AML1/Runx1 Negatively Regulates the Number of Quiescent Hematopoietic Stem Cells in Adult Hematopoiesis.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4204-4204
Author(s):  
Motoshi Ichikawa ◽  
Takashi Asai ◽  
Masahiro Nakagawa ◽  
Masahito Kawazu ◽  
Susumu Goyama ◽  
...  

Abstract Transcription factor AML1 (also called Runx1), which was initially isolated from the t(8;21) chromosomal translocation frequently found in the acute myelogenous leukemia FAB M2 subtype, is essential for the development of multilineage hematopoiesis in mouse embryos. By analyzing conditional AML1 knockout mice, we have previously shown that AML1 negatively regulates the number of immature hematopoietic cells defined as lineage-negative, CD34− Sca-1+ c-Kit+ (34KSL) cells in adult hematopoiesis, while it is required for megakaryocytic maturation and lymphocytic development. The former is a significant observation because an increase in hematopoietic stem/progenitor cells due to defective AML1 function may be closely related to the development of human leukemia. In support of this is the fact that mice in which leukemic chimeric protein AML1/ETO is expressed in hematopoietic cells are subject to myeloproliferative disease and develop leukemia after additional mutation. However, it has remained yet to be determined how AML1 contributes to homeostasis of hematopoietic stem cells (HSCs). To address this issue, we analyzed in detail HSC function in the absence of AML1. Notably, cells in the Hoechst 33342 side population (SP) fraction are increased in number in AML1-deficient bone marrow, which suggests enrichment of quiescent HSCs. We quantitatively evaluated HSCs by bone marrow transplantation assays using limiting dilution and found a significant increase in HSC number within the AML1-deficient bone marrow. These results indicate that the number of quiescent HSCs is negatively regulated by AML1, loss of which may result in accumulation of leukemic stem cell pool in AML1-related leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4117-4117
Author(s):  
Motoshi Ichikawa ◽  
Masataka Takeshita ◽  
Susumu Goyama ◽  
Takashi Asai ◽  
Eriko Nitta ◽  
...  

