scholarly journals An Interim Report on a Phase 1/2 Study of HPN217, a Half-Life Extended Tri-Specific T Cell Activating Construct (TriTAC ®) Targeting B Cell Maturation Antigen for the Treatment of Relapsed/Refractory Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1654-1654
Author(s):  
Sumit Madan ◽  
Al-Ola Abdallah ◽  
Andrew J. Cowan ◽  
William I. Bensinger ◽  
Jens Hillengass ◽  
...  

Abstract Background B cell maturation antigen (BCMA) is a clinically validated target for multiple myeloma (MM) based on its restricted expression profile and potential functional role in promoting MM cell survival. HPN217 is a BCMA-targeting T cell engager derived from the Harpoon Tri-specific T cell Activating Construct (TriTAC ®) platform. It is a recombinant polypeptide of approximately 50 kDa, engineered to be a small globular protein to enable efficient drug diffusion and exposure in tumor tissue and have a prolonged serum half-life at the same time. It contains three humanized antibody-derived binding domains, targeting BCMA for MM cell binding, albumin for half-life extension, and CD3ε for T cell engagement, activation, and cytolytic function differentiation. Methods The ongoing Phase 1 study initially evaluates escalating doses of once weekly IV administrations of HPN217 in patients with relapsed/refractory (R/R) MM who have received at least 3 prior therapies including a proteasome inhibitor, an immunomodulatory drug, and a CD38-targeted therapy. Prior exposure to BCMA-targeting agent is permitted for this initial part of the trial. Premedication to minimize cytokine release syndrome (CRS) includes dexamethasone, diphenhydramine, acetaminophen, and a proton pump inhibitor. Primary endpoints are safety, tolerability, and determination of maximum tolerated dose (MTD) and/or recommended phase two dose (RP2D). Secondary objectives are pharmacokinetics (PK), pharmacodynamics, immunogenicity, and preliminary anti-myeloma activity. Results As of July 5, 2021, 22 patients have been treated with HPN217 in 8 individual cohorts ranging from 5 to 2150 µg/week. Patients treated received a median of 8 (range of 4 - 16) prior systemic regimens, including 5 patients who received prior BCMA-targeted belantamab mafodotin or orvacabtagene autoleucel. No dose-limiting toxicities (DLTs) have been observed and MTD has not been reached. The most common treatment-emergent adverse events (TEAEs) are hematological changes including anemia, neutropenia, and thrombocytopenia. No CRS was observed in dose cohorts receiving 5 - 270 µg/week (n=7). CRS (Grade 1, 2) was observed in 4 of 15 patients receiving ≥810 µg/week. In one patient treated at 810 µg/week, transient elevated liver transaminases (Grade 4 AST and Grade 3 ALT) was observed. A second patient in the 270 µg/week cohort also showed Grade 1 AST increase. All CRS events and liver enzyme increases resolved, and all patients were successfully re-treated with escalating doses. HPN217 demonstrated a dose proportional increase in Cmax and AUC with a median serum half-life of 74 hours (range of 38 - 197 hours), confirming half-life extension. Half-life, clearance rate, and volume of distribution were dose-independent, suggesting linear PK kinetics. Pharmacodynamic analysis shows a dose-dependent, transient increases in serum cytokines and chemokines (e.g., IL-6, IL-8, IL-10, TNFα). A transient reduction in circulating T lymphocytes accompanied by upregulation of the activation markers CD25 and CD69 were also observed. Patient response to treatment will be reported. Conclusions HPN217 represents a novel half-life extended BCMA-targeting T cell engager that can be safely administered to patients with R/R MM at a dose of up to 2150 µg weekly. TEAEs have been transient and manageable. Transient serum cytokine/chemokine increase, T cell margination and upregulation of T cell activation markers, indicate target engagement of BCMA on plasma cells and CD3 on T cells, respectively, supporting the proposed mechanism of action for HPN217. Dose escalation, including implementation of step dosing, with the goal of establishing an RP2D regimen, is ongoing. NCT04184050 Disclosures Madan: Sanofi: Consultancy, Research Funding; GSK: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Karyopharm: Research Funding, Speakers Bureau; Takeda: Speakers Bureau; BMS: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau. Cowan: Janssen: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Sanofi Aventis: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding; Secura Bio: Consultancy; Cellectar: Consultancy; Nektar: Research Funding; GSK: Consultancy; Harpoon: Research Funding. Bensinger: BMS, Janssen, Poseida, Regeneron, Trillium: Research Funding; Amgen, BMS, Janssen, Sanofi: Speakers Bureau. Hillengass: Oncotracker: Membership on an entity's Board of Directors or advisory committees; Curio Science: Speakers Bureau; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Beijing Medical Award Foundation: Speakers Bureau; Adaptive: Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Skyline: Membership on an entity's Board of Directors or advisory committees; Axxess Network: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Beijing Life Oasis Public Service Center: Speakers Bureau. Leleu: Amgen: Honoraria; Bristol-Myers Squibb: Honoraria; Carsgen Therapeutics Ltd: Honoraria; Celgene: Honoraria; Gilead Sciences: Honoraria; AbbVie: Honoraria; Janssen-Cilag: Honoraria; Karyopharm Therapeutics: Honoraria; Merck: Honoraria; Mundipharma: Honoraria; Novartis: Honoraria; Oncopeptides: Honoraria; Pierre Fabre: Honoraria; Roche: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Other: Non-financial support. Lipe: Seagen Inc.: Research Funding; BMS: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; sanofi: Consultancy; GlaxoSmithKline: Consultancy; amgen: Research Funding; Cellectar: Research Funding; Karyopharm: Research Funding; Harpoon: Research Funding. Nath: Harpoon Therapeutics: Consultancy, Current equity holder in publicly-traded company. Sun: Harpoon Therapeutics: Consultancy, Current equity holder in publicly-traded company, Ended employment in the past 24 months.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3868-3868
Author(s):  
Michael Dickinson ◽  
Nada Hamad ◽  
Christian E Bryant ◽  
Gautam Borthakur ◽  
Chitra Hosing ◽  
...  

