scholarly journals Suppressing Synthesis of the Long Isoform of the Prolactin Receptor Is a Targeted Strategy to Prevent and Treat B Cell Malignancies

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1135-1135
Author(s):  
Adeleh Taghi Khani ◽  
Anil Kumar ◽  
Kelly Radecki ◽  
Sung June Lee ◽  
Mary Lorenson ◽  
...  

Abstract Rationale B cell malignancies, including leukemia and lymphoma, are high-risk lymphoid neoplasms. B cell malignancies predispose to autoimmune diseases including systemic lupus erythematosus (SLE) which increase the risk of developing these malignancies by >5-fold. Increased prolactin (PRL) expression is known to exacerbate SLE and promote the survival of autoreactive B cells. Furthermore, PRL induces expression of the protooncogenes, MYC and BCL2, in lymphoid tissues. However, whether PRL drives the initiation and maintenance of B cell malignancies was not known. Results We first tested our hypothesis that PRL, specifically signaling through the pro-proliferative and anti-apoptotic long isoform (LF) of the PRL receptor (PRLR), drives the progression of SLE to B cell malignancies. To this end, we knocked down the LF PRLR in MRL-lpr mice predisposed to developing SLE using a splice-modulating oligomer (SMO) that blocks splicing to produce the LF PRLR without affecting the short isoforms. LF PRLR knockdown reduced splenic and circulating B cell numbers in MRL-lpr SLE mice (Fig.1a). Consistent with reduced B cell numbers, BCL2 expression in B cells of SLE mice was suppressed after LF PRLR knockdown, although MYC was unaltered (Fig.1b). By sequencing the immunoglobulin heavy chains (IGH), we compared the composition of the splenic B cell repertoire between control- and LF PRLR SMO-treated SLE mice. Control oligomer treated SLE mice accumulated splenic B cells with long complementary determining region 3 (CDR3) and B cells with non-functional IGH, characteristics of autoreactive B cells. Treatment with the LF PRLR SMO reduced both. We then measured the expression of enzymes known to induce malignant transformation of B cells, namely recombination activating genes 1/2 (RAG1/2) and activation-induced cytidine deaminase (AID), in B cells of SLE mice in controls versus LF PRLR knockdown. Importantly, LF PRLR knockdown significantly reduced RAG1 (Fig.1c) and AID expression in splenic B cells of SLE mice (Fig.1d,e). Our findings thus underscore a causal role for LF PRLR signaling in promoting of malignant transformation of B cells in SLE. Because PRL induces the expression of BCL2 and MYC in lymphocytes, we next determined whether LF PRLR promotes the survival of overt B cell malignancies that overexpress MYC and BCL2, including diffuse large B cell lymphoma (DLBCL) and B-cell acute lymphoblastic leukemia (B-ALL). We observed that B-lymphoblasts expressed significantly higher levels of PRL and the LF PRLR as compared to normal B cells (Fig.1f). We also found that higher expression of PRL at diagnosis predicts poor clinical outcome in DLBCL patients (P=0.0244), and that patients with MYC/BCL2-overexpressing ALLs with a poor prognosis had significantly higher expression of the LF PRLR compared to their MYC lowBCL2 low counterparts (P<0.0001). These observations suggested that LF PRLR may modulate MYC and BCL2 expression. Knockdown of the LF PRLR using the LF PRLR SMO in MYC/BCL2-driven human B cell malignancies killed lymphoblasts and reduced MYC and BCL2 protein levels (Fig.1g). Because we previously showed that MYC-driven lymphoid malignancies are sensitive to natural killer (NK) cell-mediated immune clearance, we also examined whether LF PRLR knockdown synergized with NK cells in killing DLBCL. We found that LF PRLR knockdown enhanced NK cell-mediated killing of B-lymphoblasts (Fig.1h). Of note, no reductions were observed in NK cell viability or MYC levels within NK cells upon LF PRLR knockdown, suggesting that LF PRLR selectively kills B-lymphoblasts without negatively impacting NK homeostasis. Conclusion Our studies identify the specific knockdown of LF PRLR as a potentially safe and targeted strategy to prevent the onset of B cell malignancies in SLE patients and to treat flagrant DLBCL and B-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2017 ◽  
Vol 130 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Mohamad F. Al Sayed ◽  
Carla A. Ruckstuhl ◽  
Tamara Hilmenyuk ◽  
Christina Claus ◽  
Jean-Pierre Bourquin ◽  
...  

