scholarly journals MALT1 Degradation with a Proteolysis-Targeting Chimera for the Treatment of Activated B-Cell Type Diffuse Large B-Cell Lymphoma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 269-269
Author(s):  
Madhav R Seshadri ◽  
Lorena Fontan ◽  
Prasanna Sreevatsan ◽  
David Scott ◽  
John Hatcher ◽  
...  

Abstract Introduction ABC-DLBCL is characterized by chronic activation of NFκB, which is dependent on the CARD11-BCL10-MALT1 (CBM) complex. MALT1 activates NFκB transcription factors via distinct protease and scaffold functions. Clinical allosteric MALT1 protease inhibitors are in development, however these agents partially preserve NFκB activation via MALT1 scaffold function. In addition, MALT1 protease is critical for regulatory T cell (Treg) function, and its inactivation is associated with increased inflammatory cytokine expression by T-effector cells. However, overt inflammation is not seen with MALT1 knockout. It is therefore possible that MALT1 protease inhibition with preserved scaffold function will lead to autoimmune toxicities. As an alternative strategy, we developed MALT1-directed proteolysis targeting chimera (PROTAC) compounds which consist of a MALT1-binding domain linked to an IMiD-based cereblon (CRBN) binding domain, which induce ubiquitination and proteasomal degradation of MALT1. Here we present preliminary studies of a lead compound, PS-II-115, to assess feasibility of this approach for ABC-DLBCL. Results To assess MALT1 protein degradation, OCI-Ly3 cells were treated with DMSO or PS-II-115 10 µM for 24 hours and immunoblots of cell lysates were performed. PS-II-115 induced degradation of MALT1 (degradation ±SEM 73.94 ±9.8% vs DMSO, N = 3). No significant degradation of CRBN neosubstrates IKZF1, IKZF3, or GSPT1 was seen. To assess effects downstream of MALT1, we treated OCI-Ly3 cells with PS-II-115 for 23.5 hours followed by stimulation with PMA/IO for 30 minutes, and immunoblots were performed. We found increased IκB, an inhibitor of NFκB which is degraded following MALT1 scaffold mediated IKK activation, in PS-II-115 treated cells (IkB 206% compared to DMSO), suggesting that MALT1 degradation inhibits MALT1 scaffold-mediated NFκB activation pathways. To measure MALT1 protease inhibition, we used the GloSensor split luciferase method, in which a chimeric protein is cleaved by MALT1 resulting in functional luciferase. Raji cells expressing this construct were treated with DMSO or PS-II-115 for 23.5 hours followed by stimulation with PMA/IO for 30 minutes, and GloSensor assay was performed. PS-II-115 induced dose-dependent inhibition of MALT1 protease activity compared to DMSO (IC 50 1.203 µM, 95% CI 0.374-4.230, N=4). To assess growth inhibition, ABC-DLBCL and GCB-DLBCL cell lines were treated with DMSO or PS-II-115 for 96 hours, and CellTiter Glo assay was performed. GCB-DLBCLs are not dependent on chronic NFκB activation and were expected to be resistant to PS-II-115. PS-II-115 induced growth inhibition of ABC-DLBCL cell lines (OCI-Ly3 IC 50 2.54 µM, OCI-Ly10 IC 50 9.65 µM, TMD8 IC 50 1.87 µM, N=4) more potently than GCB-DLBCL cell lines (OCI-Ly1 IC 50 34.6 µM, OCI-Ly7 IC 50 >50 µM, N=4), suggesting the effect of PS-II-115 is based on MALT1 rather than off-target effects. We then assessed the impact of PS-II-115 on T cell phenotypes. Human T cells were isolated from healthy donors' peripheral blood. Cells were stimulated with CD3/CD28 beads and treated with DMSO, PS-II-115, or an allosteric MALT1 inhibitor for 48 or 96 hours and flow cytometry was performed. We found a significant decrease in CD4+ FOXP3+ CD25+ CD127- Tregs among cells treated with PS-II-115 1 µM or allosteric inhibitor compared to DMSO at 48 hours (PS-II-115 3.89%, allo inh 3.85%, DMSO 9.72% Tregs among CD4+ T cells, P<0.005). We also found decreased pro-inflammatory CD4+ CD45RA+ CCR7- terminal effector T cells expressing RA (TEMRA) among cells treated with PS-II-115 20 µM for 96 hours compared to DMSO (35.67% vs 56.97% TEMRA among CD4+ T cells, p<0.05). The allosteric inhibitor did not affect TEMRA cells. Conclusion We describe a MALT1-directed PROTAC which induces (1) degradation of MALT1 with preservation of other IMiD-associated CRBN neosubstrates, (2) blockade of MALT1 scaffold mediated NFκB activation pathways, (3) MALT1 protease inhibition, (4) selective growth inhibition of ABC-DLBCL cell lines, (5) decrease in Tregs, and (6) decrease in CD4+ TEMRA cells. These results provide proof of principle that MALT1 degradation using a PROTAC compound is a feasible strategy against ABC-DLBCL, and may have distinct effects on T-effector phenotypes compared to MALT1 protease inhibition. Further studies are needed to elucidate immunologic effects of MALT1 degradation and to validate findings in vivo. Disclosures Fontan: Janssen Pharmaceuticals: Current Employment. Gray: Gatekeeper: Consultancy, Current holder of individual stocks in a privately-held company; Syros: Consultancy, Current holder of individual stocks in a privately-held company; Petra: Consultancy, Current holder of individual stocks in a privately-held company; C4: Consultancy, Current holder of individual stocks in a privately-held company; Allorion: Consultancy, Current holder of individual stocks in a privately-held company; Jengu: Consultancy, Current holder of individual stocks in a privately-held company; B2S: Consultancy, Current holder of individual stocks in a privately-held company; Inception: Consultancy, Current holder of individual stocks in a privately-held company; EcoCys: Consultancy, Current holder of individual stocks in a privately-held company; Soltego: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding; Takeda: Research Funding; Astellas: Research Funding; Taiho: Research Funding; Janssen: Research Funding; Kinogen: Research Funding; Her2IIc: Research Funding; Deerfield: Research Funding; Sanofi: Research Funding. Melnick: Constellation: Consultancy; Epizyme: Consultancy; Daiichi Sankyo: Research Funding; Sanofi: Research Funding; Janssen Pharmaceuticals: Research Funding; KDAC Pharma: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2302-2302
Author(s):  
Anne-Charlotte Le Floch ◽  
Caroline Imbert ◽  
Aude De Gassart ◽  
Florence Orlanducci ◽  
Aude Le Roy ◽  
...  