Abstract Background: B-cell lineage cancers are a worldwide healthcare burden. Over 500,000 new cases of non-Hodgkin lymphoma (NHL) and 50,000 new cases of acute lymphoblastic leukemia (ALL) are diagnosed world-wide each year (seer.cancer.gov, Smith 2015, Solomon 2017). Despite progress in treatment, many patients diagnosed with this heterogeneous group of cancers still succumb to their disease. Recently approved autologous chimeric antigen receptor (CAR) T cells specific for CD19 have altered the treatment landscape for some patients with relapsed or refractory (R/R) B-cell malignancies, though significant toxicities associated with T-cell expansion and the necessity for bespoke manufacturing have limited their use. Natural killer (NK) cells, part of the innate immune system, efficiently recognize transformed cells and are particularly suited to address limitations of the approved CAR T products (Marcus 2014, Morvan 2016). Lacking a T-cell receptor and the consequent clonal expansion, non-engineered NK cells have been safely administered after lymphodepletion without side effects typically associated with T-cell therapies, such as severe cytokine release syndrome or neurotoxicity (Bachier 2020). Allogeneic NK cell-based therapies allow off-the-shelf use, obviating the necessity to wait for manufacture of autologous T-cell therapies. CD19-directed CAR NK cells have been administered safely, with promising preliminary efficacy (Liu 2020). NKX019 is a cryopreserved product, composed of expanded NK cells engineered to express a humanized CAR against CD19, fused to co-stimulatory (OX40) and signaling (CD3ζ) domains to enhance their intrinsic antitumor activity. NKX019 also expresses a membrane-bound interleukin-15 (IL-15) to serve as an autocrine growth factor and thereby increase NKX019 persistence, with an in vivo half-life of over up to 28 days without systemic IL-2 support. Preclinical characterization has shown that NKX019 cells are 10 times more effective at killing CD19+ target cells than non-engineered NK cells, resulting in greater suppression of xenograft tumor models (Morisot 2020). Further, NKX019, unlike CD19 CAR T cells, retained cytotoxicity even when CD19 antigen density was reduced >50x on target cells. Hence, clinical evaluation of NKX019 is being undertaken in this Phase 1 study in subjects with R/R NHL or ALL. Methods: This is a multicenter, open-label, Phase 1 study of NKX019 (Figure). The study will be conducted in 2 parts: Part 1 (dose finding) to determine the recommended Phase 2 dose (RP2D) of NKX019 separately in adult patients with CAR T naïve R/R NHL or B-ALL, utilizing a "3+3" enrollment schema. Part 2 (dose expansion) will further evaluate safety and tolerability, pharmacokinetics (PK), immunogenicity, pharmacodynamics (PDn), and antitumor activity of NKX019 using RP2D with separate expansion cohorts for patients with ALL as well as different subtypes of NHL, including a cohort of CAR T pretreated large B-cell lymphoma. NKX019 is being manufactured from NK cells obtained from healthy adult donors. The study evaluates two dose levels of NKX019: 3 × 10 8 and 1 × 10 9 viable CAR+ NK cells. NKX019 will be administered on Days 0, 7, and 14 of a 28-day cycle following standard fludarabine/cyclophosphamide lymphodepletion (Table). Up to 5 total cycles may be administered based on response and tolerability assessed at the end of each cycle. The primary endpoint is incidence of adverse events, dose-limiting toxicities, clinically significant laboratory abnormalities, and determination of the RP2D. Secondary endpoints include evaluation of standard cellular PK parameters, PDn, immunogenicity, and antitumor responses. Subjects will be assessed for efficacy using disease-specific criteria: Lugano classification with LYRIC refinement for pseudo-progression (NHL), 2018 International Workshop (IW) criteria (CLL), 6th IW criteria (Waldenström macroglobulinemia [WM]), and National Comprehensive Cancer Version 1.2020 (B-ALL) (Cheson 2006, Cheson 2014, Hallek 2018, Owen 2013, Brown 2020). Enrollment across multiple sites in the US and Australia is expected to start in the second half of 2021. Figure 1 Figure 1. Disclosures Dickinson: Celgene: Research Funding; Gilead Sciences: Consultancy, Honoraria, Speakers Bureau; MSD: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Takeda: Research Funding; Amgen: Honoraria; Roche: Consultancy, Honoraria, Other: travel, accommodation, expenses, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau. Hamad: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Bryant: Jansen, BMS/Celgene, Skyline Diagnostics: Consultancy; Amgen: Honoraria. Borthakur: Astex: Research Funding; University of Texas MD Anderson Cancer Center: Current Employment; Protagonist: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Ryvu: Research Funding; ArgenX: Membership on an entity's Board of Directors or advisory committees. Hosing: Nkarta Therapeutics: Membership on an entity's Board of Directors or advisory committees. Shook: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Tan: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Rajangam: Nkarta Therapeutics: Current Employment, Current equity holder in publicly-traded company. Liu: SITC: Honoraria; BMS; Karyopharm; Miltenyi: Research Funding; Agios; NGM Biopharmaceuticals; BeiGene: Consultancy. McSweeney: Kite-Gilead: Consultancy; Kite-Gilead, Autolus, Novartis: Research Funding; Kite-Gilead: Honoraria, Speakers Bureau. Hill: Novartis: Consultancy, Honoraria, Research Funding; Epizyme: Consultancy, Honoraria; AstraZenica: Consultancy, Honoraria; Beigene: Consultancy, Honoraria, Research Funding; Kite, a Gilead Company: Consultancy, Honoraria, Other: Travel Support, Research Funding; Pfizer: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria, Research Funding; Incyte/Morphysis: Consultancy, Honoraria, Research Funding; Gentenech: Consultancy, Honoraria, Research Funding; Celgene (BMS): Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2831-2831 ◽  
Author(s):  
Swaminathan P. Iyer ◽  
Brad M. Haverkos ◽  
Jasmine Zain ◽  
Radhakrishnan Ramchandren ◽  
Mary Jo Lechowicz ◽  
...  

Introduction: Tenalisib (RP6530) is a novel, highly specific, dual PI3K δ/γ inhibitor with nano-molar inhibitory potency at the enzyme and cellular level. PI3K plays a critical role in T-cell development and activation and several studies have validated the PI3K-AKT pathway as a potential therapeutic target in T cell lymphomas. Preliminary results of the ongoing Phase 1/1b T-cell lymphoma (TCL) study demonstrated an acceptable safety profile with encouraging clinical activity in relapsed/refractory TCL (Oki, ASCO 2018 and Iyer, ASH 2018). We now present the final results of the study (NCT02567656). Methods: This study comprised of four-dose escalation cohorts, followed by two dose expansion cohorts at MTD enrolling 20 patients each in PTCL and CTCL cohorts. Patients had histologically confirmed TCL, ECOG PS ≤2, and had received ≥1 prior therapy. Patients received Tenalisib [200 mg BID-800 mg BID (fasting), 800 mg (fed only)] orally until progression or unacceptable toxicity. The primary objectives were to determine the MTD and pharmacokinetic profile. The secondary objective was to evaluate overall response rate (ORR) and duration of response. Responses were evaluated for PTCL and CTCL based on IWG criteria (Cheson 2007) and mSWAT respectively. Adverse events were graded according to CTCAE v4.03. Results: Fifty-eight patients were enrolled in study, 19 in dose escalation and 39 in dose expansion (28 PTCL and 30 CTCL). Median number of prior therapies was 4 (range, 1-15). Safety assessment of 58 patients receiving at least one dose of Tenalisib demonstrated an acceptable safety profile. Treatment related Grade≥3 AEs were elevated ALT/AST (21%), rash (5%), and hypophosphatemia (3%). These events were reversible and managed by withholding study drug. Additionally, in few patients (N=9), steroids were used to manage elevated ALT/AST. There were six treatment related serious adverse events, none of these led to fatal outcome. At end of the study, four (3 CTCL; 1 PTCL) patients who completed minimum 8 cycles of therapy were rolled over to a compassionate use study (NCT03711604) and were followed up. Efficacy assessments demonstrated an ORR of 46% (3 CR and 13 PR) and clinical benefit rate (CR+PR+SD) of 77%. Subset efficacy analysis showed an ORR in PTCL of 47% (3 CR; 4 PR) and in CTCL of 45% (9 PR). The median time to initial response was 1.8 months and was similar in both sub-types. The overall median DOR was 4.91 months (range 0.9-26.6); in PTCL patients the DOR was 6.53 months, (range: 0.97-21.0) and 3.8 months (range: 1.67-25.67) in CTCL patients. In 3 PTCL patients who achieved CR, the median DOR was 19.5 months (range 7.5-21). Conclusion: Tenalisib demonstrated promising clinical activity and an improved safety profile in patients with relapsed/ refractory TCL. Currently, a phase I/II combination study to further evaluate safety and efficacy with romidepsin is ongoing in this target population. Disclosures Iyer: Arog: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Research Funding; Seattle Genetics, Inc.: Research Funding; Genentech/Roche: Research Funding; Incyte: Research Funding. Zain:Spectrum: Consultancy; Seattle Genetics: Consultancy. Korman:Genentech: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Glaxo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Immune Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Kyowa: Research Funding; Leo: Research Funding; Menlo: Research Funding; Merck: Research Funding; Novartis: Consultancy, Honoraria, Speakers Bureau; Pfizer: Research Funding; Principia: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Prothena: Research Funding; Regeneron: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Rhizen: Research Funding; Sun: Honoraria, Membership on an entity's Board of Directors or advisory committees; Syntimmune: Research Funding; UCB: Research Funding; Valeant: Honoraria, Membership on an entity's Board of Directors or advisory committees; Eli Lilly: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Dermira: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Routhu:Rhizen Pharmaceuticals S.A.: Employment. Barde:Rhizen Pharmaceuticals S.A.: Employment. Nair:Rhizen Pharmaceuticals S.A.: Employment. Huen:Galderma Inc: Research Funding; Glaxo Smith Kline Inc: Research Funding; Rhizen Pharmaceuticals: Research Funding; Innate Pharmaceuticals: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Annamaria Gulla ◽  
Eugenio Morelli ◽  
Mehmet K. Samur ◽  
Cirino Botta ◽  
Megan Johnstone ◽  
...  

