Comparison of Biodistributions and Therapeutic Efficacies of Pretargeted Radioimmunoconjugates Targeting the CD20, CD22, and DR Molecules on Human B Cell Lymphomas.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 611-611
Author(s):  
Anastasia Pantelias ◽  
John M. Pagel ◽  
Nathan Hedin ◽  
Yukang Lin ◽  
Donald Axworthy ◽  
...  

Abstract Radioimmunotherapy (RIT) using anti-CD20 monoclonal antibodies (Ab) produces response rates of 60–95% in relapsed non-Hodgkin’s lymphoma (NHL) patients; however, tumor-to-normal organ ratios of absorbed radiation are low and many patients relapse. The efficacy of RIT is limited by non-specific delivery of radiation to normal tissues due to the long circulating half-life of radiolabeled antibodies. Pretargeted RIT (PRIT) using streptavidin (SA)-Ab conjugates followed by a clearing agent and radiolabeled biotin can augment the efficacy of RIT and decrease toxicity compared with conventional RIT. Although PRIT using anti-CD20-SA Abs have been studied with promising results, targeting multiple antigens may increase efficacy. Since successful clinical trials have been conducted with directly radiolabeled anti-DR and anti-CD22 Abs, we initiated in vitro and in vivo studies comparing pretargeted anti-CD20 Ab-SA conjugate (1F5/SA) with pretargeted anti-CD22-SA (HD39/SA) and anti-HLA-DR-SA (Lym-1/SA) conjugates in three different human B-lymphoma cell lines, RAMOS (Burkitt), RAJI (Burkitt) and FL-18 (transformed follicular). Using standard flow cytometry techniques all three Ab-SA conjugates bound to ≥ 97% of FL18 cells. Cell binding for 1F5/SA, Lym-1/SA, and HD39/SA was 99%, 99%, and 83% to RAJI cells, respectively, and 99%, 22%, and 85% to RAMOS cells. The blood half-life of each conjugate in vivo was measured by injecting groups of 4 mice i.v. with 0.7nmol (150μg) of 125I labeled Ab-SA conjugate and drawing 10μl of blood at various time points to determine the percent injected dose per gram (% ID/g). The half-lives of 1F5/SA, Lym-1/SA and HD39/SA were 18.38, 14.92 and 16.23 hours, respectively. When 5.8nmol (50μg) of a clearing agent (synthetic biotin-N-acetyl-galactosamine) was given 24 hours post 125I-Ab-SA injection, the % ID/g in blood fell by more than 80% of the initial dose within a half-hour. Blood, tumor and non-specific organ uptake was determined by biodistribution experiments in mice (Balb/c nu/nu) bearing human lymphoma xenografts. Athymic mice with s.c. RAMOS, RAJI, or FL-18 xenografts received 1.4nmol (300μg) of either 1F5/SA, HD39/SA, or Lym-1/SA i.v. followed 24 hours later by 5.8nmol (50μg) clearing agent to remove non-localized conjugate from circulation, and 3 hours later by an 111In labeled DOTA-biotin ligand (1μg). The biodistributions of each conjugate were evaluated by sacrificing mice at 24 and 48 hours after 111In-DOTA-biotin. At 24 hours, the ID/g was 18.2±13.6% in FL18 xenografts for pretargeted Lym-1/SA, 18.2±17.4% ID/g for 1F5/SA and 3.3±0.7% ID/g for HD39/SA. Conversely, at 24 hours pretargeted Lym-1/SA uptake in RAJI tumors was 10.8±2.1% ID/g, and 1F5/SA and HD39/SA RAJI tumor localization was 5.2±1.9% ID/g and 2.2±0.5% ID/g. respectively. 1F5/SA had superior uptake (7.1±3.3% ID/g) in RAMOS xenografts compared with Lym-1/SA (3.5±1.5% ID/g) and HD39/SA (2.7±1.0% ID/g). These data suggest a strong correlation between in vitro cell binding results and in vivo biodistributions for all three Ab-SA conjugates in all three human lymphoma cell lines. Using these agents in combination may result in a synergistic effect that has the potential to increase the efficacy of PRIT over using any one of the agents alone. Biodistribution and therapy studies using the Ab-SA conjugates in combination in tumored mice are on-going.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3941-3941
Author(s):  
David M Goldenberg ◽  
Serengulam Govindan ◽  
Tom M Cardillo ◽  
Robert M Sharkey

