Quiescent Chronic Myelogenous Leukemia (CML) Cells Are Resistant to BCR-ABL Inhibitors but Preferentially Sensitive to BMS-214662, a Farnesyltransferase Inhibitor (FTI) with Unique Quiescent-Cell Selective Cytotoxicity.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1993-1993 ◽  
Author(s):  
Francis Y. Lee ◽  
Mei-Li Wen ◽  
Amy Camuso ◽  
Stephen Castenada ◽  
Krista Fager ◽  
...  

Abstract The major concern in the treatment of CML is resistance to the approved agent imatinib mesylate at all stages of disease, most commonly due to mutations in BCR-ABL (but other mechanisms have also been identified). Experimental agents such as dasatinib (BMS-354825), a novel, oral kinase inhibitor that targets BCR-ABL and SRC kinases, or AMN107, which targets BCR-ABL but not SRC, were designed to address all or parts of these mechanisms and are currently under clinical testing. A second concern in CML is persistence of BCR-ABL-positive cells or ‘residual disease’ in the majority of patients on imatinib therapy, including those with complete cytogenetic responses. Bone marrow studies reveal that the residual disease resides at least in part in the primitive CD34+ progenitor compartment, suggesting that imatinib may not be effective against these cell populations (Bhatia et al, Blood101:4701, 2003). Moreover, several imatinib-resistant ABL kinase domain mutations have been detected in CD34+/BCR-ABL+ progenitors (Chu et al, Blood105:2093, 2005), a scenario for eventual disease relapse. A hallmark of CD34+ primitive CML progenitors is quiescence (Elrick et al, Blood105:1862, 2005). We hypothesized that BCR-ABL inhibitors like imatinib may not be effective in killing CML cells in this non-proliferative state. This was tested by comparing cytotoxicity of imatinib or dasatinib in proliferating K562 cells and in cells forced into quiescence by nutrient depletion. Proliferating K562 cells were effectively killed by imatinib (IC50 250–500 nM) and dasatinib (IC50 <1.00 nM). However, cells in quiescent cultures were far more resistant (imatinib IC50 >5000 nM; dasatinib IC50 >12 nM), suggesting that these inhibitors may be less effective in eradicating quiescent CD34+ progenitors. BMS-214662 is a FTI in Phase I clinical development. Unlike many other FTI, BMS-214662 exhibits potent cytotoxic activity against a variety of human tumor cells, and uniquely, its cytotoxicity is highly selective against non-proliferating cancer cells of epithelial origin (Lee et al, Proceedings of the AACR42:260s, 2001). We now demonstrate similar selectivity in K562 CML cells. BMS-214662 was 68-fold more potent in killing quiescent (IC50 = 0.7 uM) than proliferating K562 cells (IC50 = 47.5 uM). Because BCR-ABL inhibitors and BMS-214662 target distinct cell populations (proliferating vs quiescent), there may be a positive therapeutic interaction when these agents are used in combination. In vitro studies in quiescent K562 cultures demonstrated that the combination of BMS-214662 and dasatinib, at concentrations readily achievable in the clinic, produced supra-additive cytotoxicity (% cell kill: dasatinib alone = 0%, BMS-214662 alone = 21%, combination = 71%). In vivo studies in K562 xenografts implanted SC in mice also showed that the combination of BMS-214662 and dasatinib produced a superior anti-leukemic activity than either dasatinib alone (P=0.0157) or BMS-214662 alone (P=0.0002). These results highlight the potential utility of BMS-214662 for targeting the quiescent progenitor compartment which, in combination with targeted agents such as dasatinib, address both BCR-ABL-dependent and -independent mechanisms of resistance, and may produce more durable responses and suppress the emergence of resistance.

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


2001 ◽  
Vol 204 (2) ◽  
pp. 217-227
Author(s):  
J.A. Albertus ◽  
R.O. Laine

Many aquatic organisms are resistant to environmental pollutants, probably because their inherent multi-drug-resistant protein extrusion pump (pgp) can be co-opted to handle man-made pollutants. This mechanism of multixenobiotic resistance is similar to the mechanism of multidrug resistance exhibited in chemotherapy-resistant human tumor cells. In the present study, a variety of techniques were used to characterize this toxin defense system in killifish (Fundulus heteroclitus) hepatocytes. The cellular localization and activity of the putative drug efflux system were evaluated. In addition, in vitro and in vivo studies were used to examine the range of expression of this putative drug transporter in the presence of environmental and chemotherapeutic toxins. The broad range of pgp expression generally observed in transformed mammalian cells was found in normal cells of our teleost model. Our findings suggest that the expression of the pgp gene in the killifish could be an excellent indicator of toxin levels or stressors in the environment.