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and the ICD process, since BTZ-induced ICD is impaired in CALR KO MM cells both in vitro and in vivo. We further showed that the therapeutic efficacy of BTZ in patients was correlated with ICD induction: BTZ-induced ICD signature was positively correlated with OS (p=0.01) in patients enrolled in the IFM/DFCI 2009 study. Together, these studies indicate that ICD is associated with long-term response after BTZ treatment. In this work, we reasoned that genomic or transcriptomic alterations associated with shorter survival of MM patients after BTZ treatment may impair activation of the ICD pathway. To this aim, we performed a transcriptomic analysis of purified CD138+ cells from 360 newly diagnosed, clinically-annotated MM patients enrolled in the IFM/DFCI 2009 study. By focusing on genes involved in the ICD process, we found that low levels of GABA Type A Receptor-Associated Protein (GABARAP) were associated with inferior clinical outcome (EFS, p=0.0055). GABARAP gene locus is located on chr17p13.1, a region deleted in high risk (HR) MM with unfavorable prognosis. Remarkably, we found that correlation of low GABARAP levels with shorter EFS was significant (p=0.018) even after excluding MM patients with del17p; and GABARAP is therefore an independent predictor of clinical outcome. GABARAP is a regulator of autophagy and vesicular trafficking, and a putative CALR binding partner. Interestingly, among a panel of MM cell lines (n=6), BTZ treatment failed to induce exposure of CALR and MM cell phagocytosis by DCs in KMS11 cells, which carry a monoallelic deletion of GABARAP. This effect was rescued by stable overexpression of GABARAP. Moreover, CRISPR/Cas9-mediated KO of GABARAP in 3 ICD-sensitive cell lines (AMO1, H929, 5TGM1) abrogated CALR exposure and ICD induction by BTZ. GABARAP add-back by stable overexpression in KO clones restored both CALR exposure and induction of ICD, confirming GABARAP on-target activity. Similarly, pre-treatment of GABARAP KO cells with recombinant CALR restored MM phagocytosis, further confirming that GABARAP impairs ICD via inhibition of CALR exposure. Based on these findings, we hypothesized that GABARAP loss may alter the ICD pathway via CALR trapping, resulting in the ICD resistant phenotype observed in GABARAP null and del17p cells. To this end, we explored the impact of GABARAP KO on the CALR protein interactome, in the presence or absence of BTZ. Importantly, GABARAP KO produced a significant increase of CALR binding to stanniocalcin 1 (STC1), a phagocytosis checkpoint that mediates the mitochondrial trapping of CALR, thereby minimizing its exposure upon ICD. Consistently, GABARAP KO also affected CALR interactome in BTZ-treated cells, which was significantly enriched in mitochondrial proteins. Importantly, co-IP experiments confirmed GABARAP interaction with STC1. These data indicate a molecular scenario whereby GABARAP interacts with STC1 to avoid STC1-mediated trapping of CALR, allowing for the induction of ICD after treatment with ICD inducers; on the other hand, this mechanism is compromised in GABARAP null or del17p cells, and the STC1-CALR complex remains trapped in the mitochondria, resulting in ICD resistance. To functionally validate our findings in the context of the immune microenvironment, we performed mass Cytometry after T cell co-culture with DCs primed by both WT and GABARAP KO AMO1 clones. And we confirmed that treatment of GABARAP KO clones with BTZ failed to activate an efficient T cell response. In conclusion, our work identifies a unique mechanism of immune escape which may contribute to the poor clinical outcome observed in del17p HR MM patients. It further suggests that novel therapies to restore GABARAP may allow for the induction of ICD and improved patient outcome in MM. Disclosures Bianchi: Jacob D. Fuchsberg Law Firm: Consultancy; MJH: Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Richardson: AstraZeneca: Consultancy; Regeneron: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Research Funding; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Abbvie: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4819-4819
Author(s):  
Monzr M. Al Malki ◽  
Sumithira Vasu ◽  
Dipenkumar Modi ◽  
Miguel-Angel Perales ◽  
Lucy Y Ghoda ◽  
...  

