Alteration of RhoH Expression Is Associated with Human Diffuse Large B-Cell Lymphoma.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4298-4298
Author(s):  
Yi Gu ◽  
Carmelita J. Alvares ◽  
Aparna C. Jasti ◽  
Michael Jansen ◽  
Judy Bean ◽  
...  

Abstract An increasing number of Rho GTPase family proteins have been demonstrated to play critical roles in blood and immune cell development and function. The newly defined RhoH gene has been previously demonstrated to be mutated in lymphoma samples (Dallery et al, 1995; Pasqualucci et al, 2001). These alterations include chromosomal rearrangements and a high frequency of somatic mutations (up to 46%) in human non-Hodgkin’s lymphomas and diffuse large B-cell lymphoma. The RhoH gene encodes a novel hematopoietic-specific member of the RhoE subfamily, which is GTPase deficient, remaining in the active, GTP-bound state. Thus the activity of RhoH is likely regulated by the level of the protein expressed in the cell. The somatic mutations in the RhoH gene have been mapped to a 1.6kb hypermutable region in the intron 1, suggesting the possibility of dysregulated RhoH expression. However, levels of RhoH expression have not been directly measured in these hematopoietic tumors and so it remains unclear whether these mutations translate into aberrant RhoH expression. We utilized quantitative real-time RT-PCR to measure RhoH transcript levels in primary DLBCL patient samples. Based on morphologic and immunophenotypic analysis, 17 DLBCL positive samples and 14 normal control samples were used for our study. The levels of TATA-box binding protein (TBP) and human phosphogycerate kinase (HPGK) cDNAs were also examined simultaneously for relative expression normalization. RhoH transcript levels in a subset of the DLBCL samples were markedly reduced. In particular, 6 of 17 (~35%) tested samples showed a greater than 3-fold reduction in RhoH expression based on both RhoH/TBP and RhoH/HPGK ratios when compared with the median RhoH expression level of 14 normal samples. Overall, RhoH expression levels of the DLBCL group were significantly altered (mainly decreased) as compared with those of the normal group (p < 0.04, student T-test). To further determine correlation of the abnormal RhoH expression with somatic mutations in the hypermutable region of the RhoH gene in the DLBCL samples, we performed genomic PCR amplification and sequencing analysis of this region from the normal and DLBCL samples. In addition, we utilized a computational approach (Trafac - http://trafac.cchmc.org) to identify evolutionarily conserved putative transcription factor binding sites (TFBS) between human and other species in the hypermutable region. 13 conserved TFBS between human and mouse were identified in the hypermutable region. Mutations in the DLBCL patients are localized in 6 of these predicted TFBS, including pancreatic and duodenal homeobox 1 (PDX1), zinc-finger binding protein-89 (ZBP-89), lymphoid enhancer factor 1 (LEF-1), BRIGHT, engrailed 1 and myelin transcription factor 1 (MyT1). Interestingly, LEF-1 and BRIGHT are B cell-specific transcription activators. These results suggest that RhoH expression is frequently altered in 35–40% of DLBCL samples and mutations in the hypermutable region of the RhoH gene in several cases encompass core binding sequences of transcription factors important in B cell development.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 635-635 ◽  
Author(s):  
David D. W. Twa ◽  
Fong Chun Chan ◽  
Susana Ben-Neriah ◽  
Bruce W. Woolcock ◽  
King L. Tan ◽  
...  