Abstract Abstract 3941 Background: Monoclonal antibody (MAb) therapy has had a significant impact on the management of B-cell malignancies, but is most often used in combination with chemotherapy. We developed an ADC that combines SN-38, the active component of irinotecan, a topoisomerase I inhibitor, with the internalizing, humanized, anti-CD22 IgG, epratuzumab, and determined its activity alone and in combination with an anti-CD20 antibody therapy (veltuzumab). Methods: Epratuzumab was conjugated with SN-38 (E-SN-38) at a mole ratio of ∼6:1. The conjugate is designed specifically to be released slowly in the presence of serum (50% released over ∼1.5 days), allowing liberation of the drug when internalized, but also being released locally after being bound to the tumor. In vitro and in vivo studies were performed to assess the activity of the conjugate against several subcutaneously- or intravenously-inoculated B-cell lymphoma cell lines. In vivo studies also examined combination therapy using E-SN-38 and the veltuzumab (V). Results: In vitro studies in 4 B-cell lymphoma cells lines (Daudi, Raji, Ramos, WSU-FSCCL) and 4 acute lymphoblastic lymphoma cell lines (697, REH, MN-60, and RS4;11) expressing varying amounts of CD22 showed an IC50 for E-SN-38 in the nanomolar range, confirming potent activity. Nude mice bearing SC Ramos human lymphoma had significant selective anti-tumor activity compared to a control, non-targeting, IgG-SN-38 conjugate, at a dosing regimen of 75 to 250 μg of the conjugates given twice-weekly for 4 weeks. Significant anti-tumor activity was also found in several other cell lines. When combined with veltuzumab, significant improvement in therapeutic activity was observed. For example, median survival in a WSU-FSCCL human follicular B-cell lymphoma IV model with treatment initiated 5 days after implantation was 42 d (0/10 surviving at 160 d) and 91 d (2/10 surviving) for untreated and veltuzumab-treated animals, respectively; 63d (0/10 surviving after 160 d) and >160 d (with 6/10 surviving) for E-SN-38 and E-SN-38 + V, respectively; and 63 d (0/10) and 91 d (2/10) for non-targeting IgG-SN-38 conjugate alone and combined with V). The E-SN-38 conjugate combined with V was significantly better than all treatment or control groups (P ≤ 0.05). Conclusion: E-SN-38 ADC is a potent therapeutic, even at non-toxic dose levels, and shows significantly enhanced efficacy when combined with anti-CD20 immunotherapy, representing an important new ADC treatment regimen. Disclosures: Goldenberg: Immunomedics, Inc.: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Govindan:Immunomedics, Inc.: Employment. Cardillo:Immunomedics, Inc.: Employment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1591-1591
Author(s):  
Edmund A Rossi ◽  
Chien-Hsing Chang ◽  
Thomas M Cardillo ◽  
Rhona Stein ◽  
Diana Pilas ◽  
...  

