Pivotal Role of Survivin in Leukemogenesis by E2A-HLF Chimeric Transcription Factor.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2988-2988
Author(s):  
Mayuko Okuya ◽  
Hidemitsu Kurosawa ◽  
Takayuki Matsunaga ◽  
Mitsuoki Eguchi ◽  
Yusuke Furukawa ◽  
...  

Abstract The E2A-HLF fusion transcription factor generated by the t(17;19)(q22;p13) translocation is found in a small population of pro-B cell ALL. Patients associated with this chimera share distinct clinical features such as hypercalcemia, coagulopathy and very poor prognosis due to resistance to intensive chemotherapy including aggressive conditioning for BMT, all of which are unusual for this type of ALL. We have previously demonstrated that inhibition of the trans-activation potential of the E2A-HLF chimera by the dominant negative mutant results in apoptosis in t(17;19)+ ALL cells but does not affect cell cycle. Moreover, E2A-HLF blocks apoptosis induced by cytokine deprivation in IL-3-dependent cells, suggesting that this fusion protein contributes to leukemogenesis by substituting for the anti-apoptotic function of cytokines. The present study shows that survivin is a downstream target molecule of E2A-HLF. Four t(17;19)+ ALL cell lines expressed survivin at high levels and down-regulation of E2A-HLF function by the dominant negative mutant suppressed survivin expression. In addition, forced expression of E2A-HLF in Nalm-6, a t(17;19)− ALL cell line, up-regulated survivin expression. Survivin is known to be expressed predominantly in the G2/M phase. Indeed, separation of the fractions enriched for in each phase of the cell cycle using a counterflow centrifugal elutriator revealed G2/M phase-dominant survivin expression in t(17;19) − ALL cells including Nalm-6. In t(17;19)+ ALL cells, however, survivin was expressed throughout the cell cycle. Moreover, Nalm-6 cells forced to express E2A-HLF showed cell cycle-independent survivin expression. Reporter assay revealed that E2A-HLF induced luciferase activity by transfecting with each reporter construct containing the survivin promoter at a different length from the initial ATG, suggesting that E2A-HLF induces survivin expression at the transcriptional level, but not by direct binding of E2A-HLF to the survivin promoter. To test whether survivin plays anti-apoptotic roles in t(17:19)+ cells, we used a survivin mutant lacking a phosphorylation site (T34A-survivin) and considered to inhibit survivin function in a dominant negative manner. T34A-survivin induced massive apoptosis throughout the cell cycle in t(17;19)+ cells. In contrast, T34A-survivin in t(17;19) − cells induced cell death in only a small population in G2/M phase. In addition to caspase-dependent pathways, T34A-survivin induced apoptosis in t(17;19)+ ALL cells through caspase-independent pathways, in which apoptosis-inducing factor (AIF) translocated from cytoplasm to the nucleus. These results indicate that cell cycle-independent up-regulation of survivin by the E2A-HLF chimera is indispensable for the survival of t(17;19)+ ALL cells, and that inhibition of survivin may offer an effective therapeutic strategy against this refractory ALL.

1999 ◽  
Vol 11 (8) ◽  
pp. 1203-1216 ◽  
Author(s):  
Leslie B. King ◽  
Eva Tolosa ◽  
Joi M. Lenczowski ◽  
Frank Lu ◽  
Evan F. Lind ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 440 ◽  
Author(s):  
Abdelilah Mekhloufi ◽  
Andrea Kosta ◽  
Helena Stabile ◽  
Rosa Molfetta ◽  
Alessandra Zingoni ◽  
...  

Bone marrow stromal cells (BMSCs) strongly contribute to multiple myeloma (MM) progression, promoting the survival and growth of malignant plasma cells (PCs). However, the possible impact of these cells on the immune-mediated recognition of MM cells remains largely unknown. DNAM-1 activating receptor plays a prominent role in NK cell anti-MM response engaging the ligands poliovirus receptor (PVR) and nectin-2 on malignant PCs. Here, we analysed the role of MM patient-derived BMSCs in the regulation of PVR expression. We found that BMSCs enhance PVR surface expression on MM cells and promote their NK cell-mediated recognition. PVR upregulation occurs at transcriptional level and involves NF-kB transcription factor activation by BMSC-derived soluble factors. Indeed, overexpression of a dominant-negative mutant of IKBα blocked PVR upregulation. IL-8 plays a prominent role in these mechanisms since blockade of CXCR1/2 receptors as well as depletion of the cytokine via RNA interference prevents the enhancement of PVR expression by BMSC-derived conditioned medium. Interestingly, IL-8 is associated with stromal microvesicles which are also required for PVR upregulation via CXCR1/CXCR2 signaling activation. Our findings identify BMSCs as regulators of NK cell anti-MM response and contribute to define novel molecular pathways involved in the regulation of PVR expression in cancer cells.