Abstract Introduction Vγ9Vδ2 T cells are new promising cytotoxic effectors in hematological malignancies. In acute myeloid leukemia and in non-Hodgkin lymphomas, Vγ9Vδ2 T cells-based immunotherapy has shown encouraging results both in preclinical models and in early phase clinical trials. Acute lymphoblastic leukemia (ALL) includes very heterogeneous clinico-biological entities, for which recent immunotherapy approaches are currently being developed. Nevertheless, global prognosis of ALL patients still be poor with a 5 years-overall survival of less than 40% and therefore, treatments need to be improved. Very few data are currently available on susceptibility of ALL blasts to Vγ9Vδ2 T cell cytotoxic activity. Vγ9Vδ2 T cells are activated by phosphoantigens bound to BTN3A1 on target cells. BTN3A molecules are targeted at clinical level, with the ICT01 agonist monoclonal antibody (mAb), that is currently tested in a multicentric phase ½ study (EVICTION study). Biology of Vγ9Vδ2 T cells has recently undergone a new paradigm with the identification of BTN2A1 as the direct ligand for Vγ9 chain of γδ TCR. BTN2A1 is mandatory for Vγ9Vδ2 T cell activation but its precise role in modulating functions of Vγ9Vδ2 T cells remains unknown. Here, we show that allogenic and autologous Vγ9Vδ2 T cells exert cytolytic functions against ALL cell lines and primary ALL blasts, and we report that Vγ9Vδ2 T cell cytotoxic activity is enhanced after treatment with a unique agonist mAb targeting BTN2A1. Material and methods 5 ALL cell lines (697, RS4;11, NALM-6, HPB-ALL, SUP-T1) and PBMC from 11 adults ALL patients at diagnosis (B-ALL, T-ALL and Ph+ ALL) were tested in functional assays. We evaluated apoptosis of ALL cell lines and of primary ALL blasts after coculture with allogenic Vγ9Vδ2 T cells. ALL samples were also tested for their expansion capacities and a degranulation assay was performed at D14. We assessed in parallel relative quantification of the level expression of BTN2A1 (ICT0302 and 7.48 epitopes), and BTN3A (20.1 and 108.5 epitopes) on surface of ALL blasts. DAUDI-BTN2AKO+2A1 and HEK293-BTN2AKO+2A1 cells were used in binding assays, and modulation of TCR binding was assessed using recombinant tetramerized Vγ9Vδ2 TCR. Results We showed that Vγ9Vδ2 T cells exert spontaneous cytotoxicity against ALL cell lines and primary ALL blasts with a heterogeneous susceptibility depending on the target. We demonstrated that anti-BTN2A1 ICT0302 agonist mAb significantly enhanced Vγ9Vδ2 T cells mediated apoptosis in comparison to control condition, even for the less spontaneously susceptible cells. We confirmed these observations with degranulation of autologous Vγ9Vδ2 T cells expanded from 5 ALL patients at diagnosis that was increased after treatment with anti-BTN2A1 ICT0302 agonist mAb. BTN3A and BTN2A1 were detected on surface of ALL blasts, and BTN3A 108.5 was the most expressed epitope. Interestingly, we observed that anti-BTN2A1 ICT0302 strongly increased binding of a recombinant Vγ9Vδ2 TCR to target cells using with HEK293 and DAUDI cells. Discussion Our results highlighted that Vγ9Vδ2 T cells exert cytolytic functions against ALL cells, both in allogenic and autologous setting and demonstrated that BTN2A1 targeting with our unique agonist mAb could potentiate effector activities of Vγ9Vδ2 T cells against ALL blasts. These results indicate that the sensitization of leukemic cells can be induced by activation BTN3A as well as BTN2A1 mAbs. These data bring novel understanding on the biology of BTN2A1 on leukemic cells and our ability to enhance both binding and function. These findings could be of great interest for the design of innovative Vγ9Vδ2 T cells-based immunotherapy strategies for treating ALL that could be extended to other cancer types. Disclosures De Gassart: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Vey: Amgen: Honoraria; BMS: Honoraria; BIOKINESIS: Consultancy, Research Funding; NOVARTIS: Consultancy, Honoraria, Research Funding; SERVIER: Consultancy; JAZZ PHARMACEUTICALS: Honoraria; JANSSEN: Consultancy. Cano: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Olive: Emergence Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Alderaan Biotechnology: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; ImCheck Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: Anti-BTN2A1 ICT0302 is a murine agonist monoclonal antibody targeting BTN2A1 whose aim is to increase Vgamma9Vdelta2 T cells functions.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 790-790
Author(s):  
Florent Amatore ◽  
Nicolas Ortonne ◽  
Marc Lopez ◽  
Mathilde Barré ◽  
Florence Orlanducci ◽  
...  

