scholarly journals Hematopoietic Stem Cells Undergo Immune Training and Constitute a Long-Term Reservoir for Hyper-Inflammatory Macrophages in a Mouse Model of Chronic Autoimmunity

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2165-2165
Author(s):  
Taylor S Mills ◽  
Bailee N. Kain ◽  
Erin D Lucas ◽  
Matthew T Burchill ◽  
Beth A Jiron Tamburini ◽  
...  

Abstract Auto-immune diseases (AD) are characterized by repeated flares of disease activity separated by periods of remission. Cycles of AD remission and relapse can occur even with therapeutic intervention and contribute to AD morbidity. Paradoxically, during remission myeloid cells retain increased expression of genes related to interferon signaling and antigen presentation. Given the relatively short lifespan of myeloid cells, these observations imply the existence of a clonal reservoir fueling AD relapse. Recent literature describes hematopoietic stem cells (HSC) as a cellular source for trained myeloid cells in response to immune stimuli. Thus, we hypothesize that HSC may also retain a long-term memory of chronic autoimmune inflammation, thereby providing a continuous supply of myeloid cells that promote AD pathogenesis. To test this hypothesis, we have combined high-throughput molecular and cytokine profiling approaches with functional assays to address heritable changes in immune function using the pristane-induced mouse model of systemic lupus erythematosus (SLE). Eight weeks after pristane injection, we observe significant myeloid lineage expansion in the bone marrow (BM), including mature myeloid cells, granulocyte/monocyte progenitors (GMP) and multipotent progenitor (MPP) populations. To understand the impact of SLE-like disease on the molecular programming of the hematopoietic system, we performed RNA-seq analyses of BM Mon and HSC. As anticipated, BM Mon activated inflammatory programs and antigen presentation genes, which overlapped with gene signatures of human monocytes from SLE patients. HSC also activated innate defense gene programs resembling signatures of trained immunity, thus establishing the potential for autoimmune inflammation to induce immune training in HSC. To establish whether these molecular programs potentiate myeloid cell function, we generated BM-derived macrophages (BMDM) from control and pristane-induced mice. BMDMs from pristane-induced mice exhibited significantly increased capacity to kill Mycobacterium avium. Further, co-culture of T cells with BMDMs from pristane-induced mice significantly boosted T cell proliferation, indicative of enhanced antigen presentation. To establish whether HSC from pristane-induced mice propagate molecular memory of SLE-like disease to myeloid progeny, we transplanted stringently enriched (LSK/SLAM/CD34 -/EPCR +) long-term (LT)-HSC into lethally irradiated recipient mice. 18 weeks post transplant, mice transplanted with LT-HSC from pristane-induced donors had a small but significant reduction in donor BM HSC chimerism but did not exhibit overt changes in lineage output. Strikingly, BMDMs from pristane-induced donors showed increased bacterial killing and inflammatory cytokine generation following M. avium challenge, as well as increased capacity to induce antigen-specific T cell proliferation. Thus, LT-HSC retain and pass on altered functional properties to myeloid cells, even in the absence of AD activity. To characterize the molecular mechanisms underlying HSC-propagated alterations in myeloid cell function, we ran RNA-seq on donor-derived GMP and BMDMs. Notably, GMP derived from pristane-induced donor LT-HSC had increased expression of Fos and Jun/b/d, key molecular drivers of immune training in stem cells. Likewise, pristane-induced donor BMDMs maintained increased expression of IFN-regulated genes including MHC-I, a gene also overexpressed in PBMCs from human SLE patients. Consistent with these findings, re-stimulation of recipient mice with pristane led to a significant increase in cytokine-producing lymph node T cells versus recipient mice transplanted with control HSC, further supporting a model of immune training. Overall, these data show that chronic autoimmune inflammation can induce in HSC a heritable trained immunity phenotype that is transmitted to myeloid progeny, enhancing their functional activity. Ongoing studies are establishing the capacity for this phenotype to exacerbate AD. We are also testing the importance of molecular players identified above in establishing AD-related immune training and assessing the potential for therapeutic interventions to disrupt HSC memory in this setting. Our data thus stand to establish a new paradigm for trained immunity in HSC as a key contributor to AD pathology and relapse. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 118 (42) ◽  
pp. e2102698118
Author(s):  
Elisa Jentho ◽  
Cristian Ruiz-Moreno ◽  
Boris Novakovic ◽  
Ioannis Kourtzelis ◽  
Wout. L. Megchelenbrink ◽  
...  