Key Points CD27 expression on malignant B cells triggers CD70 reverse signaling in NK cells and improves lymphoma immunosurveillance. CD70 reverse signaling in NK cells is mediated via the AKT signaling pathway and enhances survival and effector function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1847-1847
Author(s):  
Sarwish Rafiq ◽  
Carolyn M Cheney ◽  
Gerard Lozanski ◽  
Rosa Lapalombella ◽  
Xiaokui Mo ◽  
...  

Abstract Abstract 1847 CD37 is a tetraspanin transmembrane family protein that is strongly expressed on the surface of mature human B cells and transformed mature B cell lymphoma and leukemia cells, including CLL cells. It is absent or minimally expressed on normal T cells, NK cells, monocytes, and granulocytes. Predominant expression of CD37 on CLL cells makes it an ideal candidate to target with potential agents for treatment of CLL. TRU-016, a small modular immunopharmaceutical protein (SMIP) that specifically binds to an extracellular region of CD37, is presently in clinical trials in CLL patients. TRU-016 includes humanized immunoglobulin variable regions (scFv) fused to a human IgG1 Fc region. We have previously reported that SMIP-016, the chimeric version of the humanized TRU-016, induced apoptosis in CLL B cells in the presence of goat anti-human Fc antibody cross-linker through a novel, caspase-independent pathway. Furthermore, SMIP-016 showed potent in vivo activity in a SCID xenograft mouse model. Aside from direct cytotoxicity, SMIP-016 mediates antibody-dependent cellular cytotoxicity (ADCC) by NK cells both in vitro and in vivo. In an attempt to enhance its ADCC function, a new variant of SMIP-016, SMIP-016GV, was designed with a modification of the glycosylation of the Fc portion of the molecule. SMIP-016GV exhibits enhanced binding to both low- and high-affinity molecular variants of human CD16 (FcγRIII) and augments ADCC potency when compared to SMIP-016. In this study, we compared SMIP-016GV and SMIP-016 in direct cytotoxicity and ADCC against CLL B cells. While SMIP-016 and SMIP-016GV mediated comparable direct cytotoxicity at 48 hrs in the presence of goat anti-human Fc crosslinker, the SMIP-016GV resulted in 2 to 4 fold increase in NK cell mediated ADCC function at all effector to target ratios tested. This increased ADCC with SMIP-016GV was observed using NK cell effectors derived from both normal as well as CLL-affected individuals. In addition, this enhanced cytotoxicity was sustained at concentrations of SMIP-016GV as low at 5E-6 μg/ml. These low concentrations of SMIP-016GV were also able to mediate superior ADCC in 697 cells expressing as few as 10,000 molecules of surface CD37 antigen. Furthermore, NK cells stimulated with the glycovariant were potently activated and released 3 to 4 fold more IFNγ compared to SMIP-016. Ongoing studies are aimed at defining other effector cells which may interact with SMIP-016GV via different Fcγ Receptors. Collectively, these results suggest potential use of the SMIP-016GV with enhanced ADCC function as an alternate for TRU-016 in B cell malignancies including CLL therapy. Disclosures: Siadak: Trubion Pharmaceuticals: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 918-918 ◽  
Author(s):  
Maher K Gandhi ◽  
David Arpon ◽  
Colm Keane ◽  
Erica Han ◽  
Josh Tobin ◽  
...  