2003 ◽  
Vol 23 (9) ◽  
pp. 3126-3140 ◽  
Author(s):  
Ethel Queralt ◽  
J. Carlos Igual

ABSTRACT The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in the regulation of cell division. In the present work, we have characterized the function of the karyopherin Msn5p in the control of the cell cycle of Saccharomyces cerevisiae. Phenotypic analysis of the msn5 mutant revealed an increase in cell size and a functional interaction between Msn5p and the cell cycle transcription factor SBF (composed of the Swi4p and Swi6p proteins), indicating that Msn5p is involved in Start control. In fact, we have shown that the level of Cln2p protein is drastically reduced in an msn5 mutant. The effect on CLN2 expression is mediated at a transcriptional level, Msn5p being necessary for proper SBF-dependent transcription. On the contrary, loss of MSN5 has no effect on the closely related transcription factor MBF (composed of the Mbp1p and Swi6p proteins). Regulation of SBF by Msn5p is exerted by control of the localization of the regulatory subunit Swi6p. Swi6p shuttles between the nucleus and the cytoplasm during the cell cycle, and we have found that Msn5p is required for Swi6p export from the nucleus during the G2-M phase. What is more important, we have demonstrated that export of Swi6p to the cytoplasm is required for SBF activity, providing evidence for a functional switch of Swi6p linked to its nucleocytoplasmic shuttling during the cell cycle.


1996 ◽  
Vol 16 (4) ◽  
pp. 1842-1850 ◽  
Author(s):  
G Baier-Bitterlich ◽  
F Uberall ◽  
B Bauer ◽  
F Fresser ◽  
H Wachter ◽  
...  

T-lymphocyte stimulation requires activation of several protein kinases, including the major phorbol ester receptor protein kinase C (PKC), ultimately leading to induction of lymphokines, such as interleukin-2 (IL-2). The revelant PKC isoforms which are involved in the activation cascades of nuclear transcription factors involved in IL-2 production have not yet been clearly defined. We have examined the potential role of two representative PKC isoforms in the induction of the IL-2 gene, i.e., PKC-alpha and PKC-theta, the latter being expressed predominantly in hematopoietic cell lines, particularly T cells. Similar to that of PKC-alpha, PKC-theta overexpression in murine EL4 thymoma cells caused a significant increase in phorbol 12-myristate 13-acetate (PMA)-induced transcriptional activation of full-length IL-2-chloramphenicol acetyltransferase (CAT) and NF-AT-CAT but not of NF-IL2A-CAT or NF-kappaB promoter-CAT reporter gene constructs. Importantly, the critical AP-1 enhancer element was differentially modulated by these two distinct PKC isoenzymes, since only PKC-theta but not PKC-alpha overexpression resulted in an approximately 2.8-fold increase in AP-1-collagenase promoter CAT expression in comparison with the vector control. Deletion of the AP-1 enhancer site in the collagenase promoter rendered it unresponsive to PKC-theta. Expression of a constitutively active mutant PKC-theta A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-theta K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-RasS17N completely inhibited the PKC-O A148E-induced signal, PKC-O. Expression of a constitutively active mutant PKC-O A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-O K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-enRasS17N completely inhibited in the PKC-O A148E-induced signal, identifying PKC-theta as a specific constituent upstream of or parallel to Ras in the signaling cascade leading to AP transcriptional activation.


2001 ◽  
Vol 277 (7) ◽  
pp. 4609-4617 ◽  
Author(s):  
Hiroshi Miyamoto ◽  
Mujib Rahman ◽  
Hiroshi Takatera ◽  
Hong-Yo Kang ◽  
Shuyuan Yeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document