patents & Royalties: MSKCC and Eureka have filed patent for this TCRm and ScvF. Liu:Eureka Therapue: Current Employment, Current equity holder in private company, Patents & Royalties: Eureka Therapuetics and MSKCC have filed patent on this ScFV and TCRm. Dao:Eureka Therapeutics: Consultancy. Liu:Eureka Therapeutics: Current Employment, Current equity holder in private company, Patents & Royalties: Eureka Therapuetics and MSKCC have filed patent on this ScFV and TCRm. Scheinberg:Eureka Therapeutics: Consultancy, Current equity holder in private company, Patents & Royalties: Eureka Therapuetics and MSKCC have filed patent on this ScFV and TCRm; Actinium: Consultancy, Current equity holder in private company; Sellas: Consultancy, Current equity holder in private company; Contrafect: Current equity holder in private company; Arvenas: Current equity holder in private company; Sapience: Consultancy, Current equity holder in private company; Iovance: Current equity holder in private company; Oncopep: Consultancy; Pfizer: Consultancy, Current equity holder in private company; Lantheus: Current equity holder in private company; Enscyse: Current equity holder in private company.


Immunology ◽  
2020 ◽  
Author(s):  
Zeynep Koşaloğlu‐Yalçın ◽  
John Sidney ◽  
William Chronister ◽  
Bjoern Peters ◽  
Alessandro Sette

2020 ◽  
Vol 11 ◽  
Author(s):  
Fabio Marino ◽  
Aikaterini Semilietof ◽  
Justine Michaux ◽  
Hui-Song Pak ◽  
George Coukos ◽  
...  

2020 ◽  
Author(s):  
Zeynep Koşaloğlu-Yalçın ◽  
John Sidney ◽  
William Chronister ◽  
Bjoern Peters ◽  
Alessandro Sette

ABSTRACTBinding prediction tools are commonly used to identify peptides presented on MHC class II molecules. Recently, a wealth of data in the form of naturally eluted ligands has become available and discrepancies between ligand elution data and binding predictions have been reported. Quantitative metrics for such comparisons are currently lacking. In this study, we assessed how efficiently MHC class II binding predictions can identify naturally eluted peptides, and investigated instances with discrepancies between the two methods in detail. We found that, in general, MHC class II eluted ligands are predicted to bind to their reported restriction element with high affinity. But, for several studies reporting an increased number of ligands that were not predicted to bind, we found that the reported MHC restriction was ambiguous. Additional analyses determined that most of the ligands predicted to not bind are either weak binders or predicted to bind other co-expressed MHC class II molecules. For selected alleles, we addressed discrepancies between elution data and binding predictions by experimental measurements, and found that predicted and measured affinities correlate well. For DQA1*05:01/DQB1*02:01 (DQ2.5) however, binding predictions did miss several peptides that were determined experimentally to be binders. For these peptides and several known DQ2.5 binders we determined key residues for conferring DQ2.5 binding capacity, which revealed that DQ2.5 utilizes two different binding motifs, of which only one is predicted effectively. These findings have important implications for the interpretation of ligand elution data and for the improvement of MHC class II binding predictions.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3128-3128
Author(s):  
Ana Marcu ◽  
Leon Bichmann ◽  
Leon Kuchenbecker ◽  
Linus Backert ◽  
Daniel J Kowalewski ◽  
...  