Abstract Patients who relapse after allogeneic HCT have a poor prognosis and few effective treatment options. Responses to salvage therapy with donor lymphocyte infusions (DLI) are driven by a graft versus leukemia (GvL) effect. However, relapses and moderate to severe graft versus host disease (GVHD) are common. Therapies that increase the GvL effect without inducing GVHD are needed. The NEXI-001 study is a prospective, multicenter, open-label phase 1/2 trial designed to characterize the safety, immunogenic, and antitumor activity of the NEXI-001 antigen specific T-cell product. This product is a donor-derived non-genetically engineered therapy that consists of populations of CD8+ T cells that recognize HLA 02.01-restricted peptides from the WT1, PRAME, and Cyclin A1 antigens. These T cells consist of populations with key memory phenotypes, including stem-like memory, central memory, and effector memory cells, with a low proportion (<5%) of potentially allogeneic-reactive T-naïve cells. Patients enrolled into the first cohort of the dose escalation phase received a single infusion of 50 million (M) to 100M cells of the NEXI-001 product. Bridging anti-AML treatment was permitted during the manufacture of the cellular product with a wash-out period of at least 14 days prior to lymphodepletion (LD) chemotherapy (intravenous fludarabine 30 mg/m 2 and cyclophosphamide 300 mg/m 2) that was administered on Days -5, -4, and -3 prior to the infusion of the NEXI-001 product up to 72 hours later (Day1). Lymphocyte recovery to baseline levels occurred as early as three days after the NEXI-001 product infusion with robust CD4 and CD8 T cell reconstitution after LD chemotherapy. NEXI-001 antigen specific T cells were detectable in peripheral blood (PB) by multimer staining and were found to proliferate over time and to traffic to bone marrow. The phenotype composition of detectable antigen specific T cells at both sites was that of the infused product. T-cell receptor (TCR) sequencing assays revealed T cell clones in the NEXI-001 product that were not detected in PB of patients tested at baseline. These unique clones subsequently expanded in PB and bone marrow (BM) and persisted over time. Neutrophil recovery, decreased transfusion burden of platelets and red blood cells, and increased donor chimerism were observed. Decreases in myeloblasts and reduction in the size of an extramedullary myeloid sarcoma were suggestive of clinical activity. One patient, a 23-year- old with MRD+ disease at baseline, received two doses of 200M NEXI-001 cells separated by approximately 2 months. Following the first infusion, antigen specific CD8+ T cells increased gradually in PB to 9% of the total CD3+ T cell population just prior to the second infusion and were found to have trafficked to bone marrow. By Day 2 following the second infusion, which was not preceded by LD chemotherapy, the antigen specific CD8+ T cells again increased to 9% of the total CD3+ T cell population in PB and remained at ≥5% until the end of study visit a month later. The absolute lymphocyte count increased by 50% highlighting continued expansion of the NEXI-001 T cells. These cells also maintained significant Tscm populations. Treatment related adverse events, including infusion reactions, GVHD, CRS, and neurotoxicity (ICANS), have not developed in these patients who have received 50M to 200M T cells of the NEXI-001 product either as single or repeat infusions. In conclusion, these results show that infusion of the NEXI-001 product is safe and capable of generating a cell-mediated immune response with early signs of clinical activity. A second infusion is associated with increasing the level of antigen specific CD8+ T cells and their persistence in PB and BM. TCR sequencing and RNA Seq transcriptional profiling of the CD8+ T cells are planned, and these data will be available for presentation during the ASH conference. At least two cycles of 200M NEXI-001 cells weekly x 3 weeks of a 4-week cycle is planned for the next dose-escalation cohort. Early data suggest that the NEXI-001 product has the potential to enhance a GvL effect with minimal GVHD-associated toxicities. Disclosures Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Neximmune: Consultancy; Hansa Biopharma: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy. Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: travel support; Kiadis, Inc.: Research Funding; Omeros, Inc.: Membership on an entity's Board of Directors or advisory committees. Modi: MorphoSys: Membership on an entity's Board of Directors or advisory committees; Seagen: Membership on an entity's Board of Directors or advisory committees; Genentech: Research Funding. Perales: Sellas Life Sciences: Honoraria; Novartis: Honoraria, Other; Omeros: Honoraria; Merck: Honoraria; Takeda: Honoraria; Karyopharm: Honoraria; Incyte: Honoraria, Other; Equilium: Honoraria; MorphoSys: Honoraria; Kite/Gilead: Honoraria, Other; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Medigene: Honoraria; NexImmune: Honoraria; Cidara: Honoraria; Nektar Therapeutics: Honoraria, Other; Servier: Honoraria; Miltenyi Biotec: Honoraria, Other. Edavana: Neximmune, Inc: Current Employment. Lu: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Suarez: Neximmune, Inc: Current Employment. Oelke: Neximmune, Inc: Current Employment. Bednarik: Neximmune, Inc: Current Employment. Knight: Neximmune, Inc: Current Employment. Varela: Kite: Speakers Bureau; Nexlmmune: Current equity holder in publicly-traded company, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Justin M. Watts ◽  
Tara Lin ◽  
Eunice S. Wang ◽  
Alice S. Mims ◽  
Elizabeth H. Cull ◽  
...  

Introduction Immunotherapy offers the promise of a new paradigm for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). CD123, the IL-3 receptor alpha-chain, represents an attractive target for antibody therapies because of its high expression on AML/MDS blasts and leukemic stem cells compared to normal hematopoietic stem and progenitor cells. APVO436, a novel bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule, depleted CD123+ cells in AML patient samples ex vivo (Godwin et al. ASH 2017), reduced leukemia engraftment in a systemic AML xenograft model (Comeau et al. AACR 2018), and transiently reduced peripheral CD123+ cells in non-human primates with minimal cytokine release and in a dose-dependent fashion (Comeau et al. AACR 2019). These data provide a basis for the clinical application of APVO436 as a treatment in AML and MDS. Here, we report preliminary data from a first-in-human dose-escalation study of APVO436 in patients with R/R AML and high-risk MDS. Study Design/Methods This ongoing Phase 1/1b study (ClinicalTrials.gov: NCT03647800) was initiated to determine the safety, immunogenicity, pharmacokinetics, pharmacodynamics, and clinical activity of APVO436 as a single agent. Major inclusion criteria were: R/R AML with no other standard treatment option available, R/R MDS with > 5% marrow blasts or any peripheral blasts and failure of a hypomethylating agent, ECOG performance status ≤ 2, life expectancy > 2 months, white blood cells ≤ 25,000 cells/mm3, creatinine ≤ 2 x upper limit of normal (ULN), INR and PTT < 1.5 x ULN and alanine aminotransferase < 3 x ULN. Patients were not restricted from treatment due to cytogenetic or mutational status. Intravenous doses of APVO436 were administered weekly for up to six 28-day cycles (24 doses) with the option to continue dosing for up to 36 total cycles (144 doses). Flat and step dosing regimens were escalated using a safety-driven modified 3 + 3 design. Pre-medication with diphenhydramine, acetaminophen, and dexamethasone was administered starting with dose 1 to mitigate infusion related reactions (IRR) and cytokine release syndrome (CRS). First doses and increasing step doses of APVO436 were infused over 20-24 