Abstract PD-L1/PD-L2 are immunomodulatory molecules that engage with the PD-1 receptor on immune effector T and NK-cells to inhibit anti-lymphoma immunity. PD-1/PD-L1/PD-L2 axis molecules are prognostic in Hodgkin Lymphoma (HL, Roemer et al J Clin Oncol 2016) and Diffuse Large B-cell Lymphoma (DLBCL, Keane et al Lancet Haem 2015). Importantly, blockade of the axis is associated with particularly potent clinical responses in relapsed/refractory HL (Ansell et al NEJM 2015), as well as response in DLBCL (Armand et al J Clin Oncol 2013). Focus has been on the interaction of PD-L1 on malignant B-cells with PD-1 on HLA-class I restricted CD8+ effector T-cells. This is despite considerable evidence that: A) malignant B-cells in HL and DLBCL frequently lack the ability to present HLA-class I due to mutations in b2M and associated antigen presenting molecules (Challa-Malladi et al Cancer Cell 2013). This makes them insensitive to direct lysis by CD8+ T-cells (Zaretsky et al NEJM 2016) but potentially enhances their sensitivity to NK-cells; B) PD-L1/PD-L2 are expressed by inhibitory CD163+ monocytes/macrophages as well as by malignant B-cells (Chen et al CCR 2013). Here, we seek to establish the contribution of NK-cells and inhibitory CD163+ expressing monocytes/macrophages in the setting of HL and DLBCL. CD163/PD-1/PD-L1/PD-L2 gene expression was quantified by nanoString in 194 patients and was elevated in HL relative to DLBCL tissues (P<0.01, <0.01, <0.0001, <0.0001 respectively). By FACS, intratumoral tumor associated macrophages (TAMs) demonstrate pronounced protein expression of PD-L1/PD-L2 within HL and DLBCL diseased lymph nodes (Fig A). Pre-therapy blood was tested in 114 patients. Interestingly levels in each of total monocytes, CD14+HLA-DRlo monocytoid derived suppressor cells (moMDSC) and CD163+CD14+ monocytes were equivalent between lymphoma sub-types. However, consistent with tissue findings, there was marked increase in PD-L1 expression on CD14+ monocytes, moMDSC and CD163+CD14+ monocytes in HL compared to DLBCL patients (P<0.001, <0.0001 and 0.0086 respectively). The NK-cell marker CD56 were higher in HL compared to DLBCL tissues (P<0.0001). Levels of PD-1 on circulating NK-cells were 7-fold elevated in HL relative to DLBCL (P<0.0001), whereas CD4+ and CD8+ T-cell PD-1 levels were equivalent between lymphoma sub-types. NK-cells can be subdivided into CD3-CD56dimCD16+ and CD3-CD56hiCD16- subsets. The CD16- subset produces abundant cytokines but are only weakly cytotoxic before activation. Although CD16- NK-cells are typically <10% of all NK-cells in the healthy circulation, we show their relative proportion is markedly expanded by 3.5-fold in HL patients. This is of particular importance since CD16- NK-cells are enriched in secondary lymphoid tissues, i.e. the context in which lymphoma resides. Notably, CD3-CD56hiCD16- NK-cells had substantially higher PD-1 expression relative to CD3-CD56dimCD16+ cells (P<0.0001, Fig B). A similarly aberrant NK-cell phenotype was observed in DLBCL. An in-vitro functional model of TAM-like monocytes was developed to demonstrate the potential impact of inhibitory CD163+ expressing monocytes/macrophages on NK-cells in HL and DLBCL. Monocytes were cultured with the M6 TAM inducing cytokine cocktail of M-CSF and IL-6. Consistent with an inhibitory phenotype, M6 cultured monocytes were highly enriched for CD163 (P<0.001) and PD-L1 (P=0.0024). Critically, M6 cultured monocytes suppressed activation of primary NK-cells in direct cytotoxicity and ADCC assays against lymphoma targets. In line with these findings, depletion of circulating monocytes from the blood of pre-therapy HL and DLBCL patients enhanced NK-cell activation relative to monocyte intact PBMC, whereas this was not observed in age/gender-matched healthy control participants. Interestingly, the increase in NK-cell activation following monocyte depletion was most pronounced in the CD16-CD56hiCD3- NK-cell subset. We describe a hitherto unrecognised immune evasion strategy mediated via skewing towards an exhausted PD-1 enriched CD16-CD56hiCD3- NK-cell phenotype. In addition to inhibition of NK-cells by the malignant B-cell, suppression of NK-cells occurs by PD-L1/PD-L2 expressing tumor associated macrophages. This mechanism is more prominent in HL than DLBCL. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4525-4525
Author(s):  
Bernardo Martinez-Miguel ◽  
Melisa A. Martinez-Paniagua ◽  
Sara Huerta-Yepez ◽  
Rogelio Hernandez-Pando ◽  
Cesar R. Gonzalez-Bonilla ◽  
...  