Abstract BACKGROUND: Multivalent bispecific antibodies (bsMAbs) have shown improved efficacy in a number of preclinical studies. We made a pair of hexavalent bsMAbs based on epratuzumab (hLL2, anti-CD22) and veltuzumab (hA20, anti-CD20) by the Dock-and-Lock (DNL) method, and compared their properties to each other and their parental MAbs. METHODS AND RESULTS: DNL is used for the site-specific and covalent assembly of modular components, and was utilized to generate stably tethered hexavalent bispecific complexes, each composed of 4 Fab fragments conjugated to an IgG at the latter’s carboxyl termini of the heavy chain. DNL-1 has 4 veltuzumab Fabs tethered to epratuzumab IgG; DNL-2 has 4 epratuzumab Fabs bound to veltuzumab IgG. DNL made each construct as a single, defined, homogeneous structure that is stable in serum. All of the constituent Fab fragments are functional, with binding affinities similar to the parental MAbs. In vitro analyses using human lymphoma cell lines demonstrated that, unlike the parental MAbs, the bsMAbs each induced translocation of both CD22 and CD20 into lipid rafts and also strong cell-cell adhesion. DNL1 or DNL2 treatment resulted in increased apoptosis vs. the parental MAbs alone or combined. DNL1 and DNL2 inhibited the growth of Ramos, Raji and Daudi Burkitt lymphoma cell lines without the requirement of crosslinking, and more potently than the combination of the parental MAbs. For Daudi cells, DNL1 and DNL2 showed similar activity, which was approximately 50-fold more potent than the combination of the parental MAbs. For Raji and Ramos, DNL1 was 8–10-fold more potent than DNL2, which in turn was 8–10-fold more potent than the combined parental MAbs. The results suggest that crosslinking of CD20 and CD22 at the cell surface is required for enhanced cytotoxicity. Veltuzumab, but neither epratuzumab nor either bsMAb, displayed CDC activity. Veltuzumab and DNL2 induced a similarly high degree of ADCC. DNL1 induced ADCC to an intermediate level between veltuzumab/DNL2 and epratuzumab. In an ex-vivo assay using fresh whole blood mixed with either Daudi or Raji, DNL1 and DNL2 each demonstrated selective killing of lymphoma cells over normal B-cells compared to veltuzumab or rituximab; the latter depleted normal B-cells with greater efficiency than the bsMAbs. PK studies in mice demonstrated that despite their large size, the bsMAbs have a significantly shorter serum half-life than the IgGs. Even without CDC activity and with a considerably shorter serum half-life, DNL2 had anti-lymphoma efficacy in the Daudi Burkitt lymphoma model in mice that was equivalent to veltuzumab. DNL1 was less potent than DNL2 in vivo, but more effective than epratuzumab and control bsMAbs comprising either epratuzumab-IgG-AD2 (22-14) or 4 veltuzumab-Fab-DDD2 groups (734-22) combined with 4 non-binding Fab-DDD2 groups or a non-binding IgG-AD2, respectively. The anti-tumor efficacy of both DNL1 and DNL2 was abolished in tumor-bearing mice in which their ADCC potential was diminished by depletion of neutrophils and NK cells. These findings suggest that ADCC is the most critical mechanism of action for lymphoma killing in these murine models. DNL1 is more potent than DNL2 in vitro yet DNL2, having the stronger ADCC activity, is more potent than DNL1 in vivo. CONCLUSIONS: These findings suggest that the DNL method can be used to make a variety of multivalent bsMAbs with potent anti-tumor activity, and having distinct properties dependent on their arrangement and composition. CD20/CD22 bsMAbs appear to have different functions than their parental MAbs, even when these were combined, and appear to be potent anti-B-cell lymphoma therapeutics.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 711-711
Author(s):  
Anagh Anant Sahasrabuddhe ◽  
Xiaofei Chen ◽  
Kaiyu Ma ◽  
Rui Wu ◽  
Richa Kapoor ◽  
...  