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2–6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular “labile” heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94–100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5055-5055
Author(s):  
Zhenhua Yang ◽  
Hao Jiang

Abstract While stem cells undergo phenotypic and functional changes in development, the capacity of self-renewal and differentiation remains the defining property of stem cells throughout life, indicating certain fundamental regulatory mechanisms underlying these cardinal features of stem cells. A profound transition occurs to hematopoietic stem cells (HSCs) from embryonic to adult hematopoiesis, resulting in pronounced distinctions between fetal liver (FL) and adult bone marrow (BM) HSCs in many aspects. While many studies have documented a different dependence of fetal versus adult HSC function on epigenetic modulators including several Polycomb proteins, little is known about if Trithorax proteins play a similar or different role in fetal versus adult HSC function. More specifically, despite being a prominent epigenetic mark associated with gene activation, the role of H3K4 methylation (an activity of many Trithorax proteins) in different stages of HSCs remains unclear. As the major H3K4 methylases in mammals, the Set1/Mll family complexes play important roles in development and stem cell function, and are extensively associated with diseases including blood cancers. We have previously established a direct role of Dpy30, a core subunit in all Set1/Mll complexes, in facilitating genome-wide H3K4 methylation, and this allows an effective interrogation of the functional role of efficient H3K4 methylation through genetic studies of Dpy30. While dispensable for the self-renewal of embryonic stem cells (ESCs), Dpy30 is crucial for efficient differentiation of ESCs by facilitating the induction of many bivalently marked developmental genes (Jiang et al., Cell, 2011). We have then generated a Dpy30 conditional knockout mouse, and shown that Dpy30 plays a crucial role in the long term maintenance and differentiation of adult BM HSCs, and preferentially controls H3K4 methylation and expression of many hematopoiesis-associated genes in adult BM cells (Yang et al., J Exp Med, accepted). However, the role of Dpy30 and efficient H3K4 methylation in fetal HSCs is still unknown. To study the role of efficient H3K4 methylation in fetal HSCs, we deleted Dpy30 in fetal hematopoietic cells using VavCre line. VavCre; Dpy30F/- fetuses are anemic at E14.5 and E15.5, with reduced H3K4 methylation but significantly increased numbers of FL HSCs. However, these FL HSCs were functionally defective in colony formation and blood reconstitution following transplantation. Proliferation of the progenitors, but not HSCs, was significantly (but modestly) reduced. These results suggest a role of Dpy30 in differentiation of HSCs and progenitor proliferation in FL. We also competitively transplanted Mx1Cre; Dpy30F/- FL and deleted Dpy30 after stable engraftment. Our analysis at an early time point after deletion showed little effect on donor contribution to HSCs, but significant reduction of oligopotent progenitors. Analysis at a later time point after deletion, however, showed marked reduction of all hematopoietic cells including HSCs. These results support a cell-autonomous role of Dpy30 in the differentiation and long term maintenance of FL HSCs. The phenotypes of FL HSCs are largely similar to those of BM HSCs following Dpy30 loss, suggesting that Dpy30 and certain Dpy30 targets are fundamentally important in regulating HSCs regardless of the developmental stages. To identify these targets, we performed RNA-seq analyses for purified FL HSCs from VavCre; Dpy30F/- versus VavCre; Dpy30F/+ littermates. Among hundreds of genes that were significantly changed in FL HSCs, however, only a handful of genes were found to be co-downregulated in both FL and BM HSCs following Dpy30 loss, suggesting that Dpy30 may have different functional targets in different stages of HSCs. To identify Dpy30 targets fundamentally important to HSC regulation, we are now selectively investigating the function of a few common Dpy30 targets in HSCs by colony formation and potentially transplantation assays following their stable knockdown. The similar requirement of Dpy30 in both fetal and adult HSC differentiation as well as long-term maintenance underscores the fundamental importance of this epigenetic modulator in the central properties of stem cells, and studies of the common Dpy30 targets may identify new regulatory genes controlled by this modulator in fetal and adult HSC function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 267-267 ◽  
Author(s):  
Ivan Maillard ◽  
Seth E. Pross ◽  
Olga Shestova ◽  
Hong Sai ◽  
Jon C. Aster ◽  
...  

