mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2763-2763 ◽  
Author(s):  
Moran Gotesman ◽  
Thanh-Trang T Vo ◽  
Sharmila Mallya ◽  
Qi Zhang ◽  
Ce Shi ◽  
...  

Abstract Background and Rationale: B-lymphoblastic leukemia (B-ALL) is the most common cancer of childhood. While event-free survival (EFS) exceeds 85% for most patients treated with contemporary therapy, outcomes are very poor for children who relapse, highlighting a need for new treatments. In particular, children with Philadelphia chromosome-like (Ph-like) B-ALL (who lack BCR-ABL1 rearrangement) have high rates of relapse and mortality with conventional chemotherapy. Transcriptional profiling and genomic sequencing of Ph-like ALL specimens have identified a variety of alterations that activate oncogenic kinase signaling, including rearrangements (R) of CRLF2, ABL1, and PDGFRB. Addition of the tyrosine kinase inhibitor (TKI) imatinib to chemotherapy has dramatically improved EFS for patients with BCR-ABL1-rearranged (Ph+) B-ALL, and it is hypothesized that TKI addition to therapy will similarly improve outcomes for patients with Ph-like ALL. Our prior preclinical studies in Ph+ B-ALL demonstrated enhanced efficacy of combining TKIs (imatinib or dasatinib) with mTOR kinase inhibitors (TOR-KIs) (Janes et al., Nature Medicine 2010; Janes et al, Leukemia2013). In the current studies, we hypothesized that dual kinase inhibitor therapy would have superior anti-leukemia cytotoxicity in Ph-like ALL and thus investigated combined TKI and TOR-KI treatment using patient-derived xenograft (PDX) models of childhood Ph-like ALL. Methods: For in vitro studies, viably cryopreserved leukemia cells from established ABL1-R Ph-like ALL PDX models (2 ETV6-ABL1) were incubated with the TKI dasatinib, TOR-KIs, or both TKI + TOR-KI for 72 hours prior to flow cytometric assessment of cellular viability via Annexin V and propidium iodide staining. Two chemically distinct TOR-KIs (MLN0128 or AZD2014) were used to confirm on-target effects. Additional primary ABL1-R or PDGFRB-R Ph-like ALL specimens were plated in methylcellulose without or with inhibitors in colony-forming assays. Phosphoflow cytometry (PFC) analysis of ALL cells incubated with inhibitors was also performed to measure the ability of TKIs and TOR-KIs to inhibit intracellular ABL1 and PI3K/mTOR signaling pathways. For in vivo studies, Ph-like ALL PDX models were treated with dasatinib, the TOR-KI AZD8055, or both drugs via daily oral gavage for 8 days. Human CD19+ ALL was quantified in murine spleens and bone marrow at end of treatment with quantification of cycling cells by EdU incorporation. PFC analysis of murine bone marrow was also performed 2 hours after drugs were dosed, to measure in vivo inhibition of signaling proteins. Results: Combined in vitro treatment with dasatinib and MLN0128 or AZD2014 decreased cellular viability more than inhibitor monotherapy. Similarly, in a set of CRLF2-rearranged samples, mTOR inhibitors augmented killing by the JAK2 inhibitor BBT-594. Incubation of primary ABL1-R or PDGFRB-R ALL cells with both dasatinib and AZD2014 more robustly inhibited colony formation than did inhibitor monotherapy. In in vitro PFC analyses of ABL1-R samples, we observed expected dasatinib-induced inhibition of phosphorylated (p) STAT5. Inhibition of the mTOR substrate pS6 was observed with dasatinib, MLN0128, and AZD2014 with more complete inhibition achieved when dasatinib combined with either MLN0128 or AZD2014. Similarly, in vivo treatment of PDX models with dasatinib and AZD8055 reduced leukemia burden and pS6 signaling more completely than either inhibitor alone. Importantly, dual inhibition decreased the percentage of cycling human ALL cells in murine bone marrow, but preserved cycling in normal mouse bone marrow cells in the same animals. Our data thus provide additional compelling preclinical rationale for combined inhibitor therapy with TKIs and TOR-KIs in Ph-like ALL. Disclosures Weinstock: Novartis: Consultancy, Research Funding. Mullighan:Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Speakers Bureau; Loxo Oncology: Research Funding. Konopleva:Reata Pharmaceuticals: Equity Ownership; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Stemline: Consultancy, Research Funding; Eli Lilly: Research Funding; Cellectis: Research Funding; Calithera: Research Funding.