hours followed by an observation period of 24 hours or more. Bone marrow biopsies were performed every other cycle with responses assessed by European Leukemia Net 2017 criteria for AML or International Working Group (IWG) 2006 criteria for MDS. Results The data cut-off for this interim analysis was July 9, 2020. Twenty-eight patients with primary R/R AML (n=19), therapy-related R/R AML (n=3), or high-risk MDS (n=6) have been enrolled and received a cumulative total of 186 doses. The number of doses received per patient ranged from 1 to 43 (mean of 6.4 doses). Most patients discontinued treatment due to progressive disease; however, blast reduction was achieved in 2 patients, with one patient with MDS maintaining a durable response for 11 cycles before progressing. APVO436 was tolerated across all dose regimens in all cohorts tested. The most common adverse events (AEs), regardless of causality, were edema (32%), diarrhea (29%), febrile neutropenia (29%), fever (25%), hypokalemia (25%), IRR (21%), CRS (18%), chills (18%), and fatigue (18%). AEs ≥ Grade 3 occurring in more than one patient were: febrile neutropenia (25%), anemia (18%), hyperglycemia (14%), decreased platelet count (11%), CRS (11%), IRR (7%), and hypertension (7%). After observing a single dose limiting toxicity (DLT) at a flat dose of 9 µg, step dosing was implemented and no DLTs have been observed thereafter. No treatment-related anti-drug antibodies (ADA) were observed. Transient serum cytokine elevations occurred after several reported IRR and CRS events, with IL-6 most consistently elevated. Conclusions Preliminary results indicate that APVO436 is tolerated in patients with R/R AML and MDS at the doses and schedules tested to date, with a manageable safety profile. Dose escalation continues and the results will be updated for this ongoing study. Disclosures Watts: BMS: Membership on an entity's Board of Directors or advisory committees; Aptevo Therapeutics: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rafael Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees. Lin:Ono Pharmaceutical: Research Funding; Pfizer: Research Funding; Abbvie: Research Funding; Bio-Path Holdings: Research Funding; Astellas Pharma: Research Funding; Aptevo: Research Funding; Celgene: Research Funding; Genetech-Roche: Research Funding; Celyad: Research Funding; Prescient Therapeutics: Research Funding; Seattle Genetics: Research Funding; Mateon Therapeutics: Research Funding; Jazz: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Trovagene: Research Funding; Tolero Pharmaceuticals: Research Funding. Wang:Abbvie: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau. Mims:Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Agios: Consultancy; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board; Abbvie: Membership on an entity's Board of Directors or advisory committees. Cull:Aptevo Therapeutics: Research Funding. Patel:Agios: Consultancy; Celgene: Consultancy, Speakers Bureau; DAVA Pharmaceuticals: Honoraria; France Foundation: Honoraria. Shami:Aptevo Therapeutics: Research Funding. Walter:Aptevo Therapeutics: Research Funding. Cogle:Aptevo Therapeutics: Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Chenault:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Macpherson:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chunyk:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. McMahan:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gross:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stromatt:Aptevo Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1557-1557
Author(s):  
Christiane Querfeld ◽  
Basem M. William ◽  
Jonathan E. Brammer ◽  
Lubomir Sokol ◽  
Yutaka Tagaya ◽  
...  

Background: Cutaneous T cell lymphoma is incurable with current therapies and there is an urgent need for more effective therapies. BNZ-1 is a pegylated peptide antagonist that binds to the common γc signaling receptor for the cytokines IL-2, IL-9 and IL-15. These cytokines, particularly IL-2 and IL-15, have been implicated in the pathogenesis of CTCL through activation of JAK/Stat signaling pathways, Therefore, we hypothesized that inhibition of the IL-2 and IL-15 signaling pathways in CTCL will induce antitumor activity in patients with CTCL. Methods: A multicenter, open-label Phase 1 study is ongoing to characterize the safety and tolerability of BNZ-1 (NCT03239392). Patients with a diagnosis of mycosis fungoides (MF) of any stage or Sézary syndrome (SS) are eligible for this trial. Pts are enrolled in sequential dose cohorts of 0.5 mg/kg, 1mg/kg, 2 mg/kg, and 4 mg/kg to receive intravenous dose of BNZ-1 to characterize safety, pharmacokinetics, pharmacodynamics, and evidence of antitumor activity. Infusions are administered weekly for four doses to evaluate for safety. Thereafter, patients are enrolled on an extension phase for 3 months of weekly dosing of BNZ-1. If patient attain a response, they are eligible for a long-term extension arm, as approved by the FDA. Blood samples are collected to assess the impact of BNZ-1 on the anti-tumor response. Results: pts with MF/SS (11 M/5F, median age 61 years, range 32-89) have been enrolled. Clinical stages include IB (n=6), IIA (n=1), IIB (n=6), IVA1 (n=2), IVB (n=1). Patients were previously treated with a median of 2 ( 1-5) topical therapies and 3 (1-11) systemic therapies. Single and sequential doses of weekly 1 mg, 2 mg, or 4 mg BNZ-1 infusions have been well tolerated. The most frequently reported adverse events were pruritus (n=9), fatigue (n=5) and dry skin (n=3). All treatment-related AEs were Grade 1 or 2 in severity. No SAEs or dose limiting toxicity have been observed to date. Notably reductions in mSWATs and CAILs was noted even in patients with advanced stage disease and/or with features of large cell transformation and folliculotropic subtype. Flow cytometry of peripheral blood at baseline and during treatment indicated activation of anti-lymphoma immune responses associated with the downregulatio of PD1. Concommittantly, excess expression of cytotoxic granules (perforin & Granzyme B) has been downregulated, suggesting the silencing of inflammatory T-cell responses. Conclusions: These preliminary Phase 1 results suggest that pegylated BNZ-1 is well-tolerated and inhibition of IL-2 and IL-15 leads to clinical improvement in patients with CTCL. Evidence for the rejuvenation of anti-lymphoma immunity and a decreasing inflammatory responses was seen in cases showing clinical response consistent with our hypothesis. An expansion cohort in CTCL is currently underway to validate these promising early results. Disclosures Querfeld: Trillium: Consultancy, Other: Investigator, Research Funding; Soligenix: Other: Investigator; Celgene: Other: Investigator, Research Funding; Medivir: Consultancy; Elorac: Other: Investigator, Research Funding; miRagen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Bioniz: Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Kyowa: Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Eisai: Other: Investigator; Helsinn: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Investigator; City of Hope Cancer Center and Beckman Research Institute: Employment. William:Techspert: Consultancy; Celgene Corporation: Consultancy; Kyowa Kirin, Inc.: Consultancy; Guidepoint Global: Consultancy; Defined Health: Consultancy. Brammer:Celgene: Research Funding; Seatlle Genetics: Honoraria, Speakers Bureau. Sokol:EUSA: Consultancy. Tagaya:Bioniz: Research Funding; Bioniz: Membership on an entity's Board of Directors or advisory committees. Frohna:Bioniz: Employment. Azimi:Bioniz: Employment. Zain:Seattle Genetics: Honoraria, Speakers Bureau; spectrum: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1864-1864
Author(s):  
Julie Kanter ◽  
John F. DiPersio ◽  
Patrick Leavey ◽  
David C. Shyr ◽  
Alexis A Thompson ◽  
...  