Abstract Introduction: Diffuse large B cell lymphoma (DLBCL) is the most common form of malignant lymphoma and may arise de novo, or through transformation from a pre-existing low-grade B cell lymphoma such as follicular lymphoma (FL). However, the post-translational mechanisms and deregulated pathways underlying the pathogenesis of disease evolution are not fully understood. Methods: We employed integrated functional and structural genomics and mass spectrometry (MS)-driven proteomics which implicated a possible novel tumor suppressor role for a conserved E3 ubiquitin ligase FBXO45 in DLBCL pathogenesis. We generated conditional knockout mice targeting loss of Fbxo45 in germinal center (GC) B-cells using the Cg1-Cre-loxP system and an assortment of CRISPR-mediated knockouts of FBXO45 in B cell lymphoma cells (FL518, BJAB, U2932). We engineered B cell lines (BJAB, U2932) to inducibly express FLAG-tagged FBXO45 to identify candidate substrates of FBXO45 using liquid chromatography-tandem MS. In vitro biochemical and in vivo studies using a variety of genetically-modified lines in xenograft studies in immunodeficient mice were performed to validate observations from proteogenomic studies. Whole genome sequencing (WGS) and genomic copy number studies were interrogated to investigate structural alterations targeting FBXO45 in primary human lymphoma samples. Results: Conditional targeting of Fbxo45 in GCB-cells in transgenic mice resulted in abnormal germinal center formation with increased number and size of germinal centers. Strikingly, targeted deletion of Fbxo45 in GCB-cells resulted in spontaneous B cell lymphomas with (22/22);100%) penetrance and none of the wild-type (WT) littermates (0/20; 0%) developed lymphoma at 24 months. Macroscopic examination revealed large tumor masses, splenomegaly, and lymphadenopathy at different anatomic locations including ileocecal junction, mesenteric, retroperitoneal and cervical lymph nodes and thymus. Next generation sequencing of immunoglobulin heavy chain genes revealed monoclonal or oligoclonal B cell populations. Using proteomic analysis of affinity-purified FBXO45-immunocomplexes and differential whole proteome analysis from GCB-cells of Fbxo45 wt/wt vs Fbxo45 fl/fl mice, we discovered that FBXO45 targets the RHO guanine exchange factor GEF-H1 for ubiquitin-mediated proteasomal degradation. FBXO45 exclusively interacts with GEF H1 among 8 F-box proteins investigated and silencing of FBXO45 using three independent shRNA and CRISPR-Cas9-mediated knockouts in B-cell lymphoma cell lines promotes RHOA and MAPK activation, B cell growth and enhances proliferation. GEF-H1 is stabilized by FBXO45 depletion and GEF-H1 ubiquitination by FBXO45 requires phosphorylation of GEF-H1. Importantly, FBXO45 depletion and expression of a GEF-H1 mutant that is unable to bind FBXO45 results in GEF-H1 stabilization, promotes hyperactivated RHO and MAPK signaling and B-cell oncogenicity in vitro and in vivo. Notably, this phenotype is reverted by co-silencing of GEF-H1. Inducible ectopic expression of FBXO45 triggers accelerated turnover of GEF H1 and decreased RHOA signaling. Genomic analyses revealed recurrent loss targeting FBXO45 in transformed DLBCL (25%), de novo DLBCL (6.6%) and FL (2.3%). In keeping with our observation of prolonged hyperactivation of pERK1/2 consequent to FBXO45 ablation, in vitro and in vivo studies using B-cell lymphoma cell lines and xenografts demonstrated increased sensitivity to pharmacologic blockade with the MAP2K1/2 (ERK1/2) inhibitor Trametinib. Conclusions: Our findings define a novel FBXO45-GEF-H1-MAPK signalling axis, which plays an important role in DLBCL pathogenesis. Our studies carry implications for potential exploitation of this pathway for targeted therapies. Disclosures Siebert: AstraZeneca: Speakers Bureau. Lim: EUSA Pharma: Honoraria.


Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1062-1070 ◽  
Author(s):  
David M. Goldenberg ◽  
Edmund A. Rossi ◽  
Rhona Stein ◽  
Thomas M. Cardillo ◽  
Myron S. Czuczman ◽  
...  

Abstract Veltuzumab is a humanized anti-CD20 monoclonal antibody with complementarity-determining regions (CDRs) identical to rituximab, except for one residue at the 101st position (Kabat numbering) in CDR3 of the variable heavy chain (VH), having aspartic acid (Asp) instead of asparagine (Asn), with framework regions of epratuzumab, a humanized anti-CD22 antibody. When compared with rituximab, veltuzumab has significantly reduced off-rates in 3 human lymphoma cell lines tested, aswell as increased complement-dependent cytotoxicity in 1 of 3 cell lines, but no other in vitro differences. Mutation studies confirmed that the differentiation of the off-rate between veltuzumab and rituximab is related to the single amino acid change in CDR3-VH. Studies of intraperitoneal and subcutaneous doses in mouse models of human lymphoma and in normal cynomolgus monkeys disclosed that low doses of veltuzumab control tumor growth or deplete circulating or sessile B cells. Low- and high-dose veltuzumab were significantly more effective in vivo than rituximab in 3 lymphoma models. These findings are consistent with activity in patients with non-Hodgkin lymphoma given low intravenous or subcutaneous doses of veltuzumab. Thus, changing Asn101 to Asp101 in CDR3-VH of rituximab is responsible for veltuzumab's lower off-rate and apparent improved potency in preclinical models that could translate into advantages in patients.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


2018 ◽  
Vol 48 (6) ◽  
pp. 2286-2301 ◽  
Author(s):  
Dijiong  Wu ◽  
Keding Shao ◽  
Qihao Zhou ◽  
Jie Sun ◽  
Ziqi Wang ◽  
...  