Blood ◽  
2010 ◽  
Vol 115 (14) ◽  
pp. 2919-2927 ◽  
Author(s):  
Priya Koppikar ◽  
Omar Abdel-Wahab ◽  
Cyrus Hedvat ◽  
Sachie Marubayashi ◽  
Jay Patel ◽  
...  

Abstract The discovery of JAK2 and MPL mutations in patients with myeloproliferative neoplasms (MPNs) provided important insight into the genetic basis of these disorders and led to the development of JAK2 kinase inhibitors for MPN therapy. Although recent studies have shown that JAK2 kinase inhibitors demonstrate efficacy in a JAK2V617F murine bone marrow transplantation model, the effects of JAK2 inhibitors on MPLW515L-mediated myeloproliferation have not been investigated. In this report, we describe the in vitro and in vivo effects of INCB16562, a small-molecule JAK2 inhibitor. INCB16562 inhibited proliferation and signaling in cell lines transformed by JAK2 and MPL mutations. Compared with vehicle treatment, INCB16562 treatment improved survival, normalized white blood cell counts and platelet counts, and markedly reduced extramedullary hematopoeisis and bone marrow fibrosis. We observed inhibition of STAT3 and STAT5 phosphorylation in vivo consistent with potent inhibition of JAK-STAT signaling. These data suggest JAK2 inhibitor therapy may be of value in the treatment of JAK2V617F-negative MPNs. However, we did not observe a decrease in the size of the malignant clone in the bone marrow of treated mice at the end of therapy, which suggests that JAK2 inhibitor therapy, by itself, was not curative in this MPN model.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 535-535 ◽  
Author(s):  
Thomas O’Hare ◽  
Christopher A. Eide ◽  
Jeffrey W. Tyner ◽  
Amie S. Corbin ◽  
Matthew J. Wong ◽  
...  

Abstract Overview: Bcr-AblT315I is detected in the majority of CML patients who relapse after dasatinib- or nilotinib-based second-line Bcr-Abl kinase inhibitor therapy. SGX70393, an azapyridine-based Abl kinase inhibitor, is effective against Bcr-Abl and Bcr-AblT315I at low nanomolar concentrations in vitro and in cell lines. Here, we comprehensively profiled SGX70393 against native and mutant Bcr-Abl in vitro and in vivo. We also used a cell-based mutagenesis screen to evaluate the resistance profile of SGX70393 alone and in combination with imatinib, nilotinib, or dasatinib. Methods: We assessed colony formation in the presence of SGX70393 by murine bone marrow infected with retroviruses for expression of Bcr-Abl, Bcr-AblT315I, or a variety of other mutants. Toxicity was tested in clonogenic assays of normal bone marrow. SGX70393 effects on cellular tyrosine phosphorylation were measured by immunoblot and FACS in primary Bcr-AblT315I cells isolated from patients with CML or Ph+ B-ALL. In vivo activity was evaluated in a xenograft model using Ba/F3 cells expressing Bcr-AblT315I. Lastly, the resistance profile of SGX70393 was evaluated alone and in dual combinations with imatinib, nilotinib, or dasatinib in a cell-based mutagenesis assay. Results: Colony formation by murine bone marrow cells expressing Bcr-AblT315I (IC50: 180 nM) was reduced by SGX70393 in a dose dependent manner, while no toxicity was observed in colony forming assays of normal human or murine mononuclear cells at concentrations up to 2 μM. Ex vivo exposure of human Bcr-AblT315I mononuclear cells to SGX70393 decreased CrkL phosphorylation, while imatinib, nilotinib, or dasatinib had no effect. SGX70393 inhibited Bcr-AblT315I-driven tumor growth in mice and this was correlated with reduced levels of pCrkL in tumor tissue, while imatinib was ineffective. A cell-based mutagenesis screen revealed a profile of resistant clones confined to four p-loop residues and position 317. SGX70393 in combination with imatinib contracted the spectrum of resistant mutations relative to either single agent, though outgrowth could not be completely suppressed. Combining SGX70393 with low concentrations of nilotinib or dasatinib narrowed the resistance profile still further (residues 248 and 255 for nilotinib; 317 for dasatinib) and, with clinically achievable doses of either second drug, completely abrogated emergence of resistant subclones. Conclusions: SGX70393, a potent inhibitor of Bcr-AblT315I, exhibits a resistance profile centered around the p-loop and residue 317 of Bcr-Abl. Remarkably, in combination with nilotinib or dasatinib, outgrowth of resistant clones is completely suppressed. Single-agent therapy with an effective T315I inhibitor may provide a viable option for patients who relapse with Bcr-AblT315I. However, as a broader spectrum of mutations accounts for imatinib resistance, patients with acquired dasatinib or nilotinib resistance may continue to harbor residual mutant clones other than T315I. Thus, the full clinical potential of SGX70393 may be realized in combinations with a second Abl kinase inhibitor. Our findings provide the first demonstration that Abl kinase inhibitor combinations that include a T315I-targeted component such as SGX70393 have the potential to pre-empt Bcr-Abl-dependent resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