Abstract Canonical Notch signaling operates through a highly conserved pathway that regulates the differentiation and homeostasis of hematopoietic cells. Ligand-receptor binding initiates proteolytic release of the Notch intracellular domain (ICN) which migrates to the nucleus, binds the transcription factor CSL/RBPJk and activates target genes through the recruitment of transcriptional coactivators of the Mastermind-like family (MAML). Notch signaling is essential for the emergence of hematopoietic stem cells (HSCs) during fetal life, but its effects on adult HSCs are controversial. In gain-of-function experiments, activation of Notch signaling in adult HSCs increased their self-renewal potential in vitro and in vivo. However, loss-of-function studies have provided conflicting results as to the role of physiological Notch signaling in HSC maintenance and homeostasis. To address this question, we expressed DNMAML1, a GFP-tagged pan-inhibitor of Notch signaling, in mouse HSCs. We have shown previously that DNMAML1 interferes with the formation of the ICN/CSL/MAML transcriptional activation complex and blocks signaling from all four Notch receptors (Notch1-4) (Maillard, Blood 2004). Transfer of DNMAML1-transduced bone marrow (BM) as compared to control GFP-transduced BM into lethally irradiated recipients gave rise to similar long-term stable expression of GFP for at least 6 months after transplant. DNMAML1 and GFP-transduced cells contributed equally to all hematopoietic lineages, except to the T cell and marginal zone B cell lineages, which are Notch-dependent. Expression of DNMAML1 did not affect the size of the BM progenitor compartment (Lin negative, Sca-1 positive, c-Kit high, or LSK cells), or the proportion of LSK cells that were negative for Flt3 and L-Selectin expression (containing long-term HSCs). The stem cell function of DNMAML1-transduced LSK cells was further assessed with in vivo competitive repopulation assays in lethally irradiated recipients. DNMAML1 and GFP-transduced LSK cells competed equally well with wild-type BM, as judged by their contribution to the myeloid lineage up to 4 months post-transplant, through two successive rounds of transplantation. Our data indicate that canonical Notch signaling is dispensable for the maintenance of stem cell function in adult HSCs.


Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 2981-2989 ◽  
Author(s):  
Laura G. Schuettpelz ◽  
Priya K. Gopalan ◽  
Felipe O. Giuste ◽  
Molly P. Romine ◽  
Ronald van Os ◽  
...  

AbstractIncreased expression of Kruppel-like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and enforced expression of KLF7. Long-term multilineage engraftment of Klf7−/− cells was comparable with control cells, and self-renewal, as assessed by serial transplantation, was not affected. Enforced expression of KLF7 results in a marked suppression of myeloid progenitor cell growth and a loss of short- and long-term repopulating activity. Interestingly, enforced expression of KLF7, although resulting in multilineage growth suppression that extended to hematopoietic stem cells and common lymphoid progenitors, spared T cells and enhanced the survival of early thymocytes. RNA expression profiling of KLF7-overexpressing hematopoietic progenitors identified several potential target genes mediating these effects. Notably, the known KLF7 target Cdkn1a (p21Cip1/Waf1) was not induced by KLF7, and loss of CDKN1A does not rescue the repopulating defect. These results suggest that KLF7 is not required for normal hematopoietic stem and progenitor function, but increased expression, as seen in a subset of lymphoid leukemia, inhibits myeloid cell proliferation and promotes early thymocyte survival.


Blood ◽  
2006 ◽  
Vol 108 (9) ◽  
pp. 2998-3004 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Florence Armstrong ◽  
Veronique Duval ◽  
Marie-Christine Rouyez ◽  
Nicolas Goardon ◽  
...  

