scholarly journals Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease

Blood ◽  
2020 ◽  
Vol 135 (21) ◽  
pp. 1887-1898 ◽  
Author(s):  
Kasturi Pal ◽  
Roberta Nowak ◽  
Neil Billington ◽  
Rong Liu ◽  
Arit Ghosh ◽  
...  

Abstract Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9–related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/−GFP+/−, NMIIAD1424N+/−, and NMIIAE1841K+/−) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.

Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Josef D. Franke ◽  
Fan Dong ◽  
Wayne L. Rickoll ◽  
Michael J. Kelley ◽  
Daniel P. Kiehart

Abstract MYH9-related disorders are autosomal dominant syndromes, variably affecting platelet formation, hearing, and kidney function, and result from mutations in the human nonmuscle myosin-IIA heavy chain gene. To understand the mechanisms by which mutations in the rod region disrupt nonmuscle myosin-IIA function, we examined the in vitro behavior of 4 common mutant forms of the rod (R1165C, D1424N, E1841K, and R1933Stop) compared with wild type. We used negative-stain electron microscopy to analyze paracrystal morphology, a model system for the assembly of individual myosin-II molecules into bipolar filaments. Wild-type tail fragments formed ordered paracrystal arrays, whereas mutants formed aberrant aggregates. In mixing experiments, the mutants act dominantly to interfere with the proper assembly of wild type. Using circular dichroism, we find that 2 mutants affect the α-helical coiled-coil structure of individual molecules, and 2 mutants disrupt the lateral associations among individual molecules necessary to form higher-order assemblies, helping explain the dominant effects of these mutants. These results demonstrate that the most common mutations in MYH9, lesions in the rod, cause defects in nonmuscle myosin-IIA assembly. Further, the application of these methods to biochemically characterize rod mutations could be extended to other myosins responsible for disease.


1991 ◽  
Vol 112 (4) ◽  
pp. 677-688 ◽  
Author(s):  
T T Egelhoff ◽  
S S Brown ◽  
J A Spudich

Myosin null mutants of Dictyostelium are defective for cytokinesis, multicellular development, and capping of surface proteins. We have used these cells as transformation recipients for an altered myosin heavy chain gene that encodes a protein bearing a carboxy-terminal 34-kD truncation. This truncation eliminates threonine phosphorylation sites previously shown to control filament assembly in vitro. Despite restoration of growth in suspension, development, and ability to cap cell surface proteins, these delta C34-truncated myosin transformants display severe cytoskeletal abnormalities, including excessive localization of the truncated myosin to the cortical cytoskeleton, impaired cell shaped dynamics, and a temporal defect in myosin dissociation from beneath capped surface proteins. These data demonstrate that the carboxy-terminal domain of myosin plays a critical role in regulating the disassembly of the protein from contractile structures in vivo.


2018 ◽  
Vol 115 (30) ◽  
pp. E7101-E7108 ◽  
Author(s):  
Xiong Liu ◽  
Shi Shu ◽  
Edward D. Korn

The three mammalian nonmuscle myosin 2 (NM2) monomers, like all class 2 myosin monomers, are hexamers of two identical heavy (long) chains and two pairs of light (short) chains bound to the heavy chains. The heavy chains have an N-terminal globular motor domain (head) with actin-activated ATPase activity, a lever arm (neck) to which the two light chains bind, and a coiled-coil helical tail. Monomers polymerize into bipolar filaments, with globular heads at each end separated by a bare zone, by antiparallel association of their coiled-coil tails. NM2 filaments are highly dynamic in situ, frequently disassembling and reassembling at different locations within the cell where they are essential for multiple biological functions. Therefore, it is important to understand the mechanisms of filament polymerization and depolymerization. Monomers can exist in two states: folded and unfolded. It has been thought that unfolded monomers form antiparallel dimers that assemble into bipolar filaments. We now show that polymerization in vitro proceeds from folded monomers to folded antiparallel dimers to folded antiparallel tetramers that unfold forming antiparallel bipolar tetramers. Folded dimers and tetramers then associate with the unfolded tetramer and unfold, forming a mature bipolar filament consisting of multiple unfolded tetramers with an entwined bare zone. We also demonstrate that depolymerization is essentially the reverse of the polymerization process. These results will advance our understanding of NM2 filament dynamics in situ.


2011 ◽  
Vol 100 (3) ◽  
pp. 146a
Author(s):  
K. Ilker Sen ◽  
Michael D. Brenowitz ◽  
Steven C. Almo ◽  
Gary G. Gerfen ◽  
Anne R. Bresnick

1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1975 ◽  
Vol 33 (03) ◽  
pp. 617-631 ◽  
Author(s):  
H. S Kingdon ◽  
R. L Lundblad ◽  
J. J Veltkamp ◽  
D. L Aronson

SummaryFactor IX concentrates manufactured from human plasma and intended for therapeutic infusion in man have been suspected for some time of being potentially thrombogenic. In the current studies, assays were carried out in vitro and in vivo for potentially thrombogenic materials. It was possible to rank the various materials tested according to the amount of thrombogenic material detected. For concentrates not containing heparin, there was substantial agreement between the in vivo and in vitro assays, with a coefficient of correlation of 0.77. There was no correlation between the assays for thrombogenicity and the antithrombin III content. We conclude that many presently available concentrates of Factor IX contain substantial amounts of potentially thrombogenic enzymes, and that this fact must be considered in arriving at the decision whether or not to use them therapeutically.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2019 ◽  
Vol 16 (2) ◽  
pp. 116-127 ◽  
Author(s):  
Ashwani Kumar ◽  
Vineet Mehta ◽  
Utkarsh Raj ◽  
Pritish Kumar Varadwaj ◽  
Malairaman Udayabanu ◽  
...  

Background: Cholinesterase inhibitors are the first line of therapy for the management of Alzheimer’s disease (AD), however, it is now established that they provide only temporary and symptomatic relief, besides, having several inherited side-effects. Therefore, an alternative drug discovery method is used to identify new and safer ‘disease-modifying drugs’. Methods: Herein, we screened 646 small molecules of natural origin having reported pharmacological and functional values through in-silico docking studies to predict safer neuromodulatory molecules with potential to modulate acetylcholine metabolism. Further, the potential of the predicted molecules to inhibit acetylcholinesterase (AChE) activity and their ability to protect neurons from degeneration was determined through in-vitro assays. Results: Based on in-silico AChE interaction studies, we predicted quercetin, caffeine, ascorbic acid and gallic acid to be potential AChE inhibitors. We confirmed the AChE inhibitory potential of these molecules through in-vitro AChE inhibition assay and compared results with donepezil and begacestat. Herbal molecules significantly inhibited enzyme activity and inhibition for quercetin and caffeine did not show any significant difference from donepezil. Further, the tested molecules did not show any neurotoxicity against primary (E18) hippocampal neurons. We observed that quercetin and caffeine significantly improved neuronal survival and efficiently protected hippocampal neurons from HgCl2 induced neurodegeneration, which other molecules, including donepezil and begacestat, failed to do. Conclusion: Quercetin and caffeine have the potential as “disease-modifying drugs” and may find application in the management of neurological disorders such as AD.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Sign in / Sign up

Export Citation Format

Share Document