1988 ◽  
Vol 8 (12) ◽  
pp. 5116-5125
Author(s):  
J W Belmont ◽  
G R MacGregor ◽  
K Wager-Smith ◽  
F A Fletcher ◽  
K A Moore ◽  
...  

Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.


2021 ◽  
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored.  Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 720-727 ◽  
Author(s):  
R Agah ◽  
BS Charak ◽  
V Chen ◽  
A Mazumder

Abstract This work is a continuation of our studies that showed that interleukin- 2 (IL-2)-activated murine bone marrow (ABM) cells have potent cytotoxic potential against murine cytomegalovirus (MCMV)-infected targets in vitro, without loss of reconstitutive ability in vivo. Our data show that ABM cells lyse the MCMV-infected cells in vitro, at both acute and chronic stages of infection; this lysis is specific for the MCMV- infected cells. ABM cells supplemented with IL-2 therapy virtually eradicated the viral infection and prolonged the survival of MCMV- infected Balb/c mice, whether or not they were immunocompromised by irradiation (P less than .001 in both situations). Efficacy of ABM cells alone or IL-2 alone was less than the combination of ABM cells and IL-2. The efficacy of combination treatment with ABM cells and IL-2 in improving the survival of MCMV-infected mice was comparable, whether used in a preventive or a therapeutic setting. Therapy with ABM plus IL- 2 also prevented the reactivation of chronic MCMV infection after irradiation. Preliminary findings indicate that Thy-1+ and asialo GM1+ cells limited the MCMV proliferation by approximately 30% and 80%, respectively, while BM macrophages limited the proliferation of MCMV by 100%. These results suggest that BM transplantation (BMT) with ABM cells followed by IL-2 therapy may constitute a novel strategy to improve the host resistance against cytomegalovirus infection after BMT.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

Abstract The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 798-805 ◽  
Author(s):  
BR Blazar ◽  
DL Thiele ◽  
DA Vallera