Abstract Stem cell leukemia/T cell acute leukemia 1 (SCL/TAL1) plays a key role in the development of murine primitive hematopoiesis but its functions in adult definitive hematopoiesis are still unclear. Using lentiviral delivery of TAL1-directed shRNA in human hematopoietic cells, we show that decreased expression of TAL1 induced major disorders at different levels of adult hematopoietic cell development. Erythroid and myeloid cell production in cultures was dramatically decreased in TAL1-directed shRNA-expressing cells, whereas lymphoid B-cell development was normal. These results confirm the role of TAL1 in the erythroid compartment and show TLA1's implication in the function of myeloid committed progenitors. Moreover, long-term cultures and transplantation of TAL1-directed shRNA-expressing CD34+ cells into irradiated nonobese diabetic–severe combined immunodeficient (NOD-SCID) mice led to dramatically low levels of human cells of all lineages including the B-lymphoid lineage, strongly suggesting that TAL1 has a role in the early commitment of hematopoietic stem cells (HSCs) in humans. Cultures and transplantation experiments performed with mouse Sca1+ cells gave identical results. Altogether, these observations definitively show that TAL1 participates in the regulation of hematopoiesis from HSCs to myeloid progenitors, and pinpoint TAL1 as a master protein of human and murine adult hematopoiesis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1469-1469
Author(s):  
Mona Khalaj ◽  
Carolien Woolthuis ◽  
Wenhuo Hu ◽  
Benjamin Heath Durham ◽  
Christopher Y. Park

Abstract Acute myeloid leukemia (AML) is composed of functionally heterogeneous cells including leukemic stem cells (LSCs), which exhibit the ability to self-renew and propagate disease. It is thought that failure of common chemotherapy regimens is due to insufficient eradication of LSCs. However, the mechanisms that maintain stem cell function in the hematopoietic system are not well understood. MicroRNAs play an important role in the regulation of normal and malignant hematopoietic stem cells. Our studies showed that miR-99, a miRNA highly expressed in AML patient cell populations enriched for LSC activity, is among the most highly expressed miRNAs in hematopoietic stem cells (HSCs), suggesting that miR-99 plays a role in regulating normal HSCs as well as LSCs. To test the role of miR-99 in normal hematopoiesis, we knocked down (KD) miR-99 in mouse HSCs (Lin-cKit+Sca1+CD34-SLAM+), which resulted in ~3 fold reduced methylcellulose colony formation upon secondary plating (P=0.01), as well as accelerated granulopoiesis as demonstrated by increased Gr1+Mac1+ cells 7 days after culture initiation (P<0.01), suggesting that miR-99 functions to suppresses differentiation. Consistent with this model, transplantation assays demonstrated >10-fold reduction in long-term engraftment capacity of miR-99 KD compared to scrambled controls (P=0.0004). In addition, Ki-67/DAPI staining of stably engrafted miR-99 KD hematopoietic stem and progenitor cells (HSPCs) showed increased cell cycling, demonstrating that miR-99 also maintains HSPC quiescence. Gene set enrichment analysis (GSEA) of RNA-sequencing data generated from stably engrafted Lin-Sca-1+c-Kit+ cells revealed that miR-99 KD induces significant depletion of LT-HSC gene signatures (P<0.001) and induction of a late progenitor signature (P<0.001), providing further evidence that miR-99 normally functions to maintain HSPCs in the undifferentiated state. To test whether miR-99 maintains LSCs, we performed miR-99 KD experiments using the MLL-AF9 retroviral mouse model. miR-99 KD resulted in a significant extension in survival in secondary transplants compared to scrambled controls (median 92 days vs. 48 days, P<0.001). Evaluation of the bone marrow at the time of death revealed ~2.5 fold decrease in the frequency of LSCs (P<0.01) and ~2 fold increase in the percentage of cycling LSCs (in SG2M) (P<0.001). Analysis of RNA-seq data from miR-99 KD LSCs revealed induction of a differentiated normal progenitor signature (P<0.001) and depletion of a shared HSC/LSC gene signature (P=0.05). Giemsa staining of peripheral blood showed miR-99 KD also induced a significant increase in the number of differentiated myeloid precursors in the peripheral blood (P<0.001), reminiscent of AML differentiation-inducing agents used in the clinic such as ATRA. Consistent with a role in regulating leukemic blast differentiation, microRNA-Seq data from the 153 AML patients in the TCGA database revealed that miR-99 expression inversely correlated with their French-American-British classifications, with low expression levels associated with M4 and M5 subtypes. Compatible with a role in maintaining LSCs, miR-99 KD in a primary AML sample reduced long-term engraftment upon xenotransplantation into NSG mice, and the engrafting cells displayed increased CD14 expression. Together, these data demonstrate that similar to normal HSPCs, miR-99 maintains LSCs function. As miR-99 functions to maintain both LSCs and HSCs, we asked which miR-99 target genes mediate miR-99 KD phenotypes. To address this question, we performed a shRNA library-based forward genetic screen designed to rescue the reduced HSC function following miR-99 KD. We designed 180 shRNAs against 45 predicted miR-99 targets that we identified as upregulated upon acute miR-99 KD in mouse HSPCs. Among the conserved miR-99 targets, Hoxa1, a member of the Hox family of transcription factors, was among the top hits, with all 4 shRNAs being enriched compared to controls. Ectopic expression of Hoxa1 in MonoMac6 AML cells was sufficient to induce differentiation, a phenotype similar to miR-99 KD. These data indicate that Hoxa1 is an important downstream mediator of miR-99 function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 199-199 ◽  
Author(s):  
Marion G. Ott ◽  
Manfred Schmidt ◽  
Stefan Stein ◽  
Kerstin Schwarzwaelder ◽  
Ulrich Siler ◽  
...  