Abstract Introduction Primary mediastinal large B-cell lymphoma (PMBCL) is an aggressive malignancy commonly diagnosed in young adult females. In recent years, mutational and gene expression profiling has established genotypic and phenotypic similarity of PMBCL with both classical Hodgkin and diffuse large B-cell lymphoma (DLBCL). In-depth analyses of genomes and transcriptomes have highlighted several inactivating mutations (SOCS1, TP53), chromosomal amplifications (2p, 9p, Xp, Xq) and translocations (CIITA) thought to be integral in establishing and/or maintaining the PMBCL phenotype. Programmed death ligands (PDL) 1 (CD274) and 2 (PDCD1LG2), which are located on chromosome 9p24.1, are two emerging genes of interest that have been shown to be altered in PMBCL and can induce T-cell anergy by binding to the receptor, programmed death 1. Here, we describe the recurrence of chromosomal rearrangements of the PDL locus in various B-cell lymphomas and explore the association of these rearrangements with transcript levels. Methods To establish the frequency of CD274 and PDCD1LG2 aberration, we conducted fluorescence in situ hybridization (FISH) on 551 clinical samples and 20 established cell lines using in-house break-apart probes. Epstein-Barr virus encoded RNA in situ hybridization was also carried out on the clinical cohort. The clinical cases, sourced from the British Columbia Cancer Agency’s Centre for Lymphoid Cancer tissue repository, consisted of 125 PMBCLs, 216 DLBCLs, 130 primary DLBCL of the central nervous system (PCNSL), 12 nodular lymphocyte predominant Hodgkin lymphomas (NLPHL) and 68 follicular lymphomas (FL) with diagnoses based on the WHO classification. The DLBCL cohort could be further subdivided into 134 nodal DLBCLs and 82 testicular DLBCLs (T-DLBCL). Quantitative real-time PCR (qRT-PCR) was subsequently conducted on 17 cell lines and a clinical sub-cohort of 76 samples, for which fresh-frozen material was available, to determine the effect of mutations on transcript expression. We then characterized the PDL aberrations of two clinical PMBCL cases and three cell lines (DEV, L-428, L-1236), at base pair resolution, by applying the bioinformatic tools, nFuse, deFuse and destruct to both newly produced and previously published whole genome (WGS) and whole transcriptome (RNA-seq) libraries. Results FISH revealed a PDL locus (9p24.1) break-apart frequency of 20% (25/125) in PMBCL. There were no differences in any known clinical parameters or frequency of Epstein-Barr virus positivity between positive and negative PDL break-apart cases. Break-apart frequencies in other malignancies were calculated to be 3% in DLBCL, 7% in T-DLBCL and 1% in PCNSL; no positive cases were identified in either NLPHL or FL. The proportion of break-apart positive cases was significantly higher in PMBCL as compared to the other lymphomas surveyed (P < 0.05). Further, in agreement with the published literature, we observed an amplification frequency of the PDL locus in 36% (45/125) of PMBCLs. qRT-PCR established that PDCD1LG2 transcript levels were significantly higher in cases with 9p24.1 locus rearrangements compared to copy number neutral (P = 0.0003), gain (P = 0.001) and amplified cases (P = 0.005). Likewise, CD274 transcript levels were significantly higher in rearranged cases compared to copy number neutral cases (P = 0.03). Following the analysis of WGS and RNA-seq libraries, we were able to characterize four novel fusion transcripts involving the 9p24.1 locus: PDCD1LG2-NRG1 (PMBCL clinical case), PDCD1LG2-IGHV7-81 (L-1236), CIITA-PDCD1LG2 (DEV) and KIAA1432-CLDN14 (L-428). Aberrations involving both NRG1 and CIITA have previously been implicated in breast cancer and B-cell lymphomas, respectively. We also identified a translocation in another PMBCL clinical case with breakpoints in the intergenic spaces near LRMP and CD274, though this rearrangement did not produce a fusion transcript. Conclusion Taken together, our findings show that rearrangement of the PDL locus is recurrent in PMBCL, characteristic of PMBCL and leads to overexpression of PDL transcripts. Given the well-referenced function of PDLs in repressing the anti-tumor response, these data suggest that targeting the PDL axis in a subgroup of B-cell lymphomas holds clinical promise. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1756-1756 ◽  
Author(s):  
Yao-hui Huang ◽  
Weili Zhao