Abstract Incubation of murine bone marrow and splenocytes with the dipeptide methyl ester, L-leucyl-L-leucine methyl ester (Leu-Leu-OMe), which results in the selective depletion of cytotoxic T cells and their precursors, natural killer cells, and monocytes, completely protected 30 recipients of fully allogeneic donor grafts from lethal graft-versus- host disease (GVHD). These results were comparable with those obtained in 30 recipients of anti-Thy 1.2 plus complement (C')-treated donor marrow. However, in contrast to antibody- and C'-dependent T-cell depletion, which reduces the level of donor cell engraftment in our model system, we did not observe such effects using Leu-Leu-OMe marrow pretreatment. As compared with the 24 H-2 typed recipients of anti-Thy 1.2 + C'-treated donor grafts, the 29 H-2 typed recipients of Leu-Leu- OMe-treated donor grafts had significantly (P less than .001) higher percentages of donor cells (mean = 93% v 74%) and significantly (P less than .001) lower percentages of host cells (mean = 6% v 15%) posttransplantation. In vitro limiting dilution assay (LDA) was performed to assess the comparative efficacy of cytolytic T-lymphocyte (CTL) precursor depletion by Leu-Leu-OMe or anti-Thy 1.2 + C' pretreatment. We observed greater levels of CTL precursor depletion in Leu-Leu-OMe treated as compared with anti-Thy 1.2 + C'-treated bone marrow plus spleen cells (BMS) obtained from nontransplanted mice. This suggests that the in vivo results cannot simply be attributed to a less efficacious functional inactivation of cytolytic T-cell precursors by Leu-Leu-OMe treatment as compared with anti-Thy 1.2 + C' treatment. Immunoreconstitution was similar in recipients of Leu-Leu-OMe-treated grafts and anti-Thy 1.2 + C'-treated grafts 100 days posttransplant. In our opinion, Leu-Leu-OMe marrow pretreatment deserves further investigation as a methodology to achieve GVHD prevention without significantly reducing the propensity toward host cell repopulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4579-4579
Author(s):  
Tuija Lundan ◽  
Franz Gruber ◽  
Martin Hoglund ◽  
Bengt Simonsson ◽  
Sakari Knuutila ◽  
...  

Abstract Most patients with advanced Philadelphia-positive (Ph+) hematologic malignancies develop resistance to imatinib. Acquired resistance to imatinib is commonly a result of selection for subclones bearing point-mutations in the catalytic kinase domain of BCR-ABL. Dasatinib (BMS-354825), a dual-specific SRC/ABL kinase inhibitor, has shown activity in imatinib-resistant Ph+ diseases both in vitro and in vivo. Preliminary data also indicate efficacy in patients. Based on laboratory evidence, dasatinib appears to inhibit all known BCR-ABL mutant clones, with the exception of T315I, a gatekeeper mutation conferring resistance to several kinase inhibitors. Here we describe a Ph+ ALL patient, who initially developed imatinib resistance (hematologic) possibly due to BCR-ABL amplification (FISH). His disease relapsed as extensive extramedullary tumors bearing wild-type BCR-ABL. He received dasatinib 70 mg BID as part of the BMS CA180–015 study and achieved a very good partial remission. After 5 months of therapy, the disease relapsed as a solitary axillary tumor and several small palmar skin lesions. He also had blasts in the CSF indicative of neuroleukemia. Bone marrow remained in cytogenetic remission. FISH analysis of the tumor revealed 2–3 copies of BCR-ABL as previously. A highly sensitive, quantitative, mutation-specific PCR (Gruber F, ASH 2004) showed the presence of the T315I mutation, which was confirmed by sequencing. A very low level of T315I transcript was also detected in the blood. Dasatinib dose was escalated to 100 mg BID, and low-dose hydroxyurea 500 mg BID was initiated to putatively enhance the access of dasatinib in the CSF sanctuary. He also received two doses of i.t. therapy (methotrexate, cytarabine). Patient’s symptoms (confusion, headache) related to neuroleukemia resolved rapidly, skin lesions disappeared and axillary tumor decreased in size. He is currently symptom-free and has no signs of active ALL. The favorable response to dasatinib dose escalation and low-dose hydroxyurea was unexpected. Preclinical data on T315I mutant cell lines would argue against a significant concentration dependence in kinase inhibition by dasatinib. Putatively, targets other than BCR-ABL may be of importance in particular in Ph+ ALL (e.g. Src, Lyn), and this effect may account for the response. Similar off-target activity of hydroxyurea is utilized in clinical trials to overcome resistance to multidrug HIV therapy - a setting resembling current treatment of Ph+ malignancies with kinase inhibitors.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 140-140 ◽  
Author(s):  
Katrien Van Roosbroeck ◽  
Luk Cox ◽  
Idoya Lahortiga ◽  
Olga Gielen ◽  
Thomas Tousseyn ◽  
...  