Abstract The interaction between CD40, a member of the tumor necrosis factor super family, and its ligand CD154 is essential for the development of humoral and cellular immune responses. Selective inhibition or activation of this pathway forms the basis for the development of new therapeutics against immunologically-based diseases and malignancies. CD40 is expressed primarily on dendritic cells, macrophages and B cells. Engagement of CD40-CD154 induces activation and proliferation of B lymphocytes and triggers apoptosis of carcinoma and B lymphoma cells. Agonist CD40 antibodies mimic the signal of CD154-CD40 ligation on the surface of many tumors and mediate a direct cytotoxic effect in the absence of immune accessory molecules. CD40 expression is found on nearly all B cell malignancies. Engagement of CD40 in vivo inhibits B cell lymphoma xenografts in immune compromised mice. Several clinical trials have been reported targeting CD40 in cancer patients using recombinant CD154, mAbs and gene therapy, which were well tolerated and resulted in objective tumor responses. In addition to these therapies, CD54 mimetics have been considered with the objective to augment and potentiate the direct cytotoxic anti-tumor activity and for better accessibility to tumor sites. This approach was developed by us and we hypothesized that the genetic engineering of a fusion protein containing a CD154 peptide mimetic may be advantageous in that it may have a better affinity to CD40 on B cell malignancies and trigger cell death and the partner may be a carrier targeting other surface molecules expressed on the malignant cells. This hypothesis was tested by the development of a gene fusion of Salmonella typhi OmpC protein expressing the CD154 Trp140-Ser149 amino acid strand (Vega et al., Immunology2003; 110: 206–216). This OmpC-CD154p fusion protein binds CD40 and triggers the CD40 expressing B cells. In this study, we demonstrate that OmpC-CD154p treatment inhibits cell growth and proliferation of the B-NHL cell lines Raji and Ramos. In addition, significant apoptosis was achieved and the extent of apoptosis was a function of the concentration used and time of incubation. The anti-tumor effect was specific as treatment with OmpC alone had no effect. These findings establish the basis of the development of new fusion proteins with dual specificity (targeting the tumor cells directly or targeting the tumor cells and immune cells). The advantages of this approach over conventional CD40-targeted therapies as well as the mechanism of OmpC-CD154p-induced cell signaling and cell death will be presented.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3726-3726
Author(s):  
Jutta Deckert ◽  
Sharon Chicklas ◽  
Yong Yi ◽  
Min Li ◽  
Jan Pinkas ◽  
...  