Background/Aims: Although the cure rate of acute promyelocytic leukemia (APL) has exceeded 90%, the relapse/refractory APL that resistant to all-trans retinoic acid (ATRA) or ATO was still serious concern. Matrine (MAT) could improve the differentiation ability of ATRA-resistant APL cells. This study aimed to explore how the APL-specific fusion protein was degraded in ATRA-resistant APL with the application of MAT and ATRA. Methods: ATRA-sensitive (NB4) and ATRA-resistant (NB4-LR1) cell lines were used. Nitroblue tetrazolium reduction assay and flow cytometry were used to detect the differentiation ability. The activity of ubiquitin-proteasome and autophagy-mediated pathways in both cells treated with ATRA with or without MAT were compared in protein and mRNA level (Western blot analysis, qRT-PCR), the Fluorescent substrate Suc-LLVY-AMC detection was used to detect the activity of proteasome, and electron microscope for observing autophagosome. MG 132(proteasome inhibitor), rapamycin (autophagy activator), hydroxychloroquine (lysosomal inhibitor) and STI571 [retinoic acid receptor alpha (RARα) ubiquitin stabilizer] were used as positive controls. The effect of MAT was observed in vivo using xenografts. Results: MAT improved the sensitivity of NB4-LR1cells to ATRA treatment, which was consistent with the expression of PML-RARα fusion protein. MAT promoted the ubiquitylation level in NB4-LR1. MG 132 induced the decrease in RARα in both cell lines, and hampered the differentiation of NB4 cells. MAT also promoted the autophagy in NB4-LR1 cells, with an increase in microtubule-associated protein 1 light chain3 (LC3)-II and LC3-II/LC3-I ratio and exhaustion of P62. The expression of LC3II increased significantly in the MAT and ATRA + MAT groups in combination with lysosomal inhibitors. A similar phenomenon was observed in mouse xenografts. MAT induced apoptosis and differentiation. Conclusions: Autophagy and ubiquitin-mediated proteolytic degradation of PML/RARα fusion protein are crucial in MAT-induced differentiation sensitivity recovery of NB4-LR1 cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-45
Author(s):  
Sushanth Gouni ◽  
Paolo Strati ◽  
Jason Westin ◽  
Loretta J. Nastoupil ◽  
Raphael E Steiner ◽  
...  

