Molecular Analysis of Posttransplant Lymphoproliferative Disorders (PTLD) of Donor Origin Occuring in Liver Transplant Patients.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1916-1916
Author(s):  
Daniela Capello ◽  
Giuliana Muti ◽  
Michaela Cerri ◽  
Davide Rossi ◽  
Pierluigi Oreste ◽  
...  

Abstract Most PTLD occurring in solid organ patients arise from recipient cells, whereas few cases derive from donor transplanted lymphocytes. Donor-derived PTLD usually have a predilection for the allograft and are particularly frequent following liver transplant. To clarify the histogenesis and pathogenesis of donor-derived PTLD, we investigated 11 monoclonal PTLD occurring in liver transplant patients, including 6 cases arising from donor cells and 5 cases from recipient cells. Phenotypic markers of histogenesis included expression of BCL6, MUM1 and CD138, which segregate the germinal center (GC) stage of B-cell differentiation (BCL6+/MUM1−/+/CD138−) from later stages of maturation (BCL6−/MUM1+/CD138+/−). Genotypic markers of histogenesis were represented by somatic hypermutation of immunoglobulin variable (IGV) genes, that is experienced by B-cells during GC reaction. To assess the role of antigen in disease pathogenesis, we also analyzed usage and mutational profile of clonal IGV heavy (IGHV) and light (IGLV) chain gene rearrangements. All PTLD or donor origin were EBV-infected lymphoproliferations morphologically classified as polymorphic PTLD (P-PTLD). PTLD arising from recipient cells were classified as diffuse large B-cell lymphomas (DLBCL); EBV infection was restricted to 1 case. Analysis of phenotypic markers of B-cell histogenesis showed expression of the BCL6+/MUM1−/CD138− profile in 3 DLBCL with centroblastic features, all arising from recipient cells. The phenotypic profile BCL-6−/MUM1+/CD138+/−, consistent with a post-GC stage of pre-terminal B-cell differentiation, was detected in 8/11 PTLD, including 6/6 donor-derived PTLD and 2/5 recipient-derived PTLD. Analysis of somatic hypermutation showed the presence of somatically hypermutated IGHV genes in 7/11 PTLD. Unmutated IGHV rearrangements were identified in 2/6 donor-derived PTLD and in 2/5 recipient-derived PTLD. Analysis of intraclonal heterogeneity showed the presence of ongoing mutations in 1 donor-derived PTLD. The distribution of individual IGHV families and genes differed between donor-derived and recipient-derived PTLD and between the normal repertoire and donor-derived PTLD. Donor-derived PTLD preferentially rearranged IGHV3 (2/6 cases) and IGHV4 (3/6 cases) family genes, whereas recipient-derived PTLD rearranged virtually all IGVH families. The IGHV4-39 gene was the most frequently rearranged IGHV gene in donor-derived PTLD (3/6 cases), but was absent in recipient-derived PTLD and relatively rare in the non-neoplastic B-cell repertoire. Despite extensive investigation by multiple PCR strategies, a functional IGV light chain rearrangement was found in only 5/11 PTLD. Two donor-derived and one recipient-derived PTLD harbored IGLV rearrangement, whereas 2 donor-derived PTLD harbored a functional IGKV rearrangement. In 2 recipient-derived and in 2 donor-derived PTLD, we identified only non-functional IGV light chain rearrangement. In conclusion, our data suggest that both donor-derived and recipient-derived PTLD occurring in liver transplant patients arise from a B-cell subset that phenotypically mimicks post-GC, pre-terminally differentiatiated B-cells. Lack of IGV mutations, however, suggests that a fraction of cases failed to perform a proper GC reaction. The biased usage of the IGHV4-39 gene suggests that antigen stimulation and selection might have a role in the pathogenesis of donor-derived PTLD.

Blood ◽  
2002 ◽  
Vol 99 (7) ◽  
pp. 2459-2467 ◽  
Author(s):  
Yui-Hsi Wang ◽  
Robert P. Stephan ◽  
Alexander Scheffold ◽  
Désirée Kunkel ◽  
Hajime Karasuyama ◽  
...  

Surrogate light chain expression during B lineage differentiation was examined by using indicator fluorochrome-filled liposomes in an enhanced immunofluorescence assay. Pro-B cells bearing surrogate light chain components were found in mice, but not in humans. A limited subpopulation of relatively large pre-B cells in both species expressed pre-B cell receptors. These cells had reduced expression of the recombinase activating genes, RAG-1 and RAG-2. Their receptor-negative pre-B cell progeny were relatively small, expressed RAG-1 and RAG-2, and exhibited selective down-regulation of VpreB and λ5expression. Comparative analysis of the 2 pre-B cell subpopulations indicated that loss of the pre-B cell receptors from surrogate light chain gene silencing was linked with exit from the cell cycle and light chain gene rearrangement to achieve B-cell differentiation.


