Induction of Polyploidization in Leukemic Cell Lines and Primary Bone Marrow by Src Kinase Inhibitor SU6656.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2918-2918
Author(s):  
Brian J. Lannutti ◽  
Jennifer N. Minear ◽  
Noel Blake ◽  
Jonathan G. Drachman

Abstract Megakaryocytes (MKs) undergo successive rounds of endomitosis during differentiation, resulting in polyploidy (typically, 16-64N). Previous studies have demonstrated that this occurs through an interruption of normal cell cycle progression during anaphase. However, the molecular mechanism(s) controlling this unique process is undefined. Our studies of Src family kinases demonstrate that Lyn and Fyn kinases are activated by thrombopoietin (TPO) and have an inhibitory effect on cellular proliferation. In fact, adding PP1 to murine bone marrow cells in culture resulted in a higher percentage of polyploid cells. In the present report, we examined the effect of SU6656 on TPO-induced growth and differentiation. SU6656 is reported to be more specific than previous inhibitors for the Src family of tyrosine kinases. Remarkably, when SU6656 (2.5 mM) was added to a megakaryocytic cell line, UT-7/TPO, the cells underwent dramatic increase in cell size and polyploidization. By 24 h, 8N cells were present. After 48 h a 16N population was identified by FACS, and continued growth in SU6656 resulted in higher ploidy states (32N and 64N). This was accompanied by cessation of cellular proliferation (i.e. cell number remained constant), increase in CD41 and CD61 expression, and was notable for the absence of apoptosis. Similarly, polyploidization was observed when SU6656 was added to expanded human bone marrow progenitors with partial MK differentiation. The ability to induce differentiation was also seen using bone marrow from two patients with myelodysplastic syndrome and thrombocytopenia, suggesting that SU6656 might be useful as a differentiation-inducing agent for MKs. Although SU6656 is clearly a potent inhibitor of the Src family kinases, we have undertaken studies to determine if an additional target can be identified. We found no affect on Jak2, STAT3, and STAT5 tyrosine phosphorylation. However, the activity of Aurora kinase B was inhibited in vitro by as little as 50 nM SU6656. We propose that SU6656 may be an important tool for understanding the molecular basis of MK endomitosis and may also have therapeutic potential for individuals with MDS, thrombocytopenia, or other disorders resulting from incomplete megakaryocyte maturation.

1983 ◽  
Vol 11 (3) ◽  
Author(s):  
Philip Lazarus ◽  
JudithSt Germina ◽  
Maurice Dufour ◽  
Greg Palmer ◽  
Deborah Wallace ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 535-535 ◽  
Author(s):  
Thomas O’Hare ◽  
Christopher A. Eide ◽  
Jeffrey W. Tyner ◽  
Amie S. Corbin ◽  
Matthew J. Wong ◽  
...  

Abstract Overview: Bcr-AblT315I is detected in the majority of CML patients who relapse after dasatinib- or nilotinib-based second-line Bcr-Abl kinase inhibitor therapy. SGX70393, an azapyridine-based Abl kinase inhibitor, is effective against Bcr-Abl and Bcr-AblT315I at low nanomolar concentrations in vitro and in cell lines. Here, we comprehensively profiled SGX70393 against native and mutant Bcr-Abl in vitro and in vivo. We also used a cell-based mutagenesis screen to evaluate the resistance profile of SGX70393 alone and in combination with imatinib, nilotinib, or dasatinib. Methods: We assessed colony formation in the presence of SGX70393 by murine bone marrow infected with retroviruses for expression of Bcr-Abl, Bcr-AblT315I, or a variety of other mutants. Toxicity was tested in clonogenic assays of normal bone marrow. SGX70393 effects on cellular tyrosine phosphorylation were measured by immunoblot and FACS in primary Bcr-AblT315I cells isolated from patients with CML or Ph+ B-ALL. In vivo activity was evaluated in a xenograft model using Ba/F3 cells expressing Bcr-AblT315I. Lastly, the resistance profile of SGX70393 was evaluated alone and in dual combinations with imatinib, nilotinib, or dasatinib in a cell-based mutagenesis assay. Results: Colony formation by murine bone marrow cells expressing Bcr-AblT315I (IC50: 180 nM) was reduced by SGX70393 in a dose dependent manner, while no toxicity was observed in colony forming assays of normal human or murine mononuclear cells at concentrations up to 2 μM. Ex vivo exposure of human Bcr-AblT315I mononuclear cells to SGX70393 decreased CrkL phosphorylation, while imatinib, nilotinib, or dasatinib had no effect. SGX70393 inhibited Bcr-AblT315I-driven tumor growth in mice and this was correlated with reduced levels of pCrkL in tumor tissue, while imatinib was ineffective. A cell-based mutagenesis screen revealed a profile of resistant clones confined to four p-loop residues and position 317. SGX70393 in combination with imatinib contracted the spectrum of resistant mutations relative to either single agent, though outgrowth could not be completely suppressed. Combining SGX70393 with low concentrations of nilotinib or dasatinib narrowed the resistance profile still further (residues 248 and 255 for nilotinib; 317 for dasatinib) and, with clinically achievable doses of either second drug, completely abrogated emergence of resistant subclones. Conclusions: SGX70393, a potent inhibitor of Bcr-AblT315I, exhibits a resistance profile centered around the p-loop and residue 317 of Bcr-Abl. Remarkably, in combination with nilotinib or dasatinib, outgrowth of resistant clones is completely suppressed. Single-agent therapy with an effective T315I inhibitor may provide a viable option for patients who relapse with Bcr-AblT315I. However, as a broader spectrum of mutations accounts for imatinib resistance, patients with acquired dasatinib or nilotinib resistance may continue to harbor residual mutant clones other than T315I. Thus, the full clinical potential of SGX70393 may be realized in combinations with a second Abl kinase inhibitor. Our findings provide the first demonstration that Abl kinase inhibitor combinations that include a T315I-targeted component such as SGX70393 have the potential to pre-empt Bcr-Abl-dependent resistance.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2763-2763 ◽  
Author(s):  
Moran Gotesman ◽  
Thanh-Trang T Vo ◽  
Sharmila Mallya ◽  
Qi Zhang ◽  
Ce Shi ◽  
...  