1984 ◽  
Vol 2 (4) ◽  
pp. 282-286 ◽  
Author(s):  
S E Salmon ◽  
L Young ◽  
B Soehnlen ◽  
R Liu

The new anthracycline analog, esorubicin (4'deoxy-doxorubicin, ESO), was tested against fresh biopsies of human solid tumors in vitro in clonogenic assay and the results were contrasted to those obtained with doxorubicin (DOX). ESO appeared to be significantly more potent on a weight basis than DOX in these studies, and exhibited a spectrum of antitumor activity in vitro that was in general qualitatively similar to that observed with DOX. In vitro antitumor activity was observed in a wide variety of human cancers including anthracycline-sensitive tumor types. ESO has previously been reported to have decreased cardiac toxicity in preclinical models as compared to DOX. Comparative testing of these anthracyclines on granulocyte-macrophage colony-forming units (GM-CFUs) and tumor colony forming units (TCFUs) indicated that the in vitro GM-CFU assay is more sensitive to these myelosuppressive drugs than are TCFUs, and underscores the need for in vivo studies to determine normal tissue toxicity and the therapeutic index of a drug. Early results of phase I studies suggest that with respect to myelosuppression, the maximally tolerated dose of ESO will be about half that of DOX. The increased in vitro antitumor potency observed for ESO and a spectrum of activity (even at one half the dose of DOX) supports the broad testing of ESO in the clinic to determine whether it will prove to be a more effective and less toxic anthracycline.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4307-4312 ◽  
Author(s):  
Andrea König ◽  
Gary K. Schwartz ◽  
Ramzi M. Mohammad ◽  
Ayad Al-Katib ◽  
Janice L. Gabrilove

Abstract Flavopiridol is a novel, potent inhibitor of cyclin-dependent kinases (CDK). This synthetic flavone has been reported to exhibit antitumor activity in murine and human tumor cell lines in vitro and in vivo and is currently undergoing clinical phase I evaluation. In the present study, 1 Epstein-Barr virus (EBV)-transformed B-prolymphocytic cell line (JVM-2), 1 EBV-transformed B-CLL cell line (I83CLL), and 1 non-EBV transformed B-CLL cell line (WSU-CLL) were used as targets. Treatment of the cells with flavopiridol (100 nmol/L to 400 nmol/L) led to a marked dose- and time-dependent inhibition of cell growth and survival as determined using trypan blue exclusion. Morphologic analysis showed characteristic apoptotic changes such as chromatin condensation and fragmentation, membrane blebbing, and formation of apoptotic bodies. Furthermore, quantitative assessment of apoptosis-associated DNA strand breaks by in situ TdT labeling showed that a significant number of flavopiridol-treated cells underwent apoptosis. These cellular effects were associated with a significant decrease in bcl-2 expression as observed by Northern and Western blotting. The results showed that flavopiridol downregulates bcl-2 mRNA and bcl-2 protein expression within 24 hours. Genistein and quercetin, two flavonoids that do not inhibit CDKs, did not affect bcl-2 expression. These data suggest an additional mechanism of action of this new flavone which might be useful as an agent in the treatment of chronic lymphoid malignancies.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3535 ◽  
Author(s):  
Halil I. Ciftci ◽  
Mohamed O. Radwan ◽  
Safiye E. Ozturk ◽  
N. Gokce Ulusoy ◽  
Ece Sozer ◽  
...  

Imatinib, an Abelson (ABL) tyrosine kinase inhibitor, is a lead molecular-targeted drug against chronic myelogenous leukemia (CML). To overcome its resistance and adverse effects, new inhibitors of ABL kinase are needed. Our previous study showed that the benzyl ester of gypsogenin (1c), a pentacyclic triterpene, has anti-ABL kinase and a subsequent anti-CML activity. To optimize its activities, benzyl esters of carefully selected triterpenes (PT1–PT6), from different classes comprising oleanane, ursane and lupane, and new substituted benzyl esters of gypsogenin (GP1–GP5) were synthesized. All of the synthesized compounds were purified and charachterized by different spectroscopic methods. Cytotoxicity of the parent triterpenes and the synthesized compounds against CML cell line K562 was examined; revealing three promising compounds PT5, GP2 and GP5 (IC50 5.46, 4.78 and 3.19 μM, respectively). These compounds were shown to inhibit extracellular signal-regulated kinase (ERK) downstream signaling, and induce apoptosis in K562 cells. Among them, PT5 was identified to have in vitro activity (IC50 = 1.44 μM) against ABL1 kinase, about sixfold of 1c, which was justified by molecular docking. The in vitro activities of GP2 and GP5 are less than PT5, hence they were supposed to possess other more mechanisms of cytotoxicity. In general, our design and derivatizations resulted in enhancing the activity against ABL1 kinase and CML cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1994-1994 ◽  
Author(s):  
Francis Y. Lee ◽  
Mei-Li Wen ◽  
Rajeev Bhide ◽  
Amy Camuso ◽  
Stephen Castenada ◽  
...  