Abstract Abstract 3726 CD37 is a B-cell surface antigen which is widely expressed on malignant B cells in non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). In normal tissues CD37 expression is limited to blood cells and lymphoid tissues. This restricted expression profile makes CD37 an attractive therapeutic target for antibodies and antibody-drug conjugates. We developed a novel anti-CD37 antibody, K7153A, which provides a unique combination of functional properties: it demonstrated strong pro-apoptotic and direct cell killing activity against NHL cell lines and could mediate effector activity such as CDC and ADCC. The antibody-maytansinoid conjugate, IMGN529, was produced by conjugation of K7153A with the potent maytansinoid, DM1, via the non-cleavable linker, SMCC. The direct cytotoxic potency of the K7153A antibody was superior to that of the CD20-directed rituximab and was further enhanced with maytansinoid conjugation in IMGN529. In vivo, IMGN529 demonstrated better anti-tumor activity than the K7153A antibody in established subcutaneous follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and CLL xenograft models in SCID mice. A single administration of IMGN529 showed similar or improved efficacy compared to anti-CD20 antibodies or standard chemotherapy where tested. Immunohistochemical (IHC) staining of formalin fixed paraffin-embedded (FFPE) NHL tissue sections was performed to evaluate CD37 expression. CD37 exhibited a similar prevalence to CD20 in subtypes of NHL such as FL, DLBCL, Burkitt's lymphoma (BL) and mantle cell lymphoma (MCL). B-cell depletion is an important measure of efficacy for targeted therapies, such as CD20-directed antibodies, in B-cell malignancies. CD37 expression in blood cells from healthy human donors was measured by quantitative flow cytometry in comparison to CD20. The greatest CD37 expression was found in B cells at approximately 77,000 antibodies bound per cell (ABC), which was similar to CD20 expression in B cells at 95,000 ABC. In other blood cell types CD37 staining was seen at low levels, about 2,000 – 5,000 ABC, in monocytes, NK cells and T cells. In vitro depletion experiments were performed with purified peripheral blood mononuclear cells (PBMCs) and with whole blood, both derived from several healthy donors. Cells were incubated for 1 hr with 10 μg/mL of either K7153A, IMGN529, CD37-targeting TRU-016, rituximab or the anti-CD52 antibody alemtuzumab, with cell depletion determined relative to counting beads by flow cytometry. The K7153A antibody and the IMGN529 conjugate efficiently and specifically depleted B-cells in a dose-dependent manner in the context of purified PBMCs and whole blood. With purified PBMCs, both K7153A and IMGN529 caused 50–60% depletion of B cells, with little to no depletion of T cells or monocytes. IMGN529 was more potent than rituximab, which led to 30–40% B-cell depletion, or TRU-016, which caused 20–30% B-cell depletion. IMGN529 also was more specific than alemtuzumab, which depleted T-cells and monocytes as well as B cells. With whole blood samples, both K7153A and IMGN529 resulted in 30–40% B-cell depletion with no effect on T cells, NK cells or monocytes. IMGN529 was again more potent than rituximab or TRU-016, which caused approximately 10% B-cell depletion, and was more specific than alemtuzumab, which depleted the majority of T cells in addition to 40% of B cells. IMGN529 embodies a unique B-cell targeted agent as it combines the intrinsic pro-apoptotic, CDC and ADCC activities of its anti-CD37 antibody component with the potent cytotoxic mechanism provided by the targeted delivery of its maytansinoid payload. It is highly active in vitro and in vivo against B-cell lymphoma and CLL cell lines. In addition, it mediates specific B-cell depletion in vitro that is greater than B-cell depletion by CD20-directed rituximab. Together, these findings indicate that IMGN529 is a promising therapeutic candidate for the treatment of B-cell malignancies. Disclosures: Deckert: ImmunoGen, Inc.: Employment. Chicklas:ImmunoGen, Inc.: Employment. Yi:ImmunoGen, Inc.: Employment. Li:ImmunoGen, Inc.: Employment. Pinkas:ImmunoGen, Inc.: Employment. Chittenden:ImmunoGen, Inc.: Employment. Lutz:ImmunoGen, Inc.: Employment. Park:ImmunoGen, Inc.: Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3922-3922
Author(s):  
Teresa Sadras ◽  
Jevon Cutler ◽  
Julia Aguade-Gorgorio ◽  
Zhengshan Chen ◽  
Kadriye Nehir Cosgun ◽  
...  