Abstract Background: Advanced cutaneous T-cell lymphomas (CTCLs) remain an unmet medical need. Brentuximab vedotin (BV), an anti-CD30 antibody-drug conjugate (ADC) linked to monomethyl auristatin E (MMAE), do not deliver significant long-term improvements in patient outcomes. More recently, mogamulizumab and anti-KIR3DL2 provided encouraging results but new targeted therapies are needed. Inducible Co-Stimulator (ICOS), a T-cell costimulatory receptor involved in the development of CTCLs, arouses interest. Methods: We used immunohistochemistry to study ICOS expression in skin biopsies of 23 patients with early-stage mycosis fungoides (MF), 12 with transformed MF (TMF) and 17 with Sézary Syndrome (SS), at diagnosis or in relapse. Skin samples from 12 patients with B-cell lymphomas, 14 with CD30 + lymphoproliferative disease (LPD), 12 with primary cutaneous CD4+ small/medium T-cell lympho-proliferative disorder and 13 with angioimmunoblastic T-cell lymphoma (AITL) were used as controls. ICOS expression by circulating Sézary cells and regulatory T cells (Tregs) in patients with SS was evaluated using flow cytometry and compared to healthy donors (HD) lymphocytes. In 5 patients with SS, we also analyzed concomitant biopsies from involved nodes. Then, we investigated the efficacy of anti-ICOS ADCs generated by coupling murine anti-ICOS 314.8 monoclonal antibodies with MMAE and pyrrolobenzodiazepine (PBD), in comparison to BV. We used ICOS + CTCL cell lines (MyLa, MJ and HUT78), murine xenograft models with MyLa and ICOS + Patient Derived Xenografts (PDXs) from patients with SS and AITL. In order to identify the best anti-ICOS clone that we should develop for a clinical trial, we evaluated the affinity of the antibody on the receptor, the internalization capacity of the antibody using pHAb Reactive Dyes kit (Promega®), and the ability of the antibody to act as an ADC using a secondary conjugate (Mab-ZAP kit, Advanced Targeting Systems®). Results: ICOS was highly expressed by the cutaneous atypical lymphocytic infiltrates in respectively 61%, 75% and 88% of patients with early-stage MF, TMF and SS, such as in all the involved nodes. Double staining experiments which were performed in both skin and lymph node revealed that ICOS expression appears mainly restricted to neoplastic CD4 + T-cells, with rare ICOS +CD8 + T-cells in the tumor micro-environment. ICOS expression by circulating Sézary cells was strong: 69 ± 7.3% versus 38.8 ± 7.1% of non-tumoral CD4 + cells (p<0.009; CI95%: 8.7-51.6); and 31 ± 3.2% of CD4+ cells in HD (p<0.0001; CI95%: 20.3-46.3). Percentages of ICOS + Tregs were significantly higher in patients with SS than in HD. In CTCL cell lines, we observed a significant dose-dependent decrease in cell viability in the presence of anti-ICOS-MMAE (IC50 = 8.2ng/mL) and anti-ICOS-PBD (IC50 = 1.2ng/mL) ADCs. In a mouse xenograft model (MyLa), anti-ICOS-MMAE ADCs provided a longer overall survival (OS) than BV (HR=15.2; CI95%: 3.2-71.1; p<0.0006). Finally, in ICOS + PDXs, anti-ICOS-MMAE ADCs significantly improved OS, and reduced the number of tumor cells in the blood, spleen, and bone marrow. No evidence of ADC toxicity was observed in treated mice. Among 8 different anti-ICOS clones, clone 314.8 had the best affinity on MyLa and MJ cell lines. Clones 53.3, 293.1, 92.17, 88.2 and 279.1 also had good affinity to receptor, whereas clones 145.1 and 121.4 had poor affinity. Using the internalization pHAb reactive dyes kit, we found that clones 314.8, 53.3, 92.17, 88.2 internalized significantly better and faster than the other ones. In order to verify if there is a correlation between internalization capacity and ADC effect, clones 53.3, 92.17 and 145.1 were coupled to MMAE. While anti-ICOS-53.3 and anti-ICOS-92.17 ADCs had similar efficacy to anti-ICOS-314.8 ADCs on MyLa, anti-ICOS 145.1 ADCs resulted in significantly lower cell death. Finally, all clones showed good ability to act as ADCs with Mab-ZAP, excluding clones 279.1, 145.1 and 121.4. Discussion: ICOS is a promising therapeutic target because it is expressed both by tumor T-cells and regulatory T-cells. We report for the first time the strong and frequent expression of ICOS in CTCLs, as well as the preclinical efficacy of anti-ICOS ADCs on CTCL cell line and PDXs. These results could be extended to the spectrum of follicular variant peripheral T-cell lymphomas. Conclusion: Collectively, our findings provide the preliminary basis for a therapeutic trial Figure 1 Figure 1. Disclosures Lopez: Emergence Therapeutics: Current holder of individual stocks in a privately-held company. Bagot: Takeda: Membership on an entity's Board of Directors or advisory committees. Olive: ImCheck Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Emergence Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Alderaan Biotechnology: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4841-4841 ◽  
Author(s):  
Laura N Eadie ◽  
Verity A Saunders ◽  
Tamara M Leclercq ◽  
Susan Branford ◽  
Deborah L White ◽  
...  