Abstract Transcription factor AML1/RUNX1, initially isolated from the t(8;21) chromosomal translocation in human leukemia, is essential for the development of multilineage hematopoiesis in mouse embryos. AML1 negatively regulates the number of immature hematopoietic cells in adult hematopoiesis, while it is required for megakaryocytic maturation and lymphocytic development. However, it remains yet to be determined how AML1 contributes to homeostasis of hematopoietic stem cells (HSCs). To address this issue, we analyzed in detail HSC function in the absence of AML1. Notably, cells in the Hoechst 33342 side population fraction and c-Kit-positive cells in the G0 cell cycle status were increased in number in AML1-deficient bone marrow, which suggests enrichment of quiescent HSCs. We also found an increase in HSC number within the AML1-deficient bone marrow using limiting dilution bone marrow transplantation assays. Thus, the number of quiescent HSCs is negatively regulated by AML1, loss of which may result in accumulation of leukemic stem cell pool in AML1-related leukemia. To identify mechanisms through which functional loss of AML1 exerts leukemogenic potential, we focused on the AML1-Evi-1 chimeric protein, which is generated by the t(3;21) chromosomal translocation and disturbs the normal function of AML1. We introduced AML1-Evi-1 and its mutants into murine bone marrow cells, and evaluated hematopoietic cell transformation by colony replating assays. The transforming activity of AML1-Evi-1 was impaired when any of the major functional domains of AML1-Evi-1 was lost. Moreover, overexpression of Evi-1 could not transform AML1-deleted bone marrow cells, suggesting that fusion of AML1 and Evi-1, rather than AML1 suppression and Evi-1 overexpression, is essential for AML1-Evi-1 leukemogenesis. Intriguingly, among the hematopoietic progenitor cell fractions, AML1-Evi-1 could transform only the uncommitted, immature hematopoietic cells, which contrasts with MLL-ENL, a chimeric protein generated in t(11;19) leukemia. AML1-Evi-1 transformed cells show a surface marker profile different from that of the cells transformed by AML1-MTG8/ETO, another leukemic gene product that also perturbs AML1 function. These results provide a valuable clue to a distinct mechanism determined by the Evi-1 moiety in the AML1-Evi-1 leukemogenesis and to a role of AML1 loss in the self-renewal of leukemic stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1200-1200
Author(s):  
Hui Yu ◽  
Youzhong Yuan ◽  
Xianmin Song ◽  
Feng Xu ◽  
Hongmei Shen ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are significantly restricted in their ability to regenerate themselves in the irradiated hosts and this exhausting effect appears to be accelerated in the absence of the cyclin-dependent kinase inhibitor (CKI), p21. Our recent study demonstrated that unlike p21 absence, deletion of the distinct CKI, p18 results in a strikingly positive effect on long-term engraftment owing to increased self-renewing divisions in vivo (Yuan et al, 2004). To test the extent to which enhanced self-renewal in the absence of p18 can persist over a prolonged period of time, we first performed the classical serial bone marrow transfer (sBMT). The activities of hematopoietic cells from p18−/− cell transplanted mice were significantly higher than those from p18+/+ cell transplanted mice during the serial transplantation. To our expectation, there was no detectable donor p18+/+ HSC progeny in the majority (4/6) of recipients after three rounds of sBMT. However, we observed significant engraftment levels (66.7% on average) of p18-null progeny in all recipients (7/7) within a total period of 22 months. In addition, in follow-up with our previous study involving the use of competitive bone marrow transplantation (cBMT), we found that p18−/− HSCs during the 3rd cycle of cBMT in an extended long-term period of 30 months were still comparable to the freshly isolated p18+/+ cells from 8 week-old young mice. Based on these two independent assays and the widely-held assumption of 1-10/105 HSC frequency in normal unmanipulated marrow, we estimated that p18−/− HSCs had more than 50–500 times more regenerative potential than p18+/+ HSCs, at the cellular age that is equal to a mouse life span. Interestingly, p18 absence was able to significantly loosen the accelerated exhaustion of hematopoietic repopulation caused by p21 deficiency as examined in the p18/p21 double mutant cells with the cBMT model. This data directly indicates the opposite effect of these two molecules on HSC durability. To define whether p18 absence may override the regulatory mechanisms that maintain the HSC pool size within the normal range, we performed the transplantation with 80 highly purified HSCs (CD34-KLS) and then determined how many competitive reconstitution units (CRUs) were regenerated in the primary recipients by conducting secondary transplantation with limiting dilution analysis. While 14 times more CRUs were regenerated in the primary recipients transplanted with p18−/−HSCs than those transplanted with p18+/+ HSCs, the level was not beyond that found in normal non-transplanted mice. Therefore, the expansion of HSCs in the absence of p18 is still subject to some inhibitory regulation, perhaps exerted by the HSC niches in vivo. Such a result was similar to the effect of over-expression of the transcription factor, HoxB4 in hematopoietic cells. However, to our surprise, the p18 mRNA level was not significantly altered by over-expression of HoxB4 in Lin-Sca-1+ cells as assessed by real time PCR (n=4), thereby suggesting a HoxB4-independent transcriptional regulation on p18 in HSCs. Taken together, our current results shed light on strategies aimed at sustaining the durability of therapeutically transplanted HSCs for a lifetime treatment. It also offers a rationale for the feasibility study intended to temporarily target p18 during the early engraftment for therapeutic purposes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2441-2441
Author(s):  
Diana Tronik-Le Roux ◽  
Johnny Nehme ◽  
Arthur Simonnet ◽  
Pierre Vaigot ◽  
Marie Anne Nicola ◽  
...  

Abstract Hematopoietic stem cells (HSC) are indispensable for the integrity of complex and long-lived organisms since they can reconstitute the hematopoietic system for life and achieve long term repopulation of lethally irradiated mice. Exposure of an organism to ionizing radiation (IR) causes dose dependant bone marrow suppression and challenge the replenishment capacity of HSC. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSC, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of HSC presence: CD150+/CD105+ and Tie2+. Virtually all HSCs quickly but transiently mobilize to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the c-Kit+ Sca-1+ Lin−/low (KSL) stem/progenitor compartment: CD150+/Flk2− and Flk2+ KSL cell frequencies are increased and dramatically reduced, respectively. CD150+ KSL cells also show impaired reconstitution capacity, accrued γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the KSL compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Since thrombopoietin (TPO) has been shown to reduce haematopoietic injury when administered immediately after exposure to radiations, we asked whether TPO could restore the permanent IR-induced damage we observed in the HSC compartment. We first found in competitive transplant experiments that a single TPO administration rescued the impaired reconstitution capacity of HSC’s from animals exposed to sublethal IR. In addition, we observed that TPO injection right after irradiation considerably attenuates IR-induced long-term injury to the stem/progenitor compartment. Finally, the use of marrow cells from transgenic ubiquitous luciferase-expressing donors combined with bioluminescence imaging technology provided a valuable strategy that allowed visualizing HSC homing improvements of TPO-treated compared to untreated irradiated donors, and enabled the identification of a preferential cellular expansion sites which were inaccessible to investigation in most studies. Electronic microscopy analysis revealed that these sites show also differential activity of megakaryocytopoiesis with marked differences in the proplatelets reaching the vascular sinus. Altogether, our data provide novel insights in the cellular response of HSC to IR and the beneficial effects of TPO administration to these cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2504-2504
Author(s):  
Russell Garrett ◽  
Gerd Bungartz ◽  
Alevtina Domashenko ◽  
Stephen G. Emerson