Abstract Abstract 140 Molecular mechanisms underlying the pathogenesis of classical Hodgkin lymphoma (cHL) are poorly understood. Although no characteristic chromosomal translocation has been identified in cHL, gain and amplification of the 9p24 region harbouring JAK2 has been observed in up to 50% of cHLs. JAK2 encodes a protein tyrosine kinase (PTK) that plays a key role in the JAK/STAT signalling pathway. Chromosomal translocations and gain-of-function mutations involving JAK2 occur in several haematological malignancies. The aim of this study was to characterize a novel t(4;9)(q21;p24) found in a case of nodular sclerosis HL (NSHL), and to determine the in vitro and in vivo consequences of the fusion associated with this translocation. FISH with BAC clones flanking JAK2/9p24 was used to identify the 9p breakpoint and demonstrated involvement of JAK2. A BAC- and fosmid-walking interphase FISH strategy was further applied to identify the 4q21 breakpoint which was eventually mapped in the region of SEC31A. SEC31A is ubiquitously expressed in human cells and is known to play a role in ER-to-Golgi vesicular transport. Further molecular studies led to the identification of a SEC31A-JAK2 in-frame fusion transcript in which exon 24 of SEC31A is fused to exon 17 of JAK2. Of note, our recent studies showed involvement of SEC31A as a partner of ALK in ALK+ LBCL (Van Roosbroeck et al., Haematologica 2009, in press). To determine the in vitro oncogenic potential of SEC31A-JAK2, a chimeric expression construct was designed and introduced into mouse haematopoietic IL3-dependent Ba/F3 cells. SEC31A-JAK2 was found to transform Ba/F3 cells to IL3-independent growth, demonstrating its implication in oncogenic transformation. The fusion protein is likely to function as a constitutively activated tyrosine kinase, due to SEC31A-mediated oligomerization of JAK2. Attempts to identify the SEC31A domain responsible for the constitutive JAK2 activation are ongoing. Initial experiments with deletion mutants containing or lacking the WD40-like repeats of SEC31A exclude these repeats to be the driving force of JAK2 activation. An in vivo role of the fusion was assessed with a murine bone marrow transplant model. All six recipients of SEC31A-JAK2 transduced bone marrow cells developed a fatal disease after 107 – 174 days, showing involvement of the blood, bone marrow and spleen, and in a subset of mice also of lymph nodes and thymus. FACS and histopathological examination of the involved tissues in 3 mice revealed the development of a T-lymphoblastic lymphoma. Analysis of the remaining mice is still ongoing. In addition, we showed that the T-lymphoblastic disease is transplantable to secondary recipients. Downstream of the SEC31A-JAK2 fusion we could demonstrate constitutive activation of the ERK pathway in Ba/F3 cells bearing the SEC31A-JAK2 construct as well as in the reconstituted mouse tissues. To determine the incidence of JAK2 rearrangements in cHL, we screened 60 unselected cHL cases, including 25 with NSHL, by FISH and cDNA-based nested PCR. Using this approach, we identified one additional case with a SEC31A-JAK2 fusion showing 4q21 and 9p24 breakpoints identical to these in the index case. Moreover, we found a third case with a JAK2 rearrangement and two extra copies of the 3'JAK2. As SEC31A is not involved in the latter aberration, further studies aiming at the identification of the JAK2 partner in this case of cHL are ongoing. The vast majority (80%) of the remaining cHL cases analyzed by FISH revealed recurrent gains/amplifications of JAK2. In summary, we proved that JAK2 is recurrently targeted by chromosomal translocations in cHL. We identified and molecularly characterized the novel t(4;9)(q21;p24) resulting in a SEC31A-JAK2 fusion found in two NSHL cases and identified another not yet characterized JAK2 rearrangement in the third cHL case. We demonstrated the oncogenic potential of the SEC31A-JAK2 fusion both in vitro in the mouse haematopoietic IL3-dependent Ba/F3 cell line and in vivo in a murine bone marrow transplant model. Of note, this is the first report of a recurrent translocation associated with cHL. Although aberrant expression of various PTKs including JAK2 has already been documented in cHL, our results indicate that at least in some cHL cases, this aberration can be driven by a chromosomal translocation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document