Abstract Tyrosine Kinase Inhibitors (TKIs) result in excellent responses in Chronic Myeloid Leukaemia (CML) patients. However, secondary resistance is observed in ~35% of patients, mostly due to Bcr-Abl kinase domain (KD) mutations. Overexpression of the efflux transporter ABCB1 is a known mediator of primary resistance to imatinib (IM) and nilotinib (NIL). ABL001, a potent allosteric inhibitor, binds to the myristate pocket of the Bcr-Abl KD. In this study, we modelled ABL001 resistance in vitro with particular focus on ABCB1 and ABCG2. ABL001 sensitivity was evaluated in BCR -ABL1 + cell lines K562, K562-Dox (ABCB1 overexpressing) and K562-ABCG2 (transfected with ABCG2 overexpression vector). Also, K562, K562-Dox and KU812 cells were made resistant to ABL001 by culturing long term in increasing concentrations of ABL001 (increased once >80% survival in culture for >10 days). Parental ABL001 naive cells were maintained in parallel culture. Initial onset of resistance was characterised by significantly increased IC50ABL001 based on AnnexinV/7-AAD cytotoxicity assays performed at each ABL001 dose escalation. Resistance mechanisms were interrogated during escalation and once 10 μM was reached (based on clinically achievable doses). Protein expression levels of efflux transporters ABCB1/ABCG2 were examined by flow cytometry; KD mutation sequencing and Bcr-Abl protein quantitation were performed. K562-Dox and K562-ABCG2 cells demonstrated significantly increased IC50ABL001 compared with parental K562 control cells: 256 and 299 nM respectively vs 23 nM, p<0.001 suggesting both ABCB1 and ABCG2 are important in ABL001 transport. Furthermore, resistance was reversible through use of specific inhibitors cyclosporin (ABCB1) and Ko143 (ABCG2). IC50ABL001 +inhibitors was comparable to that of control K562 cells: K562-Dox +cyclosporin=11 nM; K562-ABCG2 +Ko143=15 nM. A prior study identified ABCB1 overexpression as an initiator of resistance to IM and NIL (expression increased up to 7- and 5-fold in IM and NIL resistant cells compared with respective control cells p<0.002). In this study, expression levels of ABCB1 and ABCG2 were interrogated in 3 ABL001 resistant cell lines; results indicated overexpression of both transporters was integral in development of resistance. Up to 17- and 60-fold greater levels of ABCB1 and ABCG2 respectively was observed in resistant vs control cells (Table 1). No KD mutations were detected in early resistance intermediates; however, a myristate pocket mutation was detected in later stage KU812 ABL001 resistant cells (percentage mutation correlated with IC50ABL001). Table 1. ABL001 resistance characteristics in selected resistant intermediates IC50ABL001 (nM) Fold change (MFI) Bcr-Abl over expression KD mutation ABCB1 ABCG2 K562 Control 23 N N K562 500 nM ABL001 >2500 p <0.001 -1.4 p =0.003 48.3 p =0.007 Y N K562 10 μM ABL001 27, 800p <0.001 -2.3 p =0.535 60.3 p <0.001 Y N K562 10 μM ABL001 +Ko143 89 p <0.001 K562-Dox Control 256 N N K562-Dox 500 nM ABL001 2393 p <0.001 2.3 p <0.001 -2.9 p <0.001 N N K562-Dox 500 nM ABL001 +cyclosporin 17 p <0.001 K562-Dox 10 μM ABL001 >50, 000 p <0.001 -1.6 p <0.001 -0.1 p <0.001 N N KU812 Control 2.7 N N KU812 5 nM ABL001 6.4 p <0.001 2.2 p =0.008 4.0 p =0.002 Y N KU812 10 μM ABL001 33, 300 p <0.001 8.1 p =0.003 11.0 p =0.010 Y Y (90%) p-value: resistant vs respective control; n>3; N=No; Y=Yes While further in vitro and in vivo studies will determine the clinical relevance of efflux-mediated resistance to ABL001 mono- and combination therapy, our preclinical data provide evidence that kinase domain mutations may not be the predominant cause of ABL001 resistance; drug transporters likely play an important role as well. Susceptibility to ABCB1 overexpression is well recognised for IM and NIL resistance and we now show it is also relevant for ABL001. ABCG2-mediated resistance has not been observed with NIL or IM but is clearly important for ABL001. ABL001 treatment induced ABCG2 overexpression in two cell lines; both have negligible basal expression. ABCG2 overexpression preceded Bcr-Abl overexpression and mutation emergence. Importantly, ABL001 resistance was completely reversible in the presence of the ABCG2 inhibitor Ko143 (K562 10 μM ABL001 cells). Given the lack of strong evidence for ABCG2-mediated transport of NIL or IM at clinically relevant concentrations, our data provide a strong rationale for the use of ABL001 in combination with either of these TKIs. Disclosures Branford: Ariad: Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Qiagen: Membership on an entity's Board of Directors or advisory committees. White:Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Hughes:ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 808-808
Author(s):  
Julia Wells ◽  
Tianyu Cai ◽  
Cécile Schiffer-Manniou ◽  
Stéphanie Filipe ◽  
Agnès Gouble ◽  
...  

Abstract Autologous T-cells engineered with chimeric antigen receptors (CARs) against CD19 are proving to be an efficacious immunotherapy for patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). At present, CAR technology is administered through the custom-made manufacturing of therapeutic products from each patient's own T-cells. However, this patient-specific autologous paradigm is a significant limiting factor in the large-scale deployment of CAR technology. In this study, we utilized allogeneic "off-the-shelf" engineered CAR T-cells from third-party healthy donors. The CD22 surface antigen is commonly expressed in B-ALL patients as well as in healthy B-cells. Here, its potential as a CAR target was investigated using allogeneic off-the shelf engineered CAR T-cells against human CD22 (UCART22). UCART22 cells harbor surface expression of an anti-CD22 CAR (CD22 scFv-41BB-CD3z) and the RQR8 ligand, a safety feature rendering the T-cells sensitive to the monoclonal antibody rituximab. To reduce the potential for alloreactivity, the cell surface expression of the T-cell receptor (TCR) is abrogated through the inactivation of the TCRα constant (TRAC) gene using Cellectis' TALEN® gene-editing technology. The level of CD22 cell surface molecules was measured using BD Quantbrite beads for both patient peripheral blood samples and B-ALL cell lines. B-ALL cell lines (n=8) expressed a greater amount of CD22 molecules per cell than patient samples (n=14) (5,028 +/- 1,342 compared to 951 +/-160 molecules/cell, p=0.044), with highest expression of CD22 in two Ph-like B-ALL cell lines (MUTZ5, shown in Figure1A and MHH-CALL4). The in vitro cytotoxic activity of UCART22 cells was evaluated by co-culturing UCART22 or non-transduced CAR(-) TCRαβ(-) control T-cells (NTD) with B-ALL cell lines and primary human samples, at a maximum 10:1 effector to target ratio (represented in Figure1B). Using flow cytometry, significant antigen-specific cytotoxic activity of UCART22 cells was found compared to NTD controls and correlated with CD22 expression factored by the %kolmogorov-smirnov max difference in CD22-PE fluorescence compared to unstained controls (Pearson correlation r-squared for cell lines= 0.6850, p=0.0001 and r-squared for patient samples=0.6204, p=0.0008). Secretion of 13 cytokines was measured after 1:1 co-incubation of effector and target cells. UCART22 cells stimulated by CD22(+) B-ALL, but not NTD cells, secreted high levels of IFNγ, TNFα, IL-5, IL-17A and IL-17F in the culture supernatants, with cytokine levels being proportionate to CD22 abundance (represented in Figure1C). In addition, immune compromised mice engrafted with Daudi cells, a CD22(+) expressing Burkitt's lymphoma cell line, were treated with UCART22 cells. Treatment doses of 1-10x10^6 cells per mouse reduced disease burden (Figure 1D), measured by bioluminescence imaging, and extended survival in a dose-dependent fashion compared to saline or NTD treated controls. Additional PDX studies using B-ALL patient derived xenografts are ongoing and will be presented. Altogether, these results show supporting evidence for the future use of allogenic UCART22 in B-ALL immunotherapy. Disclosures Schiffer-Manniou: Cellectis SA: Employment. Filipe: Cellectis: Employment. Gouble: Cellectis SA: Employment. Galetto: Cellectis SA: Employment. Jain: ADC Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Verastem: Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Abbvie: Research Funding; Incyte: Research Funding; Genentech: Research Funding; Novimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; Servier: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Smith: Cellectis Inc: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4344-4344
Author(s):  
Jay Gamma ◽  
Aishwarya Iyer ◽  
Megan Yap ◽  
Zoulika Zak ◽  
Krista Vincent ◽  
...  