Abstract Background. Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive types of B-cell lymphoma with high heterogeneity, accounting for 30-40% of newly diagnosed non-Hodgkin lymphoma (NHL), and dysfunction of epigenetic regulation has been found as a common and important feature of B cell lymphomas. To identify epigenetic associated genes mutations in DLBCL, including KMT2D, CREBBP, EP300, EZH2 and MEF2B, we sequenced tumour DNA from 226 Chinese DLBCL cases by applying next generation sequencing technology (NGS). A total of 679 consecutive Chinese patients with previously untreated DLBCL at our institution from December 2006 and January 2016 were enrolled in this study, and we assessed the predictive value of clinical and mutational pattern of epigenetic associated genes in a large single-institution cohort of these patients. Methods. Genomic DNA was extracted from 226 subjects with DLBCL formalin-fixed paraffin-embedded tumor tissue, using a QIAamp DNA FFPE Tissue Kit (Qiagen). Specific primers, producing amplicons about 200 bp at the coding regions of the genes of interest , were designed at the UCSC website (http://genome.ucsc.edu/cgi-bin/hgGateway ). Microfluidic PCR reactions ran in a 48 ¡Á 48 Access array system (Fluidigm) with FastStart High Fidelity PCR system (Roche) and high-throughput DNA sequencing was performed on Illumina Genome Analyzer IIx (GAIIx) and HiSeq2000 systems, according to the manufacturer's instructions. SAMtools version 0.1.19 was used to generate chromosomal coordinate-sorted bam files and to remove PCR duplications. Sequences for epigenetic associated genes were obtained from the UCSC Human Genome database, using the corresponding mRNA accession number as a reference, and those containing splice-site, nonsense or coding-region indel mutations, were selected for Gene Ontology analysis. All of the results were also confirmed by Sanger sequencing. Baseline characteristics of patients were analysed using two-sided c2 test. Overall survival (OS) was estimated using the Kaplan-Meier method and compared by log-rank test. Univariate hazard estimates were generated with unadjusted Cox proportional hazards models. Covariates demonstrating significance with P<0.100 on univariate analysis were included in the multivariate model. Statistically significance was defined as P<0.05. All statistical analyses were carried out using Statistical Package for the Social Sciences (SPSS) 20.0 software (SPSS Inc., Chicago, IL, USA). Results. Overall, 105 of 226 Chinese DLBCL cases were identified to have at least one mutation in epigenetic regulator genes. Somatic mutations in KMT2D were most frequently observed (24.3%), followed by CREBBP, EP300, EZH2 and MEF2B (15.5%,10.6%,4.4% and 2.2%, respectively)(Figure1,A,B). Association of mutated genes according to the conceptual classification. Circos plot of mutated genes according to the function is shown, and overlap mutations between epigenetic regulator genes mutations were frequently observed (Figure1, C). Clinically, mutation-positive DLBCL patients presented shorter OS than patients those without mutations (P=0.0286, Figure 1,D) among 226 DLBCL cases. A total of 679 Chinese DLBCL cases were enrolled in univariate analysis, and R-IPI, Complete Remission (CR), epigenetic related mutations were significant prognostic factors for OS. In further multivariate analysis, R-IPI (RR=2.72,95%CI=1.619-4.567,P<0.000), CR (RR=0.129,95%CI=0.076-0.219,P<0.000), epigenetic related mutations (RR=1.605,95%CI=1.007-2.557,P=0.046) are independent prognostic factor for OS. Conclusion. Our study provided the mutational spectrum of epigenetic regulator genes in DLBCL, and the relationships between mutations and clinic suggested some therapeutic efficiency. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 129 (14) ◽  
pp. 1947-1957 ◽  
Author(s):  
Davide Rossi ◽  
Fary Diop ◽  
Elisa Spaccarotella ◽  
Sara Monti ◽  
Manuela Zanni ◽  
...  

Key Points Plasma cfDNA genotyping is as accurate as genotyping of the diagnostic biopsy in detecting clonal somatic mutations in DLBCL. Plasma cfDNA genotyping is a real-time, noninvasive tool that can be used to track clonal evolution in DLBCL.


2017 ◽  
Vol 35 ◽  
pp. 107-109
Author(s):  
F. Jardin ◽  
S. Mareschal ◽  
A. Pham-Ledard ◽  
P. Viailly ◽  
M. Carlotti ◽  
...  

Author(s):  
Szablewski Vanessa ◽  
Merindol Natacha ◽  
Ballazin Sophie ◽  
Costes-Martineau Valérie ◽  
Bonnefoy Nathalie