Abstract Background Sickle cell disease (SCD) is a recessive monogenic disease caused by a single point mutation in which glutamic acid replaces valine in Codon 6 of the human beta-globin gene (HBB) leading to the production of abnormal globin chains (HbS) that polymerize and cause erythrocytes to sickle. This results in hemolytic anemia, vaso-occlusion and organ damage, which leads to lifelong complications and early mortality. Allogeneic hematopoietic stem cell transplant (allo-HSCT) is the only known cure for SCD, however, its use is limited by the lack of well-matched donors, need for immunosuppression, risk of graft versus host disease and graft rejection. GPH101 is an investigational, autologous, hematopoietic stem cell (HSC) drug product (DP) designed to correct the SCD mutation in the HBB gene ex vivo using a high fidelity Cas9 (CRISPR associated protein 9) paired with an AAV6 (adeno-associated virus type 6) delivery template, efficiently harnessing the natural homology directed repair (HDR) cellular pathway. This approach has the potential to restore normal adult hemoglobin (HbA) production while simultaneously reducing HbS levels. In preclinical studies, HBB gene correction in SCD donor HSCs resulted in ≥60% of gene-corrected alleles in vitro with minimal off-target effects. Gene corrected cells were successfully differentiated toward the erythroid lineage and produced ≥70% HbA in vitro. Long-term engraftment of gene-corrected HSCs was demonstrated in vivo, following transplant into immunodeficient mice, with multi-lineage allelic gene correction frequencies well above the predicted curative threshold of 20%, with potential of this approach to be equivalent or superior to allo-HSCT. In addition, HSC-based correction in an SCD mouse model led to stable adult hemoglobin production, increased erythrocyte lifespan and reduction in sickling morphology, demonstrating the therapeutic potential of this gene correction platform as a curative approach in SCD. Study Design and Methods CEDAR (NCT04819841) is a first-in-human, open-label, single-dose, multi-site Phase 1/2 clinical trial in participants with severe SCD designed to evaluate safety, efficacy and pharmacodynamics (PD) of GPH101. Approximately 15 adult (18-40 years) and adolescent (12-17 years) participants will be enrolled across 5 sites, with adolescent enrollment proceeding after a favorable assessment of adult safety data by a Safety Monitoring Committee. Participants must have a diagnosis of severe SCD (βS/βS), defined as ≥ 4 severe vaso-occlusive crises (VOCs) in the 2 years prior and/or ≥ 2 episodes of acute chest syndrome (ACS), in 2 years prior with at least 1 episode in the past year. Participants on chronic transfusion therapy may be eligible if required VOC and ACS criteria are met in the 2 years prior to the initiation of transfusions. Key exclusion criteria include availability of a 10/10 human leukocyte antigen-matched sibling donor, or prior receipt of HSCT or gene therapy. After eligibility confirmation including screening for pre-treatment cytogenetic abnormalities, participants will undergo plerixafor mobilization and apheresis, followed by CD34+ cell enrichment and cryopreservation, undertaken locally at each trial site before shipment to a centralized manufacturer for GPH101 production. After GPH101 release, participants will undergo eligibility reconfirmation prior to busulfan conditioning and DP infusion. Safety, efficacy and PD measurements will occur for 2 years post-infusion; a long-term follow up study will be offered to participants for an additional 13 years of monitoring. The primary endpoint for this study is safety, measured by the kinetics of HSC engraftment, transplant related mortality, overall survival and frequency and severity of adverse events. Secondary endpoints will explore efficacy and PD, including levels of globin expression as compared to baseline, gene correction rates, clinical manifestations of SCD (including VOC and ACS), laboratory parameters, complications and organ function. In addition, cerebral hemodynamics and oxygen delivery will be assessed by magnetic resonance techniques. Key exploratory endpoints include evaluation of patient-reported outcomes, erythrocyte function, on-target and off-target editing rates, and change from baseline in select SCD characteristics. Disclosures Kanter: Fulcrum Therapeutics, Inc.: Consultancy; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Forma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees; Beam: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Consultancy; GuidePoint Global: Honoraria; Fulcrum Tx: Consultancy. Thompson: Agios Pharmaceuticals: Consultancy; Graphite Bio: Research Funding; Vertex: Research Funding; Beam Therapeutics: Consultancy; Celgene: Consultancy, Research Funding; Biomarin: Research Funding; Baxalta: Research Funding; CRISPR Therapeutics: Research Funding; Global Blood Therapeutics: Current equity holder in publicly-traded company; bluebird bio: Consultancy, Research Funding; Novartis: Research Funding. Porteus: Versant Ventures: Consultancy; CRISPR Therapeutics: Current equity holder in publicly-traded company; Allogene Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Ziopharm: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Intondi: Graphite Bio: Current Employment, Current equity holder in publicly-traded company; Global Blood Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Lahiri: Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Dever: Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Petrusich: bluebird bio: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Lehrer-Graiwer: Global Blood Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Graphite Bio: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2737-2737 ◽  
Author(s):  
Naokuni Uike ◽  
Michinora Ogura ◽  
Yoshitaka Imaizumi ◽  
Norio Asou ◽  
Atae Utsunomiya ◽  
...  

Abstract Abstract 2737 Introduction: ATL is prevalent in Japan and has the worst prognosis among T-cell malignancies. PTCL also has a poor prognosis with currently available chemotherapeutic regimens, and both would benefit from better treatment modality. Lenalidomide is an immunomodulatory agent with direct tumoricidal and antiproliferative activity, and is approved for multiple myeloma (MM) in combination with dexamethasone after at least 1 prior therapy and for transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes associated with 5q deletion. We conducted a phase 1 study of lenalidomide in patients with relapsed ATL or PTCL to establish the recommended dose and schedule for a subsequent phase 2 study. Patients and Methods: This multicenter, phase 1, dose-escalation study assessed the safety, maximum tolerated dose (MTD), pharmacokinetics, and efficacy in patients with relapsed advanced ATL or PTCL. Dose-escalation was conducted according to the standard 3+3 design. Up to one PTCL patient was allowed to be included in each cohort of 3 patients. Patients in Cohort 1 received oral lenalidomide 25 mg daily on Days 1–21 of a 28-day cycle. Patients in Cohorts 2 and 3 received 25 and 35 mg/day, respectively, on each day of the 28-day cycle. Dose-limiting toxicity (DLT) was defined as febrile neutropenia lasting 5 or more days; thrombocytopenia (platelets <10,000/uL or bleeding requiring platelet transfusion); ALT/AST elevation of Grade 4 or that of Grade 3 lasting 7 or more days; and/or clinically unacceptable Grade 3 or higher other non-hematological adverse events (AEs). Treatment was continued until the development of unacceptable toxicity or progressive disease (PD). Response was assessed by internationally accepted standard criteria for ATL and PTCL. Results: From July 2010–June 2012, 13 Japanese patients (9 ATL and 4 PTCL; age 32–74 years [median, 64]; 1–11 prior therapies [median, 1]) were enrolled: 3 in Cohort 1, 6 in Cohort 2, and 4 in Cohort 3. The 3 patients in Cohort 1 received lenalidomide for 21, 103, and 637 days, respectively, until PD with no instances of DLT. In Cohort 2, 1 patient experienced DLT (thrombocytopenia, platelets <10,000/uL) and 4 patients received lenalidomide for 37, 56, 138, and 387 days, respectively, until PD in 3 patients and unrelated death in one. The sixth patient is still receiving lenalidomide for 28+ days without a DLT. In Cohort 3, 2 patients had DLTs (thrombocytopenia, platelets <10,000/uL in one patient and Grade 3 prolongation of QTc interval in one patient on concomitant fluconazole with preexisting cardiac disease and grade 1 QTc prolongation at baseline), 1 patient received lenalidomide for 71 days before withdrawal of consent, and 1 patient is still receiving lenalidomide for 323+ days without a DLT. Based on these results, 25 mg daily per 28-day cycle was regarded as the MTD. Other Grade 3/4 non-DLT AEs occurring in 2 or more patients included neutropenia (n=8), lymphocytopenia (n=7), thrombocytopenia (n=3), skin rash (n=3), hyperbilirubinemia (n=2), and increased ALT/AST (n=2). Among the 9 ATL patients, 3 achieved partial responses (PR) with hematological complete response in 2 patients, including the disappearance of skin lesions in 1 patient. These responses occurred between 54 and 57 days, and lasted for 92, 279+ and 505 days. Among the 4 PTCL patients, 1 achieved a PR at day 106 with >75% reduction in lymph nodes, which lasted for 282 days. PK profiles of patients in the study were generally consistent with that observed in Japanese MM patients. Plasma exposure of lenalidomide increased with increasing dose with a mean Cmax on Day 1 for 25 mg and 35 mg of 493 ng/mL and 628 ng/mL, respectively, and a mean AUC24 of 2774 ng/mL and 3062 ng/mL, respectively. There was no evidence of accumulation following multiple dosing for 8 days. Conclusions: This phase 1 study identified lenalidomide 25 mg daily per 28-day cycle as the dose and schedule for a subsequent phase 2 study in patients with ATL or PTCL. Based on the preliminary evidence of antitumor activity in ATL and PTCL patients, a phase 2 study in patients with relapsed ATL in Japan is planned. Disclosures: Off Label Use: Lenalidomide (CC-5013) is an investigational agent in Japan; this abstract assesses its use in adult ATL patients. Tobinai:Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Zenyaku: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Symbio: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Eli Lilly: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kyowa-Kirin: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Biomedics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Solasia Pharma: Clinical trials, Clinical trials Other, Research Funding; Novartis: Research Funding; Johnson & Johnson: Research Funding; Pfizer: Research Funding; GSK: Research Funding; Chugai/Roche: Research Funding; Takeda: Clinical trials, Clinical trials Other, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1587-1587
Author(s):  
Ian W. Flinn ◽  
Jason R. Westin ◽  
Jonathon B. Cohen ◽  
Luke P. Akard ◽  
Samantha Jaglowski ◽  
...  