Abstract Background: N-terminal myristoylation is the transfer of the saturated fourteen carbon fatty acid myristate to an N-terminal glycine residue. This co- or post-translational protein modification promotes protein-protein and protein-lipid interactions and is essential for proper membrane localization and/or activity of up to 600 human intracellular proteins. N-myristoyltransferases (NMTs) are the enzymes responsible and two isoforms are found in humans. NMT1 (ubiquitous and essential for cell survival) and NMT2 (more variably expressed) differ in activity level and substrate specificities. NMT expression levels vary in some cancers, and with myristoylation being essential for activity of certain oncogenes including Src Family Kinases (SFKs). NMTs have therefore been proposed as an anti-cancer target. Dysregulation and oncogenic activity of SFKs occurs frequently in acute myeloid leukemia (AML), suggesting NMT inhibition could provide therapeutic benefit. PCLX-001 is a low nanomolar small molecule pan-NMT inhibitor with high oral bioavailability in clinical trials as once daily oral therapy for lymphoma and solid tumors. Methods and Results: Data from the TCGA Transcriptome database showed high NMT1 and low NMT2 were associated with reduced overall and event-free survival in adult AML, and high NMT1 - but not NMT2 - expression is associated with proliferative gene sets in AML cell lines. AML cell lines treated with PCLX-001 showed a significant reduction in total protein myristoylation, as well as reduced levels of SFK proteins and SFK phosphorylation. PCLX-001 induced apoptosis in AML cell lines and patient blasts at concentrations which spared a large proportion of peripheral blood lymphocytes and monocytes from healthy individuals. AML cell lines showed significant increase in BIP protein and ER stress in response to PCLX-001, along with caspase 3 cleavage. In an AML cell line derived xenograft (CDX) and two AML patient derived xenograft (PDX) series (n=1 DX for MV-4-11 and n=2 PDX), PCLX-001 monotherapy had dose-dependent anticancer activity and resulted in complete remissions in subcutaneous AML cell deposits. In tail-vein injection PDX models, PCLX-001 treatment resulted in up to 95% reduction of human CD45+ cells in peripheral blood and bone marrow. Conclusions: These findings validate NMT inhibition as a novel therapeutic strategy for AML. PCLX-001 preferentially targeted AML cells that rely on oncogenic activity of myristoylated proteins, inducing apoptosis and reducing leukemic burden. PCLX-001 warrants evaluation in clinical trials for adult AML. Disclosures Gamma: Pacylex Pharmaceuticals: Current holder of individual stocks in a privately-held company. Yap: Pacylex Pharmaceuticals: Current holder of individual stocks in a privately-held company, Patents & Royalties. Beauchamp: Pacylex Pharmaceuticals: Current Employment, Current holder of individual stocks in a privately-held company, Patents & Royalties. Mackey: Pacylex Pharmaceuticals, Inc.: Current holder of individual stocks in a privately-held company. Pemmaraju: Dan's House of Hope: Membership on an entity's Board of Directors or advisory committees; Abbvie Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other, Research Funding; Aptitude Health: Consultancy; Sager Strong Foundation: Other; Celgene Corporation: Consultancy; LFB Biotechnologies: Consultancy; Plexxicon: Other, Research Funding; MustangBio: Consultancy, Other; Roche Diagnostics: Consultancy; Daiichi Sankyo, Inc.: Other, Research Funding; DAVA Oncology: Consultancy; Cellectis S.A. ADR: Other, Research Funding; Springer Science + Business Media: Other; Stemline Therapeutics, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other, Research Funding; HemOnc Times/Oncology Times: Membership on an entity's Board of Directors or advisory committees; ASCO Leukemia Advisory Panel: Membership on an entity's Board of Directors or advisory committees; Samus: Other, Research Funding; ASH Communications Committee: Membership on an entity's Board of Directors or advisory committees; CareDx, Inc.: Consultancy; Novartis Pharmaceuticals: Consultancy, Other: Research Support, Research Funding; Incyte: Consultancy; Affymetrix: Consultancy, Research Funding; Protagonist Therapeutics, Inc.: Consultancy; Clearview Healthcare Partners: Consultancy; Blueprint Medicines: Consultancy; Bristol-Myers Squibb Co.: Consultancy; ImmunoGen, Inc: Consultancy; Pacylex Pharmaceuticals: Consultancy. Borthakur: Astex: Research Funding; Ryvu: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Protagonist: Consultancy; ArgenX: Membership on an entity's Board of Directors or advisory committees; University of Texas MD Anderson Cancer Center: Current Employment; Takeda: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy. Brandwein: AbbVie: Honoraria; Jazz: Honoraria; Taiho: Honoraria; Astellas: Honoraria; Bristol Myers Squibb: Honoraria; Roche: Honoraria; Pfizer: Honoraria; Amgen: Honoraria. Berthiaume: Pacylex Pharmaceuticals, Inc.: Current holder of individual stocks in a privately-held company.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 565-565
Author(s):  
Gullu Topal Gorgun ◽  
Gregory Whitehill ◽  
Jennifer Lindsey Anderson ◽  
Teru Hideshima ◽  
Jacob P. Laubach ◽  
...  