Abstract The spleen tyrosine kinase (SYK) and ζ-associated protein of 70 kD (ZAP70) tyrosine kinases play critical roles in proximal signal transduction of B-cell (BCR) and T-cell receptors (TCR), respectively. The highly similar SYK and ZAP70 kinases share a common structure composed of two tandem SH2 domains and a carboxy-terminal kinase domain. A linker region, termed interdomain B, connects the SH2 domains to the kinase domain and is important for kinase activation. Despite their conserved structure, SYK and ZAP70 are expressed in a largely mutually exclusive manner and play analogous roles in BCR- and TCR-signaling. Cross-lineage activation of ZAP70 in B cells was previously identified in chronic lymphocytic leukemia (CLL), which is characterized by clonal accumulation of malignant CD5+ B-cell cells that retain dependency on the BCR for survival signals. Nearly half of CLL cases show co-expression of SYK and ZAP70, and these patients have an aggressive disease course and a poor prognosis. Our analysis shows that in addition to CLL, aberrant ZAP70 expression occurs in other B-cell malignancies, e.g. TCF3-PBX1 pre-B ALL and B-cell lymphoma subsets that depend on survival signals from a functional (pre-) BCR. These findings suggest that interactions between SYK and ZAP70 may function to fine-tune strength of oncogenic BCR-signaling. To test this hypothesis, we have used a combination of molecular and proteomic approaches. We studied mechanisms by which ZAP70 integrates into BCR-mediated signals, and how the function of ZAP70 in B-cells differs from its native role downstream of the TCR. We demonstrate that ectopically expressed SYK and ZAP70 proteins are constitutively phosphorylated in BCR-ABL1+ B-ALL cells, but these induce distinctive signaling thresholds. CRISPR-mediated deletion of SYK or ZAP70 in leukemic cells further revealed that SYK and ZAP70 regulate unique signaling pathways in B-cells. We also demonstrate that ZAP70 is activated following BCR stimulation of lymphoma cells, and SYK/ZAP70 co-expressing cells display enhanced BCR signaling. Interestingly, enhanced BCR signaling was also observed in cells engineered to express an alternative splice variant of SYK (SYK-S). This shorter isoform of SYK, lacks a 23 amino-acid insert in the interdomain-B linker region, which is also absent in ZAP70, and may define unique protein-interactions that modulate signaling outcome. To elucidate the differential interactome of SYK, SYK-S, and ZAP70 we performed proximity-dependent biotin identification (BioID) experiments in B-cells following BCR-activation to capture the core signalling networks of these kinases in leukemic cells. In addition to expected BCR components including BLNK, PTPN6 and CBL we identified novel SYK and ZAP70 associated molecules including IKZF3, LAT2 and WAS which may play important roles in the survival of BCR-dependent malignancies. Importantly our findings highlight a role for ZAP70 in oncogenic BCR-signaling and suggest that ZAP70 promotes oncogenic BCR-signaling by limiting the ability of the BCR to induce negative B-cell selection and cell death. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1963-1963
Author(s):  
Julia S Wild ◽  
Stefanie Raab ◽  
Benjamin J Schmiedel ◽  
Andreas Maurer ◽  
Pascal Schneider ◽  
...  

Abstract NK cells are cytotoxic lymphocytes that play an important role in the immunosurveillance of leukemia and, due to their ability to mediate antibody-dependent cellular cytotoxicity (ADCC), substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab. Available data indicate that the ability of NK cells to mediate ADCC is compromised in Chronic Lymphoid Leukemia (CLL), but the underlying mechanisms are still unclear. The TNF family member B cell activating factor (BAFF) was described to be aberrantly produced in mature B cell malignancies and contributes to disease pathophysiology e.g. by acting as a growth and survival signal for CLL cells. Here we report that NK cells express and release BAFF, and NK cell activation, notably including FcγRIIIa stimulation by Rituximab, results in increased secretion of BAFF (but not its close relative APRIL). Expression on the cell surface was neither detectable in resting nor in activated state. NK cell-derived BAFF enhanced the metabolic activity of primary CLL cells and protected CLL cells from chemotherapy-induced cell death. Moreover, exposure to BAFF profoundly diminished direct and Rituximab-induced lysis of primary CLL cells by allogeneic and autologous NK cells, while NK activation and degranulation per se remained unaffected. Notably, sensitivity of CLL cells to both chemotherapeutic treatment as well as direct lysis and Rituximab-induced ADCC of NK cells could be restored by the anti-BAFF antibody Belimumab (Benlysta®), which is approved for the treatment of systemic lupus erythematosus. Thus, our data provide evidence for the involvement of BAFF in the resistance of CLL cells to chemotherapy. Moreover, our results offer a functional explanation for the reportedly compromised ability of NK cells to combat lymphoid as compared to myeloid leukemias as well as their impaired ability to mediate ADCC upon Rituximab treatment in CLL patients. Our findings point to a possible benefit of combinatory approaches employing Rituximab and Belimumab for chemo-immunochemotherapy of B cell malignancies. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Pier Luigi Zinzani ◽  
Giorgio Minotti