Abstract Resistance to imatinib is a growing concern in CML, particularly in advanced disease. The most common cause of resistance is mutations in BCR-ABL, but other mechanisms have also been identified, including over-expression of BCR-ABL, activation of SRC family kinases and the P-glycoprotein (PGP) efflux pump (via MDR1 over-expression). Dasatinib (BMS-354825) is a novel, oral, multi-targeted tyrosine kinase inhibitor that targets BCR-ABL and SRC kinases. Dasatinib has 325-fold greater potency versus imatinib in cell lines transduced with wild-type BCR-ABL and is active against 18 out of 19 BCR-ABL mutations tested that confer imatinib resistance (Shah et al, Science305:399, 2004; O’Hare et al, Cancer Res65:4500–5, 2005), and preliminary results from a Phase I study show that it is well tolerated and has significant activity in imatinib-resistant patients in all phases of CML (Sawyers et al, J Clin Oncol23:565s, 2005; Talpaz et al, J Clin Oncol23:564s, 2005). We assessed the ability of dasatinib to overcome a variety of mechanisms of imatinib resistance. First, the leukemic-cell killing activity of dasatinib was tested in vitro in three human imatinib-resistant CML cell lines (K562/IM, MEG-01/IM and SUP-B15/IM). Based on IC50 values, dasatinib had >1000-fold more potent leukemic-cell killing activity compared with imatinib versus all three cell lines. Furthermore, in mice bearing K562/IM xenografts, dasatinib was curative at doses >5 mg/kg, while imatinib had little or no impact at doses as high as 150 mg/kg, its maximum tolerated dose. We determined that the MEG-01/IM and SUP-B15/IM cell lines carried BCR-ABL mutations known to confer imatinib resistance to imatinib clinically (Q252H and F359V, respectively). In K562/IM cells, BCR-ABL mutations or BCR-ABL over-expression were not detected, but the SRC family member FYN was over-expressed. PP2, a known inhibitor of SRC family kinases but not BCR-ABL, could reverse the imatinib resistance in these cells. Together, these data suggest that activation of FYN may be a cause of imatinib resistance in K562/IM. Based on cell proliferation IC50, we found that the anti-leukemic activity of dasatinib in K562/IM cells was 29-fold more potent compared with AMN107 (a tyrosine kinase inhibitor that inhibits BCR-ABL but not SRC family kinases). Given that the human serum protein binding of dasatinib, imatinib and AMN107 were 93, 92 and >99% respectively, the difference in potency between dasatinib and AMN107 in vivo may be far greater than the simple fold-difference in the in vitro IC50 values. Finally, in K562 cells over-expressing PGP (K562/ADM), we found that dasatinib was only 6-fold less active than in parental K562 cells. Because of the extreme potency of dasatinib in K562 cells, this reduced potency still afforded an IC50 of 3 nM, which is readily achievable in vivo. Indeed, in mice bearing K562/ADM xenografts, dasatinib was curative at 30 mg/kg, with significant anti-leukemic activity at 15 mg/kg. In conclusion, the rational design of dasatinib as a multi-targeted kinase inhibitor allows this agent to overcome a variety of mechanisms of resistance to imatinib in CML, including mechanisms that are not overcome by agents with a narrower spectrum of inhibition, such as AMN107. Dasatinib is currently in Phase II evaluation in imatinib-resistant/-intolerant patients in the ‘START’ program, and in Phase I evaluation in solid tumors.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7026-7026
Author(s):  
J. Bruey ◽  
H. Kantarjian ◽  
W. Ma ◽  
C. Yeh ◽  
R. Peralta ◽  
...  

7026 Background: We have reported that some patients with imatinib-resistant chronic myeloid leukemia (CML) express an alternatively spliced BCR-ABL mRNA with a 35-bp insertion (BCR-ABL135INS), resulting in the addition of 10 residues and truncation of 653 residues. Molecular dynamic simulation suggested that this truncation and insertion of new 10 AA results in structural changes similar to those seen in BCR-ABL with T315I mutation. Here we evaluate the prevalence of BCR-ABL135INS in imatinib-resistant CML, examine the effect of this mutation on resistance to compared the efficiency of various kinase inhibitors in vitro, and suggest a model for persistent CML and a possible strategy to eradicate residual disease. Methods: Using a sensitive PCR method, we determined the prevalence of the alternatively spliced BCR-ABL135INS mRNA in 288 patients with chronic-phase CML resistant to imatinib. Expression of truncated protein was confirmed by Western blot. We then tested the effectiveness of various kinase inhibitors on human K562 CML cells expressing different levels of BCR-ABL135INS along with wild-type BCR-ABL1. Results: BCR-ABL135INS mRNA was detected in 210 (73%) of the 288 patients. Only 25% of BCR-ABL135INS positive cases showed coexistance of ABL1 kinase point mutation. Immunoprecipitation studies demonstrated that expression of the predicted 143-kD BCR-ABL135INS protein at levels proportional to those predicted by mRNA. Expression of BCR-ABL135INS in K562 cells was sufficient to conferred resistance to imatinib, dasatinib, and nilotinib in a dose-dependant fashion. However, no resistance was detected using aurora kinase inhibitor (MK 0457) or homoharringtonine (HHT). BCR-ABL135INS suppressed imatinib, nilotinib, and dasatinib-mediated dephosphorylation of CRKL, LYN, SRC, and STAT5, but had no effect on MK 0457-mediated dephosphorylation. The combination of imatinib with nilotinib or HHT showed strong synergy, overcoming BCR-ABL135INS-induced resistance in vitro. Conclusions: These findings emphasize the importance of the overlooked alternatively spliced BCR-ABL135INS protein and may provide a strategy to treat resistant disease and eradicate residual CML. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document