Abstract Abstract 565 Background: The interaction of myeloma (MM) cells with bone marrow accessory cells induces genomic, epigenomic and functional changes which promote tumor development, progression, cell adhesion mediated-drug resistance (CAM-DR), and immune suppression. As in other cancers, bidirectional interaction between MM cells and surrounding cells regulates tumor development on the one hand, while transforming the BM microenvironment into a tumor promoting and immune suppressive milieu on the other. Recent developments in targeted therapies have indicated that generation of the most effective therapeutic strategies requires not only targeting tumor or stroma cells, but also methods to overcome blockade of anti-tumor immune responses. In addition to lymphoid immune suppressor cells such as regulatory T cells (Tregs), distinct populations of myeloid cells such as myeloid derived suppressor cells (MDSCs) can effectively block anti-tumor immune responses, thereby representing an important obstacle for immunotherapy. While MDSCs are rare or absent in healthy individuals, increased numbers of MDSCs have been identified in tumor sites and peripheral circulation. Recent studies have in particular focused on MDSCs in the context of tumor promoting, immune suppressing, stroma in solid tumors. However, their presence and role in the tumor promoting, immune suppressive microenvironment in MM remains unclear. Methods: Here we assessed the presence, frequency, and functional characteristics of MDSCs in patients with newly diagnosed or relapsed MM compared to MM patients with response and healthy donors. We first identified a distinct MDSC population (CD11b+CD14−HLA-DR-/lowCD33+CD15+) with tumor promoting and immune suppressive activity in both PB and BM of MM patients. Moreover, we determined the immunomodulatory effects of lenalidomide and bortezomib on induction of MDSCs by MM cells, as well as on MDSC function. Results: MDSCs were significantly increased in both PB and BM of patients with active MM compared to healthy donors and MM in response (p<0.01). To determine whether the CD11b+CD14−HLA-DR-/lowCD33+CD15+ myeloid cell population represents functional MDSCs, we first assessed tumor promoting role of MDSCs in the MM microenvironment by culturing MM cell lines with MM patient bone marrow stroma cells (BMSC), with or without depletion of MDSCs. Importantly, BMSC-mediated MM growth decreased to baseline levels of MM cells alone when MDSCs were removed from the BMSC microenvironment. Moreover, MDSCs isolated from MM-BM using magnetic-Ab and/or FACS sorting cell separation, directly induced MM cell growth and survival, evidenced by 3H-thymidine incorporation and MTT assays. Since the interaction between tumor and stromal accessory cells is bidirectional, we next analysed the impact of MM cells on MDSC development. Importantly, MM cell lines cultured with PBMCs from healthy donors induced a 7 fold increase in MDSCs. We also examined the immune suppressive functions of MDSCs in cultures of autologous T cells with T cell stimulators, in the presence and absence of MDSCs from MM-PB or MM-BM. Freshly isolated MDSCs from both MM-PB and MM-BM induced significant inhibition of autologous T cell proliferation. Moreover, MDSC-associated immune inhibitory molecules arginase-1 (ARG-1) and reactive oxygen species (ROS), as well as inhibitory cytokines IL-6 and IL-10, were significantly increased in BM MDSCs, evidenced by intracellular flow cytometry analysis. In addition, MM BM MDSCs induced development of Treg from autologous naïve CD4+T cells. Finally, we analysed whether MDSCs impacted response to bortezomib and lenalidomide. Culture of MDSCs with MM cell lines, with or without bortezomib (5nM) and lenalidomide (1uM), demonstrated that less MM cell cytotoxicity in the presence of MDSCs. Conclusions: Our data show that MDSCs are increased in the MM microenvironment and mediate tumor growth and drug resistance, as well as immune suppression. Therefore targeting MDSCs represents a promising novel immune-based therapeutic strategy to both inhibit tumor cell growth and restore host immune function in MM. Disclosures: Raje: Onyx: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Acetylon: Research Funding; Amgen: Research Funding; Eli-Lilly: Research Funding. Munshi:Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy. Richardson:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3261-3261 ◽  
Author(s):  
Arwen Stikvoort ◽  
Subhashis Sarkar ◽  
Renée Poels ◽  
Niels WCJ van de Donk ◽  
Sonja Zweegman ◽  
...  