Abstract Gene transfer into hematopoietic stem cells has been successfully used to correct immunodeficiencies affecting the lymphoid compartment. However, similar results have not been reported for diseases affecting myeloid cells, mainly due to low engraftment levels of gene-modified cells observed in unconditioned patients. Here we report on two adult patients (P1 and P2, follow up >24 months) and one child (P3, 6 years, follow up 15 months) who received gene-transduced hematopoietic stem cells in combination with nonmyeloablative bone marrow conditioning for the treatment of X-linked Chronic Granulomatous Disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes. Therapeutically significant gene marking was detected in neutrophils of both adult patients (P1 and P2) leading to large numbers (up to 60%) of functionally corrected phagocytes 24 months after gene therapy. This high correction resulted from an unexpected but temporarily restricted expansion of gene transduced myeloid cells in vivo. In contrast gene marking and functionally reconstitution levels in P3 have been low (1–2%). Both adult patients suffered from active infections prior to gene therapy (P1 of bacterial liver abscesses and P2 of lung aspergillosis) and were free of severe bacterial and fungal infections until 24 months after transplantation. P3 suffered from an Aspergillus infection of the spinal cord with paraparesis before transplantation and recovered after gene therapy despite low numbers of functionally corrected cells in the peripheral blood. Large-scale mapping of retroviral integration site distribution revealed that activating insertions in the zinc finger transcription factor homologs MDS1/EVI1, PRDM16, or in SETBP1 have expanded gene-corrected long term myelopoiesis 3- to 4-fold in both adults, providing direct evidence in humans that these genes may influence regulation of normal long-term hematopoiesis. The hematopoietic repopulation in P1 was polyclonal until 18 months after therapy. P1 died of a severe bacterial sepsis after colon perforation 27 months after gene therapy. No evidence of malignant transformation was found in peripheral blood or bone marrow aspirates from this patient. Gene marking at death was still 60%; however the function of gene transduced cells, the number of corrected cell clones and the activity of a predominant clone was greatly decreased. P2 has been free of infections since transplantation (last monitoring: month 26). Hematopoietic repopulation was polyclonal in P2 until day 560. In conclusion, gene therapy in combination with bone marrow conditioning has provided a transitory therapeutic benefit for all 3 patients. Further improvements in vector design and conditioning regimes are under investigation to provide a stable and long term correction of the disease.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2767-2775 ◽  
Author(s):  
Enrique Samper ◽  
Piedad Fernández ◽  
Raúl Eguı́a ◽  
Luis Martı́n-Rivera ◽  
Antonio Bernad ◽  
...  