Abstract Background and Rationale: B-lymphoblastic leukemia (B-ALL) is the most common cancer of childhood. While event-free survival (EFS) exceeds 85% for most patients treated with contemporary therapy, outcomes are very poor for children who relapse, highlighting a need for new treatments. In particular, children with Philadelphia chromosome-like (Ph-like) B-ALL (who lack BCR-ABL1 rearrangement) have high rates of relapse and mortality with conventional chemotherapy. Transcriptional profiling and genomic sequencing of Ph-like ALL specimens have identified a variety of alterations that activate oncogenic kinase signaling, including rearrangements (R) of CRLF2, ABL1, and PDGFRB. Addition of the tyrosine kinase inhibitor (TKI) imatinib to chemotherapy has dramatically improved EFS for patients with BCR-ABL1-rearranged (Ph+) B-ALL, and it is hypothesized that TKI addition to therapy will similarly improve outcomes for patients with Ph-like ALL. Our prior preclinical studies in Ph+ B-ALL demonstrated enhanced efficacy of combining TKIs (imatinib or dasatinib) with mTOR kinase inhibitors (TOR-KIs) (Janes et al., Nature Medicine 2010; Janes et al, Leukemia2013). In the current studies, we hypothesized that dual kinase inhibitor therapy would have superior anti-leukemia cytotoxicity in Ph-like ALL and thus investigated combined TKI and TOR-KI treatment using patient-derived xenograft (PDX) models of childhood Ph-like ALL. Methods: For in vitro studies, viably cryopreserved leukemia cells from established ABL1-R Ph-like ALL PDX models (2 ETV6-ABL1) were incubated with the TKI dasatinib, TOR-KIs, or both TKI + TOR-KI for 72 hours prior to flow cytometric assessment of cellular viability via Annexin V and propidium iodide staining. Two chemically distinct TOR-KIs (MLN0128 or AZD2014) were used to confirm on-target effects. Additional primary ABL1-R or PDGFRB-R Ph-like ALL specimens were plated in methylcellulose without or with inhibitors in colony-forming assays. Phosphoflow cytometry (PFC) analysis of ALL cells incubated with inhibitors was also performed to measure the ability of TKIs and TOR-KIs to inhibit intracellular ABL1 and PI3K/mTOR signaling pathways. For in vivo studies, Ph-like ALL PDX models were treated with dasatinib, the TOR-KI AZD8055, or both drugs via daily oral gavage for 8 days. Human CD19+ ALL was quantified in murine spleens and bone marrow at end of treatment with quantification of cycling cells by EdU incorporation. PFC analysis of murine bone marrow was also performed 2 hours after drugs were dosed, to measure in vivo inhibition of signaling proteins. Results: Combined in vitro treatment with dasatinib and MLN0128 or AZD2014 decreased cellular viability more than inhibitor monotherapy. Similarly, in a set of CRLF2-rearranged samples, mTOR inhibitors augmented killing by the JAK2 inhibitor BBT-594. Incubation of primary ABL1-R or PDGFRB-R ALL cells with both dasatinib and AZD2014 more robustly inhibited colony formation than did inhibitor monotherapy. In in vitro PFC analyses of ABL1-R samples, we observed expected dasatinib-induced inhibition of phosphorylated (p) STAT5. Inhibition of the mTOR substrate pS6 was observed with dasatinib, MLN0128, and AZD2014 with more complete inhibition achieved when dasatinib combined with either MLN0128 or AZD2014. Similarly, in vivo treatment of PDX models with dasatinib and AZD8055 reduced leukemia burden and pS6 signaling more completely than either inhibitor alone. Importantly, dual inhibition decreased the percentage of cycling human ALL cells in murine bone marrow, but preserved cycling in normal mouse bone marrow cells in the same animals. Our data thus provide additional compelling preclinical rationale for combined inhibitor therapy with TKIs and TOR-KIs in Ph-like ALL. Disclosures Weinstock: Novartis: Consultancy, Research Funding. Mullighan:Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Speakers Bureau; Loxo Oncology: Research Funding. Konopleva:Reata Pharmaceuticals: Equity Ownership; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Stemline: Consultancy, Research Funding; Eli Lilly: Research Funding; Cellectis: Research Funding; Calithera: Research Funding.