Abstract Chimeric Antigen Receptors (CARs) are engineered transmembrane proteins consisting of an antibody-derived antigen recognition domain linked to intracellular cell signaling domains. CAR engineered autologous T cells have been successful in the treatment of a variety of hematologic malignancies. However, several major caveats, including lack of universal donors, long manufacturing times, and absence of a donor in immunologically frail patients, have limited the successful translation of CAR-T cell based therapy to a larger pool of patients. A universal, easy to manufacture, "off the shelf" CAR-based product could potentially address these limitations and result in a lower cost of goods. Towards developing an "off the shelf" CAR-based therapy for Multiple Myeloma (MM), we explored the feasibility and preclinical efficacy of expressing CD38 CARs in KHYG-1 cells, a natural killer (NK) cell line, first established by Yagita et al from a patient with aggressive NK leukemia (Leukemia, 2000). To this end, we effectively transduced KHYG-1 cells with high-affinity CD38 CARs as well as our recently reported affinity-optimized CD38 CARs, which can readily target MM cells with high CD38 expression, while ignoring non-malignant cells with intermediate, low or no CD38 expression when brought to expression on T cells (Drent et al, Molecular Therapy 2017). Moreover, we assessed performance of first and second generation CARs, with co-stimulatory domains CD28 and 4-1BB, and found the combination of CD28/CD3ζ to lead to the best results. After expanding the CAR transduced KHYG-1 cells, we analyzed their phenotype and efficacy in MM by analyzing their cytotoxic activity against CD38+ and CD38- MM and AML cell lines (UM9/THP-1 and U266/HL60, respectively), and against primary MM cells. The CD38-CAR transduced KHYG-1 cells showed no phenotypic alterations, and at effector to target ratios as low as 1:1, induced a high cytotoxicity towards CD38+ cell lines as compared to mock or non-transduced KHYG-1, demonstrating the important contribution of the CD38 CAR on the KHYG-1 NK cell surface. CD38- cell lines were unaffected by both CD38-CAR transduced KHYG-1 cells and mock or non-transduced KHYG-1 cells, indicating the specificity towards CD38 of the CAR and thus the potential safety of the CD38-CAR KHYG-1 cell. Similarly, ex vivo assays using primary MM cells revealed superior cytotoxic activity of CD38-CAR KHYG-1 cells as compared to mock or non-transduced KHYG-1 cells (median 86,5% vs 14% at 1:1 E:T ratio, n=2, Figure 1A). Confirming our previous results we identified an affinity-optimized CD38-CAR which mediated strong primary MM cell cytotoxicity with little or no "off tumor" effect. Normal immune cells (B, T, monocytes), which were either CD38 negative or only intermediate positive, were unaffected (Figure 1B-D), suggesting the potential safety of the CAR-NK cell therapy for clinical applications. As clinical administration would require irradiation of CD38-CAR KHYG-1 cells, we tested the effect of irradiation on their proliferative and cytotoxicity potential. Irradiation with 10Gy, while drastically inhibiting proliferative activity and viability (50% survival after 3 days), did not affect cytotoxicity, suggesting that repeated administrations of irradiated, CD38-CAR transduced KYHG-1 cells may exert effective in vivo anti-tumor activity, which is currently being evaluated in appropriate in vivo models, specifically the humanized bone scaffold in vivo model published by Groen et al (Blood, 2012). In conclusion, we demonstrate that the incorporation of CAR technology into the immortal NK cell line KHYG-1 has enormous potential to become a safe and effective "off the shelf" therapy for MM. Disclosures Stikvoort: Onkimmune: Research Funding. Sarkar:Onkimmune: Research Funding. van de Donk:Amgen: Research Funding; Janssen Pharmceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Celgene: Research Funding. Zweegman:Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene Corp.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. O'Dwyer:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Celgene: Research Funding; Glycomimetics: Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees. Mutis:Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding; OnkImmune: Research Funding; Genmab: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2861-2861
Author(s):  
Lucas C M Arruda ◽  
Liqing Jin ◽  
Melanie Lambert ◽  
Laura Sanchez Rivera ◽  
Renato Alvez ◽  
...  

Abstract ASH Abstract. Intro Acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS) are poor prognosis hematological malignancies characterized by abnormal hematopoiesis and dysfunctions of the hematopoietic stem cell system. Chemotherapy remains the standard of care but is associated with side effects and often high rates of relapse. Today, less than a third of patients diagnosed with AML are cured. Bispecific T-cell engagers (BiTEs) are promising immunotherapeutic agents intended for cancer treatment. BiTEs are small molecules constructed of two single chain variable fragments (scFv) connected in tandem by a flexible linker that acts by retargeting T-cells against tumor cells. One scFv binds to CD3, while the second scFv binds to a tumor-associated antigen. This structure and specificity allow a BiTE construct to physically link a T-cell to a tumor cell, stimulating effector cell activation ultimately leading to cytokine production and tumor killing. Material BiTEs against CD34/CD3 and relevant controls were constructed by recombinant DNA technology and purified from the supernatants of transfected CHO cells following standard procedures. The scFv domain binding to CD34 is positioned N-terminally, and the scFv binding to CD3e C-terminally followed by a hexa-histidine sequence. Results By co-culturing T-cells and target AML cells for 48 h in the presence of increasing concentrations of BiTE or controls, we observed that CD34-BiTE efficiently triggered T-cell-mediated depletion of the CD34 hi and CD34 low cell lines, while negative controls killed none of the target cell lines. Next, we examined the T-cell activation and proliferation. We observed that both CD4+ and CD8+ T-cells presented high levels of CD25/CD69 expressions when the CD34+ cell lines were co-cultured with T-cells in the presence of the CD34/CD3 BiTE. No unspecific activation was found when CD34- cell line was used as target cell. Since CD34 is constitutively expressed by HSCs, the CD34-specific BiTE may deplete not only CD34 +AML blasts but also healthy HSCs. To test this, T-cells and HSCs were purified from PBSC grafts and co-cultured in the presence of either CD34/CD3 BiTE or controls. After co-culture, a significant depletion of CD34 + HSCs was observed for the CD34/CD3 BiTE. To address the potential of the anti-CD34 BiTE in vivo, we next established a human CD34 + cell line in NSG mice per intravenous injection and randomized into three different groups and started treatment the day after. Two groups of mice received two consecutive cycles of one intraperitoneal injection of freshly isolated human T-cells followed by daily intravenous injections of either BiTE or control. The mice were euthanatized at day 21 by which the AML burden was measured, and T-cells quantified. No side effects of the treatment, including after BiTE administration, was observed. There were statistically significant reductions of leukemia burden in both bone marrow and spleen in mice receiving T-cells and BiTE compared to T-cells only and control. Conclusions We show that the CD34/CD3 BiTE is able to promote T-cell activation and killing of CD34-expressing target cells with high efficacy in vitro and in vivo, supporting the translation of this drug into clinical trials. In this scenario, the treatment with CD34-targeting BiTE prior to HSCT would trigger the patient's T-cells to deplete CD34 + leukemic blasts and HSCs. As consequence, this adjuvant treatment would decrease the use of cytotoxic and cytostatic conditioning drugs before HSCT, reducing life-threatening complications such as GvHD and infections. Disclosures Arruda: Anocca: Current Employment, Research Funding. Dick: Celgene, Trillium Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding. Mattsson: MattssonAB medical: Current Employment, Current holder of individual stocks in a privately-held company. Onfelt: Desumo: Current Employment, Current holder of individual stocks in a privately-held company. Uhlin: XNK therapeutics: Current Employment, Current holder of stock options in a privately-held company.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1274-1274
Author(s):  
Warren Fiskus ◽  
Christopher Peter Mill ◽  
Vrajesh Karkhanis ◽  
Bernardo H Lara ◽  
Prithviraj Bose ◽  
...  