Abstract Telomere length must be tightly regulated in highly proliferative tissues, such as the lymphohematopoietic system. Under steady-state conditions, the levels and functionality of hematopoietic-committed or multipotent progenitors were not affected in late-generation telomerase-deficient mice (mTerc−/−) with critically short telomeres. Evaluation of self-renewal potential of mTerc−/− day-12 spleen colony-forming units demonstrated no alteration as compared with wildtype progenitors. However, the replating ability of mTerc−/− granulocyte-macrophage CFUs (CFU-GMs) was greatly reduced as compared with wildtype CFU-GMs, indicating a diminished capacity of late-generation mTerc−/− committed progenitors when forced to proliferate. Long-term bone marrow cultures of mTerc−/−bone marrow (BM) cells show a reduction in proliferative capacity; this defect can be mainly attributed to the hematopoietic, not to the stromal, mTerc−/− cells. In serial and competitive transplantations, mTerc−/− BM stem cells show reduced long-term repopulating capacity, concomitant with an increase in genetic instability compared with wildtype cells. Nevertheless, in competitive transplantations late-generation mTerc−/− precursors can occasionally overcome this proliferative impairment and reconstitute irradiated recipients. In summary, our results demonstrate that late-generation mTerc−/− BM cells with short telomeres, although exhibiting reduced proliferation ability and reduced long-term repopulating capacity, can still reconstitute myeloablated animals maintaining stem cell function.


2021 ◽  
Author(s):  
Clara Alsinet ◽  
Maria Primo ◽  
Valentina Lorenzi ◽  
Andrew J Knights ◽  
Carmen Sancho-Serra ◽  
...  

Myeloid cells have a central role in homeostasis and tissue defence. Characterising the current in vitro protocols of myelopoiesis is imperative for their use in research and immunotherapy as well as for understanding the early stages of myeloid differentiation in humans. Here, we profiled the transcriptome of more than 400k cells and generated a robust molecular map of the differentiation of human induced pluripotent stem cells (iPSC) into macrophages. By integrating our in vitro datasets with in vivo single-cell developmental atlases, we found that in vitro macrophage differentiation recapitulates features of in vivo yolk sac hematopoiesis, which happens prior to the appearance of definitive hematopoietic stem cells (HSC). During in vitro myelopoiesis, a wide range of myeloid cells are generated, including erythrocytes, mast cells and monocytes, suggesting that, during early human development, the HSC-independent immune wave gives rise to multiple myeloid cell lineages. We leveraged this model to characterize the transition of hemogenic endothelium into myeloid cells, uncovering poorly described myeloid progenitors and regulatory programs. Taking advantage of the variety of myeloid cells produced, we developed a new protocol to produce type 2 conventional dendritic cells (cDC2) in vitro. We found that the underlying regulatory networks coding for myeloid identity are conserved in vivo and in vitro. Using genetic engineering techniques, we validated the effects of key transcription factors important for cDC2 and macrophage identity and ontogeny. This roadmap of early myeloid differentiation will serve as an important resource for investigating the initial stages of hematopoiesis, which are largely unexplored in humans, and will open up new therapeutic opportunities.


2017 ◽  
Author(s):  
Mati Mann ◽  
Arnav Mehta ◽  
Carl de Boer ◽  
Monika S. Kowalczyk ◽  
Kevin Lee ◽  
...  

Long-term hematopoietic stem cells (LT-HSCs) maintain hematopoietic output throughout an animal's lifespan. With age, however, they produce a myeloid-biased output that may lead to poor immune responses to infectious challenge and the development of myeloid leukemias. Here, we show that young and aged LT-HSCs respond differently to inflammatory stress, such that aged LT-HSCs produce a cell-intrinsic, myeloid-biased expression program. Using single-cell RNA-seq, we identify a myeloid-biased subset within the LT-HSC population (mLT-HSCs) that is much more common amongst aged LT-HSCs and is uniquely primed to respond to acute inflammatory challenge. We predict several transcription factors to regulate differentially expressed genes between mLT-HSCs and other LT-HSC subsets. Among these, we show that Klf5, Ikzf1 and Stat3 play important roles in age-related inflammatory myeloid bias. These factors may regulate myeloid versus lymphoid balance with age, and can potentially mitigate the long-term deleterious effects of inflammation that lead to hematopoietic pathologies.


Sign in / Sign up

Export Citation Format

Share Document