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 801-801 ◽  
Author(s):  
Laura Pasqualucci ◽  
Mara Compagno ◽  
Wei Keat Lim ◽  
Adina Grunn ◽  
Subhadra V Nandula ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease comprising multiple biologically and clinically distinct subgroups, including germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Gene expression profile studies have shown that a key feature of its most aggressive subtype, ABC-DLBCL, is the constitutive activation of the NF-kB transcription complex. However, except for a small fraction of cases (Lenz et al., Science 2008), it remains unclear whether NF-kB activation in these tumors reflects an intrinsic program of the cell of origin or represents a primary pathogenetic event. To address this question, we first characterized 165 DLBCL samples (18 cell lines and 147 primary biopsies, including 26 ABC, 28 GCB, 10 unclassified and 83 not profiled) for the presence of active, nuclear NF-kB complexes by using immunohistochemical/immunofluorescence staining of NFKB1 p105/p50 (as a readout for the canonical pathway) and NFKB2 p100/p52 (as a readout for the non-canonical pathway). Nuclear localization of NF-kB, indicative of constitutive activity, was observed in 14/26 (54%) ABC-DLBCL and 8/28 (28%) GCB-DLBCL primary biopsies, as well as in 3/10 (30%) unclassified and 48/83 (58%) non-profiled cases, and correlated with significant enrichment in expression of NF-kB target genes, as assessed by gene set enrichment analysis (GSEA) of transcriptionally profiled cases. In addition, the more sensitive GSEA approach detected a gene expression signature of NF-kB activity in >90% ABC-DLBCLs and 53% GCB-DLBCLs, indicating that constitutive activation of this key signaling pathway is a common feature of ABC-DLBCL but can also be observed in a smaller fraction of GCB-DLBCL. To investigate whether NF-kB activity represents a primary pathogenetic event, we then screened for mutations the complete coding sequences of 31 genes encoding for NF-kB pathway components in a panel of 14 ABC-DLBCLs, which was expanded to 48 samples (12 ABC, 26 GCB and 10 not profiled) for validation of the mutated genes. The results showed that >50% of ABC-DLBCL (n=15/26) and a smaller fraction of GCB-DLBCL (n=8/26, 31%) carry somatic mutations in multiple genes, including negative (TNFAIP3/A20) and positive (CARD11, TRAF2, TRAF5, MAP3K7/TAK1 and TNFRSF11A/RANK) regulators of NF-kB. Of these, the A20 gene, which encodes for a ubiquitin-editing enzyme involved in termination of NF-kB responses, is the most commonly affected, with ~27% ABC-DLBCLs and 25% (8/32) immunohistochemically classified non-GC DLBCL displaying biallelic A20 inactivation by somatic mutations and/or deletions. Sequence changes include premature nonsense mutations, frameshift deletions/insertions and splice site mutations, leading to severely truncated proteins that lack functionally relevant domains and have thus lost their enzymatic activity. In virtually all mutated cases, FISH analysis revealed loss of the second allele, while 4 additional samples showed biallelic deletion of the gene. Thus, A20 is inactivated by a classic “two-hit” mechanism, suggesting a tumor suppressor role. Less frequently, missense mutations of CARD11 (10%) and TRAF2 (4%) produce molecules with significantly enhanced ability to activate NF-kB in transient transfection/reporter gene assays. Our results demonstrate that NF-kB activation in DLBCL is caused by genetic lesions affecting multiple genes, whose loss or activation may promote lymphomagenesis by leading to abnormally prolonged NF-kB responses. These findings provide the rationale and the assays for the identification of patients amenable to NF-kB targeted therapeutic intervention.


Haematologica ◽  
2019 ◽  
Vol 105 (9) ◽  
pp. 2298-2307 ◽  
Author(s):  
Christopher R. Bolen ◽  
Magdalena Klanova ◽  
Marek Trneny ◽  
Laurie H. Sehn ◽  
Jie He ◽  
...  

Diffuse large B-cell lymphoma represents a biologically and clinically heterogeneous diagnostic category with well-defined cell-of-origin subtypes. Using data from the GOYA study (NCT01287741), we characterized the mutational profile of diffuse large B-cell lymphoma and evaluated the prognostic impact of somatic mutations in relation to cell-of-origin. Targeted DNA next-generation sequencing was performed in 499 formalin-fixed paraffin-embedded tissue biopsies from previously untreated patients. Prevalence of genetic alterations/mutations was examined. Multivariate Cox regression was used to evaluate the prognostic effect of individual genomic alterations. Of 465 genes analyzed, 59 were identified with mutations occurring in at least 10 of 499 patients (≥2% prevalence); 334 additional genes had mutations occurring in ≥1 patient. Single nucleotide variants were the most common mutation type. On multivariate analysis, BCL2 alterations were most strongly associated with shorter progression-free survival (multivariate hazard ratio: 2.6; 95% confidence interval: 1.6 to 4.2). BCL2 alterations were detected in 102 of 499 patients; 92 had BCL2 translocations, 90% of whom had germinal center B-cell-like diffuse large B-cell lymphoma. BCL2 alterations were also significantly correlated with BCL2 gene and protein expression levels. Validation of published mutational subsets revealed consistent patterns of co-occurrence, but no consistent prognostic differences between subsets. Our data confirm the molecular heterogeneity of diffuse large B-cell lymphoma, with potential treatment targets occurring in distinct cell-of-origin subtypes. clinicaltrials.gov identifier: NCT01287741.


2010 ◽  
Vol 51 (11) ◽  
pp. 2054-2062 ◽  
Author(s):  
Kyoko Hanzawa ◽  
Shuji Momose ◽  
Morihiro Higashi ◽  
Michihide Tokuhira ◽  
Reiko Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document