LSD1 (KDM1A) is an FAD-dependent amine-oxidase that demethylates mono and dimethyl histone H3 lysine 4 (H3K4Me1 and H3K4Me2), which regulates active enhancers and transcription in AML stem/progenitor cells (LSCs). LSD1 is part of the repressor complexes involving HDACs, CoREST or GFI1, mediating transcriptional repression and differentiation block in LSCs that persist in the minimal residual disease (MRD) following attainment of clinical complete remission, leading to relapse and poor outcome in AML. In AML LSCs, genetic alterations and epigenetic dysregulation of enhancers affect levels of myeloid transcriptional regulators, including c-Myc, PU.1, GATA 2 and CEBPα, and their target genes, which are involved in differentiation block in LSCs. Our present studies demonstrate that CRISPR/Cas9-mediated knockout of LSD1 in the AML OCI-AML5 cells significantly increased the permissive H3K4Me2/3-marked chromatin, reduced H3K27Ac occupancy at super-enhancers and enhancers (SEs/Es) (by ChIP-Seq), especially of c-Myc and CDK6, as well as repressed CoREST, c-Myc, CDK6, and c-KIT, while inducing p21, CD11b, and CD86 levels (log2 -fold change by RNA-Seq, and protein expression by Western analyses). This led to significant growth inhibition, differentiation and loss of viability of OCI-AML5 and patient-derived AML blasts (p < 0.01). Similar effects were observed following exposure of OCI-AML5 (96 hours) to tet-inducible shRNA to LSD1. Knock-down of GFI1 by shRNA (by 90%) also inhibited growth and induced differentiation, associated with upregulation of PU.1, p21 and CD11b levels. Treatment with irreversible (INCB059872, 0.25 to 1.0 µM) or reversible (SP2577, 1.0 to 2.0 µM) LSD1 inhibitor (LSD1i) inhibited binding of LSD1 to CoREST, and significantly induced growth inhibition, differentiation and loss of viability (over 96 hours) of the OCI-AML5, post-myeloproliferative neoplasm (post-MPN) sAML SET2 and HEL92.1.7 cells, as well as patient-derived AML and post-MPN sAML blasts (p < 0.01). Co-treatment with INCB059872 and ruxolitinib synergistically induced apoptosis of the post-MPN sAML SET2 and HEL92.1.7 cells and patient-derived CD34+ post-MPN sAML blasts (combination indices < 1.0). Notably, pre-treatment with the LSD1i for 48 hours significantly re-sensitized ruxolitinib-persister/resistant SET2 and HEL92.1.7 cells to ruxolitinib (p < 0.001). We previously reported that treatment with the BET inhibitor (BETi) JQ1 or OTX015 represses SE/E-driven AML-relevant oncogenes including MYC, RUNX1, CDK6, PIM1, and Bcl-xL, while inducing p21 and p27 levels in post-MPN sAML blasts (Leukemia 2017;31:678-687). This was associated with inhibition of colony growth and loss of viability of AML and post-MPN sAML blasts (p < 0.01). Here, we determined that INCB059872 treatment induced similar levels of lethality in BETi-sensitive or BETi-persister/resistant AML and post-MPN sAML cells. Since BETi treatment also depleted LSD1 protein levels, co-treatment with the BETi OTX015 and LSD1i INCB059872 or SP2577 induced synergistic lethality in AML and post-MPN sAML blasts (combination indices < 1.0). Co-treatment with INCB059872 (1.5 mg/kg) and OTX015 (50 mg/kg) both orally for 21 days, compared to each agent alone or vehicle control, significantly reduced the sAML burden and improved survival of immune-depleted mice engrafted with HEL92.1.7 or HEL92.1.7/OTX015-resistant-GFP/Luc sAML xenografts (p < 0.01). Collectively, these findings strongly support further in vivo testing and pre-clinical development of LSD1i-based combinations with ruxolitinib against post-MPN sAML and with BETi against AML or post-MPN sAML cells. Disclosures Bose: CTI BioPharma: Research Funding; Astellas: Research Funding; NS Pharma: Research Funding; Promedior: Research Funding; Constellation: Research Funding; Incyte Corporation: Consultancy, Research Funding, Speakers Bureau; Celgene Corporation: Consultancy, Research Funding; Blueprint Medicine Corporation: Consultancy, Research Funding; Kartos: Consultancy, Research Funding; Pfizer: Research Funding. Kadia:Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding; Bioline RX: Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Bhalla:Beta Cat Pharmaceuticals: Consultancy. Khoury:Stemline Therapeutics: Research Funding; Angle: Research Funding; Kiromic: Research Funding. Verstovsek:Ital Pharma: Research Funding; Pharma Essentia: Research Funding; Astrazeneca: Research Funding; Incyte: Research Funding; CTI BioPharma Corp: Research Funding; Promedior: Research Funding; Gilead: Research Funding; Celgene: Consultancy, Research Funding; NS Pharma: Research Funding; Protaganist Therapeutics: Research Funding; Constellation: Consultancy; Pragmatist: Consultancy; Sierra Oncology: Research Funding; Genetech: Research Funding; Blueprint Medicines Corp: Research Funding; Novartis: Consultancy, Research Funding; Roche: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with &gt;5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document