Background: The Antibody-Coupled T-cell Receptor (ACTR) platform is an autologous engineered T-cell therapy that combines the cell-killing ability of T cells and the tumor-targeting ability of co-administered antibodies to exert potent antitumor immune responses. ACTR707 comprises the extracellular domain of CD16 linked to a CD3ζ signaling domain and a CD28 co-stimulatory domain. ACTR707 is in clinical development in combination with rituximab (NCT03189836) or trastuzumab (NCT03680560). Here we present clinical findings from the dose escalation phase of Study ATTCK-20-03, an ongoing, multicenter, phase 1 study of ACTR707+rituximab in subjects with relapsed or refractory (R/R) CD20+ NHL. Methods: The primary objectives of this first-in-human study are to evaluate the safety of the combination of ACTR707 and rituximab and to determine a recommended phase 2 dose (RP2D). Other objectives include evaluating antitumor activity and ACTR T-cell persistence. Subjects must have CD20+ NHL that is R/R after prior treatments, which must include anti-CD20 antibody-containing chemotherapy. Subjects receive lymphodepleting chemotherapy (cyclophosphamide and fludarabine) for 3 days, followed by rituximab and a single dose of ACTR707. Additional doses of rituximab are administered q3w until disease progression, unacceptable toxicity, or Investigator decision. The study includes a dose escalation phase (increasing doses of ACTR707 with fixed dose of rituximab at 375 mg/m2 q3w) and an expansion phase at the RP2D. Results: Six subjects received ACTR707 at Dose Level 1 (DL1; 23-38×106 ACTR+ T cells), 3 subjects at DL2 (30-50×106 ACTR+ T cells), and 5 subjects at DL3 (45-55×106 ACTR+ T cells). The majority of the subjects were diagnosed with DLBCL (93%) and had refractory disease (71%), defined as progressive disease as the best response to any prior treatment or relapse &lt;1 year post autologous stem cell transplant. In DL1 through DL3, as of 27 May 2019, there were no dose-limiting toxicities, AEs of cytokine release syndrome (CRS), serious or severe neurologic AEs, or AEs leading to deaths on treatment. TEAEs reported in &gt;2 subjects, regardless of causality or grade, included neutropenia, thrombocytopenia, anemia, febrile neutropenia, pyrexia, cough, constipation, diarrhea, nausea, and vomiting. SAEs considered possibly related to ACTR707 were febrile neutropenia (n=2) and cytopenia (n=1). ACTR707 expansion generally reached peak levels within 1 to 2 weeks after administration. All subjects with complete response (CR) up to 1 year had detectable ACTR at the last timepoint evaluated. Higher ACTR707 CD8:CD4 T-cell ratios were associated with clinical responses. Clinical activity was reported across DL1 through DL3, with an overall response rate of 64% including durable complete responses (CRs), with one subject in CR for 387+ days (Table 1). Conclusions: Data available from DL1 through DL3 of ACTR707+rituximab suggest that clinical responses can be achieved without severe T cell-mediated toxicities (eg, CRS and neurotoxicity) that have been reported with other autologous T-cell products. Dose escalation continues at a target dose of 80×106 ACTR+ T cells; enrollment in DL4 (n=6) was recently completed. Updated data, including identified correlates of clinical outcomes, will be presented for DL1 through DL4. Disclosures Flinn: TG Therapeutics, Trillum Therapeutics, Abbvie, ArQule, BeiGene, Curis, FORMA Therapeutics, Forty Seven, Merck, Pfizer, Takeda, Teva, Verastem, Gilead Sciences, Astra Zeneca (AZ), Juno Therapeutics, UnumTherapeutics, MorphoSys, AG: Research Funding; AbbVie, Seattle Genetics, TG Therapeutics, Verastem: Consultancy; TG Therapeutics, Trillum Therapeutics, Abbvie, ArQule, BeiGene, Curis, FORMA Therapeutics, Forty Seven, Merck, Pfizer, Takeda, Teva, Verastem, Gilead Sciences, Astra Zeneca (AZ), Juno Therapeutics, UnumTherapeutics, MorphoSys, AG: Research Funding; Acerta Pharma, Agios, Calithera Biosciences, Celgene, Constellation Pharmaceuticals, Genentech, Gilead Sciences, Incyte, Infinity Pharmaceuticals, Janssen, Karyopharm Therapeutics, Kite Pharma, Novartis, Pharmacyclics, Portola Pharmaceuticals: Research Funding; F. Hoffmann-La Roche Ltd: Research Funding. Westin:Genentech: Other: Advisory Board, Research Funding; Janssen: Other: Advisory Board, Research Funding; Kite: Other: Advisory Board, Research Funding; Unum: Research Funding; Curis: Other: Advisory Board, Research Funding; Juno: Other: Advisory Board; MorphoSys: Other: Advisory Board; 47 Inc: Research Funding; Celgene: Other: Advisory Board, Research Funding; Novartis: Other: Advisory Board, Research Funding. Cohen:Genentech, Inc.: Consultancy, Research Funding; Takeda Pharmaceuticals North America, Inc.: Research Funding; Gilead/Kite: Consultancy; LAM Therapeutics: Research Funding; UNUM: Research Funding; Hutchison: Research Funding; Astra Zeneca: Research Funding; Lymphoma Research Foundation: Research Funding; ASH: Research Funding; Bristol-Meyers Squibb Company: Research Funding; Seattle Genetics, Inc.: Consultancy, Research Funding; Janssen Pharmaceuticals: Consultancy. Akard:Celgene: Speakers Bureau; Novartis: Speakers Bureau; Takeda: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Gilead: Speakers Bureau. Jaglowski:Juno: Consultancy, Other: advisory board; Kite: Consultancy, Other: advisory board, Research Funding; Unum Therapeutics Inc.: Research Funding; Novartis: Consultancy, Other: advisory board, Research Funding. Sachs:Unum Therapeutics Inc.: Employment. Ranger:Unum Therapeutics Inc.: Employment. Harris:Unum Therapeutics Inc.: Employment. Payumo:Unum Therapeutics Inc.: Employment. Bachanova:Celgene: Research Funding; Gamida Cell: Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Incyte: Research Funding; Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17 ◽  
Author(s):  
Martin Hutchings ◽  
Fritz C. Offner ◽  
Francesc Bosch ◽  
Giuseppe Gritti ◽  
Carmelo Carlo-Stella ◽  
...  