1994 ◽  
Vol 180 (1) ◽  
pp. 329-339 ◽  
Author(s):  
V Pascual ◽  
Y J Liu ◽  
A Magalski ◽  
O de Bouteiller ◽  
J Banchereau ◽  
...  

Using a series of phenotypic markers that include immunoglobulin (Ig)D, IgM, IgG, CD23, CD44, Bcl-2, CD38, CD10, CD77, and Ki67, human tonsillar B cells were separated into five fractions representing different stages of B cell differentiation that included sIgD+ (Bm1 and Bm2), germinal center (Bm3 and Bm4), and memory (Bm5) B cells. To establish whether the initiation of somatic mutation correlated with this phenotypic characterization, we performed polymerase chain reaction and subsequent sequence analysis of the Ig heavy chain variable region genes from each of the B cell subsets. We studied the genes from the smallest VH families (VH4, VH5, and VH6) in order to facilitate the mutational analysis. In agreement with previous reports, we found that the somatic mutation machinery is activated only after B cells reach the germinal center and become centroblasts (Bm3). Whereas 47 independently rearranged IgM transcripts from the Bm1 and Bm2 subsets were nearly germline encoded, 57 Bm3-, and Bm4-, and Bm5-derived IgM transcripts had accumulated an average of 5.7 point mutations within the VH gene segment. gamma transcripts corresponding to the same VH gene families were isolated from subsets Bm3, Bm4, and Bm5, and had accumulated an average of 9.5 somatic mutations. We conclude that the molecular events underlying the process of somatic mutation takes place during the transition from IgD+, CD23+ B cells (Bm2) to the IgD-, CD23-, germinal center centroblast (Bm3). Furthermore, the analysis of Ig variable region transcripts from the different subpopulations confirms that the pathway of B cell differentiation from virgin B cell throughout the germinal center up to the memory compartment can be traced with phenotypic markers. The availability of these subpopulations should permit the identification of the functional molecules relevant to each stage of B cell differentiation.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1372-1373
Author(s):  
G. M. Verstappen ◽  
J. C. Tempany ◽  
H. Cheon ◽  
A. Farchione ◽  
S. Downie-Doyle ◽  
...  

Background:Primary Sjögren’s syndrome (pSS) is a heterogeneous immune disorder with broad clinical phenotypes that can arise from a large number of genetic, hormonal, and environmental causes. B-cell hyperactivity is considered to be a pathogenic hallmark of pSS. However, whether B-cell hyperactivity in pSS patients is a result of polygenic, B cell-intrinsic factors, extrinsic factors, or both, is unclear. Despite controversies about the efficacy of rituximab, new B-cell targeting therapies are under investigation with promising early results. However, for such therapies to be successful, the etiology of B-cell hyperactivity in pSS needs to be clarified at the individual patient level.Objectives:To measure naïve B-cell function in pSS patients and healthy donors using quantitative immunology.Methods:We have developed standardised, quantitative functional assays of B-cell responses that measure division, death, differentiation and isotype switching, to reveal the innate programming of B cells in response to T-independent and dependent stimuli. This novel pipeline to measure B-cell health was developed to reveal the sum total of polygenic defects and underlying B-cell dysfunction at an individual level. For the current study, 25 pSS patients, fulfilling 2016 ACR-EULAR criteria, and 15 age-and gender-matched healthy donors were recruited. Standardized quantitative assays were used to directly measure B cell division, death and differentiation in response to T cell-independent (anti-Ig + CpG) and T-cell dependent (CD40L + IL-21) stimuli. Naïve B cells (IgD+CD27-) were sorted from peripheral blood mononuclear cells and were labeled with Cell Trace Violet at day 0 to track cell division until day 6. B cell differentiation was measured at day 5.Results:Application of our standardized assays, and accompanying parametric models, allowed us to study B cell-intrinsic defects in pSS patients to a range of stimuli. Strikingly, we demonstrated a hyperresponse of naïve B cells to combined B cell receptor (BCR) and Toll-like receptor (TLR)-9 stimulation in pSS patients. This hyperresponse was revealed by an increased mean division number (MDN) at day 5 in pSS patients compared with healthy donors (p=0.021). A higher MDN in pSS patients was observed at the cohort level and was likely attributed to an increased division burst (division destiny) time. The MDN upon BCR/TLR-9 stimulation correlated with serum IgG levels (rs=0.52; p=0.011). No difference in MDN of naïve B cells after T cell-dependent stimulation was observed between pSS patients and healthy donors. B cell differentiation capacity (e.g., plasmablast formation and isotype switching) after T cell-dependent stimulation was also assessed. At the cohort level, no difference in differentiation capacity between groups was observed, although some pSS patients showed higher plasmablast frequencies than healthy donors.Conclusion:Here, we demonstrate defects in B-cell responses both at the cohort level, as well as individual signatures of defective responses. Personalized profiles of B cell health in pSS patients reveal a group of hyperresponsive patients, specifically to combined BCR/TLR stimulation. These patients may benefit most from B-cell targeted therapies. Future studies will address whether profiles of B cell health might serve additional roles, such as prediction of disease trajectories, and thus accelerate early intervention and access to precision therapies.Disclosure of Interests:Gwenny M. Verstappen: None declared, Jessica Catherine Tempany: None declared, HoChan Cheon: None declared, Anthony Farchione: None declared, Sarah Downie-Doyle: None declared, Maureen Rischmueller Consultant of: Abbvie, Bristol-Meyer-Squibb, Celgene, Glaxo Smith Kline, Hospira, Janssen Cilag, MSD, Novartis, Pfizer, Roche, Sanofi, UCB, Ken R. Duffy: None declared, Frans G.M. Kroese Grant/research support from: Unrestricted grant from Bristol-Myers Squibb, Consultant of: Consultant for Bristol-Myers Squibb, Speakers bureau: Speaker for Bristol-Myers Squibb, Roche and Janssen-Cilag, Hendrika Bootsma Grant/research support from: Unrestricted grants from Bristol-Myers Squibb and Roche, Consultant of: Consultant for Bristol-Myers Squibb, Roche, Novartis, Medimmune, Union Chimique Belge, Speakers bureau: Speaker for Bristol-Myers Squibb and Novartis., Philip D. Hodgkin Grant/research support from: Medimmune, Vanessa L. Bryant Grant/research support from: CSL