Abstract Purpose CD19 is a cell surface protein that is found on both healthy and malignant B cells. Accordingly, it has become an important target for novel treatments for non-Hodgkin lymphomas and B-cell leukaemia. Three anti-CD19 monoclonal antibodies with distinct mechanisms of action have been developed for the treatment of B-cell malignancies. Methods We reviewed the preclinical and clinical data on the development of the newly approved anti-CD19 monoclonal antibodies blinatumomab, tafasitamab and loncastuximab tesirine, and consider their place in the treatment of relapsed or refractory B-cell malignancies. Results Blinatumomab is a bispecific T-cell engager that binds to both CD19 on B cells and CD3 on T cells, facilitating antibody-dependent cytotoxicity. Blinatumomab significantly prolongs overall survival in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia, although cytokine release syndrome and severe neurotoxicity may necessitate discontinuation. Tafasitamab, which has modified anti-CD19 Fab and Fc regions, has significantly enhanced affinity for both CD19 and effector cell receptors compared with unmodified anti-CD19. In L-MIND, tafasitamab plus lenalidomide provided an overall response rate (ORR) of 57.5% in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) in patients non-transplant eligible. Loncastuximab tesirine is an antibody–drug conjugate that has been studied as monotherapy and in combination with ibrutinib in 3L + relapsed or refractory DLBCL. The ORR was 48.3% in a phase II trial of loncastuximab tesirine. The optimal place of anti-CD19 monoclonal antibodies in therapy has yet to be determined, but the prospect of improved outcomes for at least some patients with treatment-resistant B-cell malignancies appears likely, particularly in those with limited therapeutic options and poor prognosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3540-3540
Author(s):  
Muthalagu Ramanathan ◽  
Su Su ◽  
Andreas Lundqvist ◽  
Maria Berg ◽  
Aleah Smith ◽  
...  