3128 Background: The human leukocyte antigen (HLA) complex regulates the adaptive immune response by showcasing the intracellular and extracellular protein content to the immune system, which is the basis for T cell-dependent tumor rejection. Therefore, a comprehensive map of the entirety of both HLA class I- and class II-presented peptides from various benign tissues is a highly sought after resource, as it enables the definition of tumor-association on the immunologically pivotal level of the HLA ligandome. Methods: Human tissue samples were snap frozen post mortem during autopsy. The study was approved by the local IRB. HLA ligands were immunopurified and characterized using an Orbitrap Fusion Lumos mass spectrometer coupled to an Ultimate 3000 RSLC Nano UHPLC System. Data acquisition was performed as technical triplicates in data-dependent mode, and data were analyzed using the containerized, computational pipeline MHCquant. Results: In this work, we describe the HLA Ligand Atlas, a comprehensive collection of matched HLA class I and class II ligandomes from 29 non-malignant tissues and 13 human subjects (208 samples in total), covering 38 HLA class I, and 17 HLA*DRB alleles and comprising 48,381 HLA class I and 16,146 HLA class II peptides. Nearly 50% of HLA ligands have not been previously described. The HLA Ligand Atlas is publicly available as a raw data resource, but also in the form of a user-friendly web interface that allows users to quickly formulate complex queries against the data set. Both downloadable data and the query interface are available at www.hla-ligand-atlas.org. Conclusions: This data set provides a valuable tool for research in diverse fields such as systems biology, general immunology, autoimmune disease and organ transplantation. Most importantly, the HLA Ligand Atlas provides essential information for translational applications in immuno-oncology. The knowledge of HLA ligands from benign tissues strongly supports the informed design of proteogenomic HLA-dependent target discovery approaches.


2020 ◽  
Vol 19 (7) ◽  
pp. 1236-1247 ◽  
Author(s):  
Shutao Mei ◽  
Rochelle Ayala ◽  
Sri H. Ramarathinam ◽  
Patricia T. Illing ◽  
Pouya Faridi ◽  
...  

The presentation of post-translationally modified (PTM) peptides by cell surface HLA molecules has the potential to increase the diversity of targets for surveilling T cells. Although immunopeptidomics studies routinely identify thousands of HLA-bound peptides from cell lines and tissue samples, in-depth analyses of the proportion and nature of peptides bearing one or more PTMs remains challenging. Here we have analyzed HLA-bound peptides from a variety of allotypes and assessed the distribution of mass spectrometry-detected PTMs, finding deamidation of asparagine or glutamine to be highly prevalent. Given that asparagine deamidation may arise either spontaneously or through enzymatic reaction, we assessed allele-specific and global motifs flanking the modified residues. Notably, we found that the N-linked glycosylation motif NX(S/T) was highly abundant across asparagine-deamidated HLA-bound peptides. This finding, demonstrated previously for a handful of deamidated T cell epitopes, implicates a more global role for the retrograde transport of nascently N-glycosylated polypeptides from the ER and their subsequent degradation within the cytosol to form HLA-ligand precursors. Chemical inhibition of Peptide:N-Glycanase (PNGase), the endoglycosidase responsible for the removal of glycans from misfolded and retrotranslocated glycoproteins, greatly reduced presentation of this subset of deamidated HLA-bound peptides. Importantly, there was no impact of PNGase inhibition on peptides not containing a consensus NX(S/T) motif. This indicates that a large proportion of HLA-I bound asparagine deamidated peptides are generated from formerly glycosylated proteins that have undergone deglycosylation via the ER-associated protein degradation (ERAD) pathway. The information herein will help train deamidation prediction models for HLA-peptide repertoires and aid in the design of novel T cell therapeutic targets derived from glycoprotein antigens.


2019 ◽  
Author(s):  
Ana Marcu ◽  
Leon Bichmann ◽  
Leon Kuchenbecker ◽  
Daniel Johannes Kowalewski ◽  
Lena Katharina Freudenmann ◽  
...  

ABSTRACTThe human leukocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Here, we describe the HLA Ligand Atlas, an extensive collection of mostly matched HLA-I and -II ligandomes from 225 benign samples (29 tissues, 21 subjects). The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 89,853 HLA-I- and 140,861 HLA-II ligands. We observe that the immunopeptidomes differ considerably between tissues and individuals on both source protein and HLA-ligand level. 1,407 HLA-I ligands stem from non-canonical genomic regions. We highlight the importance of comparatively analyzing both benign and malignant tissues to inform tumor association, based on a case study in three glioblastoma patients. The resource provides insights into applied and basic immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy, and autoimmunity. It is publicly available at www.hla-ligand-atlas.org.


Sign in / Sign up

Export Citation Format

Share Document