Background: Pre-clinical studies show that statins may improve the efficacy of chemoimmunotherapy in patients with DLBCL, through interference with cell membrane-initiated signaling pathways. Clinical retrospective studies, however, yield conflicting data, due to heterogeneous properties of statins, including potency and hydrophilicity. Methods: This is a retrospective analysis of patients with previously untreated, advanced stage DLBCL, non-double hit, treated with frontline R-CHOP between 01/01/2000 and 09/01/2019 (data cut-off 04/15/2020) at MD Anderson Cancer Center, and for whom data regarding statin use at time of initiation of treatment were available. Lugano 2014 response criteria were applied retrospectively for response assessment. Cellular cholesterol levels were analyzed in 6 DLBCL cell lines using an Amplex red fluorometric assay. A doxorubicin (DXR)-resistant cell line was generated exposing SUDHL4 cells to escalating doses of DXR; a DXR-resistant DLBCL patient-derived xenograft (PDX) model was established through serial transplantation and exposure to DXR. Results: 271 patients were included in the analysis, 182 (67%) were older than 60 years, 134 (49%) were male, 212 (72%) had stage IV disease, and 217 (80%) had an IPI score > 3; upon pathological review, 38 (36%) cases were non-GCB type, and 18 (28%) were double-expressors; 214 (79%) were able to complete all planned 6 cycles of RCHOP. Seventy-nine (29%) patients received statins at time of initiation of chemoimmunotherapy: 15 patients received low potency statin, 51 medium and 13 high; 18 patients received hydrophilic statins and 61 lipophilic. Patients receiving statins were significantly older as compared to patients who did not (p<0.001); no other significant difference in baseline characteristics was observed when comparing the 2 groups. Overall, 265 out of 271 patients were evaluable for response, as 6 stopped treatment because of toxicity before first response assessment. Among these, ORR was 95% (252/265) and CR rate was 62% (165/265). ORR rate was identical in patients who were treated with statin and those who did not (95% both, p=1). After a median follow-up of 77 months (95% CI, 70-84 months), 119 patients progressed/died, median PFS was not reached and 6-year PFS was 57%. 6-year PFS rate according to statin intensity was: 48% (low), 72% (medium), 57% (high). PFS. 6-year PFS rate was 64% for hydrophilic and 72% for lipophilic statins. Patients treated with statins had a trend for longer PFS (p=0.06), significantly longer for patients receiving medium potency statins (p=0.04). No significant difference in PFS was observed when comparing patients treated with lipophilic statins to all others (not reached vs 84 months, p=0.22). To confirm these clinical data, in-vitro and in-vivo studies were performed. Six cell lines were tested: 4 with high cholesterol content (SUDHL4, HBL1, HT, and U2932; 5.0-8.0 µg/mg protein), and 2 with low cholesterol content (DOHH2 and OCI-LY19; 1.5-2.0 µg/mg protein); the latter showed the highest sensitivity to DXR-mediated killing. The combination of lovastatin and DXR (10nM) was tested in all 4 cell lines with high cholesterol content, resulting in more cell death than either treatment alone. Lovastatin (at the nanomolar range) resensitized DXR-resistant SUDHL4 cells to DXR. Finally, in a DXR-resistant PDX model, the combination of lovastatin and DXR resulted in delayed tumor growth as compared to chemotherapy alone. Conclusions: Use of medium potency statins is associated with improved outcomes after frontline RCHOP in patients with DLBCL. This was further confirmed in functional in-vitro and in-vivo studies. Future interventional studies, aimed at improving outcomes in these patients using this novel combination, are warranted. Disclosures Westin: Amgen: Consultancy; 47: Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Morphosys: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Curis: Consultancy, Research Funding; Astra Zeneca: Consultancy, Research Funding. Nastoupil:Gamida Cell: Honoraria; Merck: Research Funding; TG Therapeutics: Honoraria, Research Funding; Karus Therapeutics: Research Funding; Janssen: Honoraria, Research Funding; LAM Therapeutics: Research Funding; Novartis: Honoraria, Research Funding; Bayer: Honoraria; Celgene: Honoraria, Research Funding; Genentech, Inc.: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Gilead/KITE: Honoraria. Neelapu:Bristol-Myers Squibb: Other: personal fees, Research Funding; Merck: Other: personal fees, Research Funding; Kite, a Gilead Company: Other: personal fees, Research Funding; Pfizer: Other: personal fees; Celgene: Other: personal fees, Research Funding; Novartis: Other: personal fees; Karus Therapeutics: Research Funding; N/A: Other; Takeda Pharmaceuticals: Patents & Royalties; Acerta: Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Precision Biosciences: Other: personal fees, Research Funding; Legend Biotech: Other; Adicet Bio: Other; Allogene Therapeutics: Other: personal fees, Research Funding; Cell Medica/Kuur: Other: personal fees; Calibr: Other; Incyte: Other: personal fees; Unum Therapeutics: Other, Research Funding. Landgraf:NCI/NIH: Research Funding. Vega:NCI: Research Funding.


1977 ◽  
Author(s):  
Christine N. Vogel ◽  
Kingdon S. Henry ◽  
Roger L. Lundblad

Our intention is to study the interaction of rabbit thrombin with antithrombin III (AT-III) in vitro and in vivo. After activation of crude prothrombin with tissue thromboplastin and CaCl2, thrombin was purified and showed two species of thrombin with molecular weights of 36,000 and 39,000 daltons as determined by sodium dodecyl sulfate discontinuous gel electrophoresis. Rabbit AT-III was purified using a heparin agarose column and had a molecular weight of 55,000 daltons. The inhibition of thrombin by AT-III was followed by fibrinogen clotting assays and an AT-III-thrombin complex was observed on gel electrophoresis. For the in vivo studies both thrombin and AT-III were radiolabelled with Na125i using the solid state lactoperoxidase method and retained 99% of the pre-iodinated specific activity. Radiolabelled thrombin and a radiolabelled AT-III-thrombin complex were injected into different rabbits. The rate of removal of both was very similar with a half-life of approximately 9 hours. When radiolabelled AT-III was injected, the half-life was approximately 60 hours. Since the disappearance rate of thrombin more closely approximates that of the preformed AT-III-thrombin complex and is clearly shorter than the turnover rate of AT-III, the possibility is raised that thrombin combines in vivo with a native inhibitor such as AT-III and may in fact be removed from the circulation as a complex rather than as a native molecule.


Sign in / Sign up

Export Citation Format

Share Document