Abstract NK cells play an important role in innate immunity against tumors and viral infection. NK cell cytotoxicity is suppressed by self-HLA molecules that bind and activate inhibitory killer immunoglobulin like receptors (KIRs). Expression of a CD19 chimeric receptor on NK cells could induce target specific activating signals that overcome KIR-mediated inhibition, enhancing autologous NK cell cytotoxicity against B-cell malignancies. Although HIV-1 based lentiviral vectors (LVs) have been used to efficiently transfer genes into human T-cells, little data exists on the use of LV vectors to transduce NK cells. In this study, we designed a HIV-based LV vector encoding both a CD19 chimeric antigen receptor (CAR) and green fluorescence protein (GFP) transgenes controlled by a MSCV-LTR promoter (CD19CAR LV vector) to transduce CD3−CD56+ ex vivo expanded human NK cells. The CAR consists of a single chain Fv portion of a mouse mAb against human CD19 fused to the signaling intracellular domain of a CD3 zeta subunit. CD3−CD56+NK cells were expanded ex vivo using irradiated EBV-LCL feeder cells and IL-2 containing media for 7 to 10 days. NK92 cells or expanded NK cells underwent 2 rounds of transduction with the CD19CAR LV vector in the presence of protamine sulfate using retronectin-coated plates. GFP expression measured by flow cytometry 3–4 days following LV transduction was used to assess transduction efficiencies (TE). GFP expression was detected in a mean 41% (range 27–56%) of NK92 cells and a mean 15% (range 6–40%) of ex vivo expanded NK cells. NK cell viability assessed up to 1 week following LV transduction was similar to non transduced NK cells. Following transduction, NK cells continued to expand in culture similar to non-transduced NK cells; seven days following their transduction, transduced NK cells expanded a median 30 fold while non transduced NK cells expanded a median 27 fold (p=n.s.). Cytotoxicity assays showed EBV-LCLs were resistant to killing by IL-2 activated T cells and in vitro expanded NK cells. In contrast, CD19CAR LV vector transduced NK cells were highly cytotoxic against EBV-LCLs; at 10:1 effector to target ratio (E:T), 43% of EBV-LCLs were killed by CD19CAR LV transduced NK cells versus 6% killing by non transduced NK cells (p=0.0002). NK cytotoxicity of K562 targets was not altered by CD19CAR LV transduction; at a 10:1 E: T ratio, LV transduced NK cells lysed 80% of K562 cells vs. 84% lysis by non transduced NK cells (p=n.s.). We next transduced IL-2 activated T-cells with the CD19CAR LV vector to compare their cytotoxicity to transduced NK cells against CD19+ LCLs. At a 10:1 E: T ratio, 11 % vs 1% of LCLs were killed by transduced vs non transduced T cells respectively (p=0.002). Although the TE of IL-2 activated T-cells was higher than NK cells (mean TE of 38 % vs 15% in T-cells and NK cells respectively, p=0.02), LV transduced NK cells were more cytotoxic to EBV-LCLs than transduced T-cells at the same E: T ratios. In conclusion, we show successful transduction of ex vivo expanded NK cells with a CD19CAR can be achieved using a LV vector, with CD19CAR transduced NK cells exhibiting enhanced antigen specific cytotoxicity. These findings provide both a method and rationale for clinical trials exploring the antitumor effects of adoptively infused CD19CAR LV transduced NK cells in patients with refractory B cell malignancies.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 275-284 ◽  
Author(s):  
Qing Liu ◽  
Xiaobin Zhao ◽  
Frank Frissora ◽  
Yihui Ma ◽  
Ramasamy Santhanam ◽  
...  

FTY720 is an immunosuppressant developed to prevent organ transplant rejection. Recent studies indicate an additional role for FTY720 in inducing cell apoptosis. We demonstrate here that FTY720 mediates toxic effects in cell lines representing different B-cell malignancies and primary B cells from patients with chronic lymphocytic leukemia (CLL). In contrast to previous reports in T-cell lines, FTY720-induced toxicity in the Raji cell line and primary CLL B cells is independent of activation of caspases or poly(ADP-ribose) polymerase processing. Further, pancaspase inhibitor Z-VAD-fmk failed to rescue these cells from apoptosis mediated by FTY720. FTY720 induced down-regulation of Mcl-1 but not Bcl-2 in CLL B cells. Overexpression of Bcl-2 failed to protect transformed B cells from FTY720-induced apoptosis, suggesting a Bcl-2–independent mechanism. Interestingly, FTY720 induced protein phosphatase 2a (PP2a) activation and downstream dephosphorylation of ERK1/2, whereas okadaic acid at concentrations that inhibited the FTY720-induced PP2a activation also resulted in inhibition of FTY720-mediated apoptosis and restoration of baseline ERK1/2 phosphorylation in primary CLL cells, indicating a role for PP2a activation in FTY720-induced cytotoxicity. Further, FTY720 treatment resulted in significant prolonged survival in a xenograft severe combined immunodeficiency (SCID) mouse model of disseminated B-cell lymphoma/leukemia. These results provide the first evidence for the potential use of FTY720 as a therapeutic agent in a variety of B-cell malignancies, including CLL.


Sign in / Sign up

Export Citation Format

Share Document