Leukemia ◽  
2000 ◽  
Vol 14 (4) ◽  
pp. 735-739 ◽  
Author(s):  
MG Cipolleschi ◽  
E Rovida ◽  
Z Ivanovic ◽  
V Praloran ◽  
M Olivotto ◽  
...  

1985 ◽  
Vol 92 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Gary R. Klimpel ◽  
Marcella Sarzotti ◽  
Victor E. Reyes ◽  
Kathleen D. Klimpel

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1222-1230 ◽  
Author(s):  
Peter J. Wermuth ◽  
Arthur M. Buchberg

AbstractCoexpression of the homeodomain protein Meis1 and either HoxA7 or HoxA9 is characteristic of many acute myelogenous leukemias. Although Meis1 can be overexpressed in bone marrow long-term repopulating cells, it is incapable of mediating their transformation. Although overexpressing HoxA9 alone transforms murine bone marrow cells, concurrent Meis1 overexpression greatly accelerates oncogenesis. Meis1-HoxA9 cooperation suppresses several myeloid differentiation pathways. We now report that Meis1 overexpression strongly induces apoptosis in a variety of cell types in vitro through a caspase-dependent process. Meis1 requires a functional homeodomain and Pbx-interaction motif to induce apoptosis. Coexpressing HoxA9 with Meis1 suppresses this apoptosis and provides protection from several apoptosis inducers. Pbx1, another Meis1 cofactor, also induces apoptosis; however, coexpressing HoxA9 is incapable of rescuing Pbx-mediated apoptosis. This resistance to apoptotic stimuli, coupled with the previously reported ability to suppress multiple myeloid differentiation pathways, would provide a strong selective advantage to Meis1-HoxA9 coexpressing cells in vivo, leading to leukemogenesis.


2020 ◽  
Vol 4 (24) ◽  
pp. 6175-6188
Author(s):  
Yamato Tanabe ◽  
Shimpei Kawamoto ◽  
Tomoiku Takaku ◽  
Soji Morishita ◽  
Atsushi Hirao ◽  
...  

Abstract BCR-ABL, an oncogenic fusion gene, plays a central role in the pathogenesis of chronic myeloid leukemia (CML). Oncogenic signaling induces oncogene-induced senescence and senescence-associated secretory phenotype (SASP), which is characterized by enhanced production of various cytokines. BCR-ABL gene transduction confers senescent phenotype in vitro; however, the in vivo relevance of senescence has not been explored in this context. Transplantation of BCR-ABL–expressing hematopoietic stem/progenitor cells caused CML in mice with an increase in bone marrow BCR-ABL+CD41+CD150+ leukemic megakaryocyte-lineage (MgkL) cells, which exhibited enhanced senescence-associated β-galactosidase staining and increased expression of p16 and p21, key molecules that are crucially involved in senescence. Moreover, knockout of p16 and p21 genes reduced both BCR-ABL–induced abnormal megakaryopoiesis and the maintenance of CML cell leukemogenic capacity, as evidenced by attenuated leukemogenic capacity at secondary transplantation. The expression of transforming growth factor-β1 (TGF-β1), a representative SASP molecule, was enhanced in the leukemic MgkL cells, and TGF-β1 inhibition attenuated CML cell leukemogenic capacity both in vitro and in vivo. Furthermore, BCR-ABL–expressing MgkL cells displayed enhanced autophagic activity, and autophagy inhibition reduced bone marrow MgkL cell number and prolonged the survival of CML mice, which had transiently received the tyrosine kinase inhibitor, imatinib, earlier. Thus, BCR-ABL induced the expansion of senescent leukemic MgkL cells, which supported CML leukemogenesis by providing TGF-β1.


Sign in / Sign up

Export Citation Format

Share Document