2016 ◽  
Vol 113 (27) ◽  
pp. E3911-E3920 ◽  
Author(s):  
Eden Kleiman ◽  
Haiqun Jia ◽  
Salvatore Loguercio ◽  
Andrew I. Su ◽  
Ann J. Feeney

Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro–B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2021 ◽  
Author(s):  
P. A. Sylvester ◽  
C. N. Jondle ◽  
K. P. Stoltz ◽  
J. Lanham ◽  
B. N. Dittel ◽  
...  

Gammaherpesviruses establish life-long infections and are associated with B cell lymphomas. Murine gammaherpesvirus-68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here we demonstrate that myeloid-specific STAT1 deficiency attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of kinase null MHV68 mutant. However, despite having gained access to splenic B cells, protein kinase null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. Importance. IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not spleen of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell-type specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.


1993 ◽  
Vol 13 (7) ◽  
pp. 3929-3936
Author(s):  
T D Randall ◽  
F E Lund ◽  
J W Brewer ◽  
C Aldridge ◽  
R Wall ◽  
...  

Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2338-2345 ◽  
Author(s):  
Roman Krzysiek ◽  
Eric A. Lefevre ◽  
Jérôme Bernard ◽  
Arnaud Foussat ◽  
Pierre Galanaud ◽  
...  

Abstract The regulation of CCR6 (chemokine receptor 6) expression during B-cell ontogeny and antigen-driven B-cell differentiation was analyzed. None of the CD34+Lin− hematopoietic stem cell progenitors or the CD34+CD19+ (pro-B) or the CD19+CD10+ (pre-B/immature B cells) B-cell progenitors expressed CCR6. CCR6 is acquired when CD10 is lost and B-cell progeny matures, entering into the surface immunoglobulin D+ (sIgD+) mature B-cell pool. CCR6 is expressed by all bone marrow–, umbilical cord blood–, and peripheral blood–derived naive and/or memory B cells but is absent from germinal center (GC) B cells of secondary lymphoid organs. CCR6 is down-regulated after B-cell antigen receptor triggering and remains absent during differentiation into immunoglobulin-secreting plasma cells, whereas it is reacquired at the stage of post-GC memory B cells. Thus, within the B-cell compartment, CCR6 expression is restricted to functionally mature cells capable of responding to antigen challenge. In transmigration chemotactic assays, macrophage inflammatory protein (MIP)-3α/CC chemokine ligand 20 (CCL20) induced vigorous migration of B cells with differential chemotactic preference toward sIgD− memory B cells. These data suggest that restricted patterns of CCR6 expression and MIP-3α/CCL20 responsiveness are integral parts of the process of B-lineage maturation and antigen-driven B-cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document