Background: Up to 50% of patients suffering from Non-Hodgkin`s lymphoma (NHL) become refractory to or relapse after treatment (M. Crump, Blood 2017). With this, the lack of curative outcomes for patients with both indolent and aggressive NHL subtypes remains an unmet medical need. The CD20 CD3 T cell bispecific antibody glofitamab induces specific T-cell activation and has demonstrated significant single agent activity in r/r NHL patients (NP30179 study, M. Dickinson, EHA 2020, Abstract S241). RO7227166, a CD19 targeted 4-1BBL (CD137) costimulatory agonist has shown synergistic anti-tumor activity when combined with glofitamab in preclinical models (fig 1). RO7227166 is a bispecific antibody-like fusion protein composed of a split trimeric 4-1BB ligand, a tumor antigen-targeting moiety recognizing CD19, and a silent Fc part preventing Fc-mediated toxicity. 4-1BB is an inducible co-stimulatory molecule expressed by activated T-cells or NK cells. Through CD19-binding, the 4-1BB ligand moiety can deliver co-stimulatory signals to activated T- and NK-cell subsets in the tumor. The expected mode of action (MoA) for this molecule is to deliver a costimulatory signal 2 to enhance the effector function of tumor-infiltrating T cells or NK cells upon their activation (signal 1) by a T-cell bispecific antibody (e.g. glofitamab, RO7082859) or a tumor-targeted ADCC antibody (e.g. obinutuzumab). By delivering direct T-cell-target cell engagement followed by costimulatory activation the aim is to offer a highly active off-the-shelf immunotherapy combination. Methods: RO7227166 is being developed in combination with glofitamab and obinutuzumab in a phase I, open-label, dose-escalation study BP41072 (NCT04077723). The study is designed to evaluate the combination maximum tolerated dose (MTD), safety, tolerability, pharmacokinetic (PK), and/or pharmacodynamic (PD) profile of escalating doses of RO7227166, and to evaluate preliminary anti-tumor activity in participants with r/r NHL. The dose escalation stage is divided into Part I (combination with obinutuzumab) and Part II (combination with glofitamab) followed by an expansion stage (Part III). During Part I patients receive 1000mg obinutuzumab intravenously (IV) at a q3w schedule in combination with CD19 4-1BBL IV. During part II glofitamab is given in a q3w schedule with RO7227166 introduced at C2D8 and administered concomitantly from C3D1 onwards. A fixed dose of obinutuzumab (Gpt; pre-treatment) is administered seven days prior to the first administration of RO7227166 and seven days prior to the first administration of glofitamab (M. Bacac, Clin Cancer Res 2018; M. Dickinson, EHA 2020, Abstract S241). Patients will initially be recruited into part I of the study only using single-participant cohorts, where a rule-based dose-escalation is implemented, with dosing initiated at 5 μg (flat dose). As doses of RO7227166 increase, multiple participant cohorts will be recruited and dose-escalation will be guided by the mCRM-EWOC design for overdose control. Commencement of Part II including decision on the RO7227166 starting dose will be guided by safety and PK data from Part I. Patients with r/r NHL meeting standard organ function criteria and with adequate blood counts will be eligible. The maximum duration of the study for each participant will be up to 24 months in Part I (excluding survival follow-up) and up to 18 months in Part II and Part III. Tumor biopsies and peripheral blood biomarker analyses will be used to demonstrate MoA and proof of concept of an off the shelf flexible combination option providing signals 1 and 2. Disclosures Hutchings: Takeda: Honoraria; Takeda: Research Funding; Genmab: Honoraria; Roche: Honoraria; Genmab: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Sankyo: Research Funding; Roche: Consultancy; Genmab: Consultancy; Takeda: Consultancy; Roche: Research Funding; Celgene: Research Funding; Daiichi: Research Funding; Sanofi: Research Funding. Bosch:Hoffmann-La Roche: Research Funding. Gritti:Italfarmaco: Consultancy; F. Hoffmann-La Roche Ltd: Honoraria; Jannsen: Other: Travel Support; Autolus: Consultancy; IQVIA: Consultancy; Kite: Consultancy; Takeda: Honoraria; Amgen: Honoraria. Carlo-Stella:Bristol-Myers Squibb, Merck Sharp & Dohme, Janssen Oncology, AstraZeneca: Honoraria; Servier, Novartis, Genenta Science srl, ADC Therapeutics, F. Hoffmann-La Roche, Karyopharm, Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics and Rhizen Pharmaceuticals: Research Funding; Boehringer Ingelheim and Sanofi: Consultancy. Townsend:Roche, Gilead: Consultancy, Honoraria. Morschhauser:Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Servier: Consultancy; Janssen: Honoraria; Epizyme: Membership on an entity's Board of Directors or advisory committees; F. Hoffmann-La Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Genentech, Inc.: Consultancy. Cartron:Celgene: Consultancy, Honoraria; F. Hoffmann-La Roche: Consultancy, Honoraria; Sanofi: Honoraria; Abbvie: Honoraria; Jansen: Honoraria; Gilead: Honoraria. Ghesquieres:CELGENE: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Roche: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Gilead: Consultancy, Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Janssen: Honoraria. de Guibert:Gilead Sciences: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Herter:Roche Glycart AG: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Korfi:Roche Diagnostics GmbH: Consultancy. Craine:Roche: Current Employment. Mycroft:Roche: Current Employment. Whayman:Roche: Current Employment. Mueller:Roche: Current Employment. Dimier:Roche: Current Employment. Moore:Roche: Current Employment. Belli:Roche Pharma: Current Employment. Kornacker:Hoffmann-La Roche Ltd.: Current Employment, Current equity holder in publicly-traded company. Lechner:Roche Diagnostics GmbH: Current Employment, Current equity holder in publicly-traded company. Dickinson:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck Sharp & Dohme: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document