Abstract Abstract 2504 Poster Board II-481 Polyinosinic:polycytidlyic acid (poly I:C) is a synthetic double-stranded RNA used to mimic viral infections in order to study immune responses and to activate gene deletion in lox-p systems employing a Cre gene responsive to an Mx-1 promoter. Recent observations made by us and others have suggested hematopoietic stem cells, responding to either poly I:C administration or interferon directly, enter cell cycle. Twenty-two hours following a single 100mg intraperitoneal injection of poly I:C into 10-12 week old male C57Bl/6 mice, the mice were injected with a single pulse of BrdU. Two hours later, bone marrow was harvested from legs and stained for Lineage, Sca-1, ckit, CD48, IL7R, and BrdU. In two independent experiments, each with n = 4, 41 and 33% of Lin- Sca-1+ cKit+ (LSK) IL-7R- CD48- cells from poly I:C-treated mice had incorporated BrdU, compared to 7 and 10% in cells from PBS-treated mice. These data support recently published reports. Total bone marrow cellularity was reduced to 45 and 57% in the two experiments, indicating either a rapid death and/or mobilization of marrow cells. Despite this dramatic loss of hematopoietic cells from the bone marrow of poly I:C treated mice, the number of IL-7R- CD48- LSK cells increased 145 and 308% in the two independent experiments. Importantly, the level of Sca-1 expression increased dramatically in the bone marrow of poly I:C-treated mice. Both the percent of Sca-1+ cells and the expression level of Sca-1 on a per cell basis increased after twenty-four hours of poly I:C, with some cells acquiring levels of Sca-1 that are missing from control bone marrow. These data were duplicated in vitro. When total marrow cells were cultured overnight in media containing either PBS or 25mg/mL poly I:C, percent of Sca-1+ cells increased from 23.6 to 43.7%. Within the Sca-1+ fraction of poly I:C-treated cultures, 16.7% had acquired very high levels of Sca-1, compared to only 1.75% in control cultures. Quantitative RT-PCR was employed to measure a greater than 2-fold increase in the amount of Sca-1 mRNA in poly I:C-treated cultures. Whereas the numbers of LSK cells increased in vivo, CD150+/− CD48- IL-7R- Lin- Sca-1- cKit+ myeloid progenitors almost completely disappeared following poly I:C treatment, dropping to 18.59% of control marrow, a reduction that is disproportionately large compared to the overall loss of hematopoietic cells in the marrow. These cells are normally proliferative, with 77.1 and 70.53% accumulating BrdU during the 2-hour pulse in PBS and poly I:C-treated mice, respectively. Interestingly, when Sca-1 is excluded from the analysis, the percent of Lin- IL7R- CD48- cKit+ cells incorporating BrdU decreases following poly I:C treatment, in keeping with interferon's published role as a cell cycle repressor. One possible interpretation of these data is that the increased proliferation of LSK cells noted by us and others is actually the result of Sca-1 acquisition by normally proliferating Sca-1- myeloid progenitors. This new hypothesis is currently being investigated. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1570-1570
Author(s):  
Santa Errichiello ◽  
Simona Caruso ◽  
Concetta Quintarelli ◽  
Biagio De Angelis ◽  
Novella Pugliese ◽  
...  

Abstract Introduction Tyrosine Kinase Inhibitors (TKI) have completely changed the scenario of CML and dramatically improved the outcomes. Thus, early identification of patients expecting poor outcome is crucial to offer alternative TKI regimens or in some selected cases stem cell transplantation before disease progression may occur. The Evaluating Nilotinib Efficacy and Safety in Trial as First-Line Treatment (ENEST1st) is a phase 3b is an open-label study of nilotinib 300 mg twice daily (BID) in adults with newly diagnosed BCR-ABL positive CP-CML. Aim of the ENEST1st sub-study N10 was to investigate BM microenvironment markers that regulate leukemic stem cells in the bone marrow (BM) niche of Nilotinib-treated patients. Methods The study enrolled patients in 21 Italian ENEST1st participating centers. Response was based on ELN recommendations (Baccarani M, et al. Blood 2013 122:872-884). In an interim analysis, molecular and cytogenetic response by 24 months was assessed. Mononuclear cells were collected from BM and PB samples at the screening visit (V0) and after 3 months of treatment (V4). RT-qPCR for the expression of 10 genes (ARF, KIT, CXCR4, FLT3, LIF, NANOg, PML, PRAME, SET and TIE), involved in the stemness and hematopoietic stem cells survival signaling regulation was conducted. RT-qPCR data were normalized by the expression of GUS mRNA (normalized copy number, NCN). Plasma samples were collected at different time points from both BM or PB samples. Concentrations of 20 different analytes, including IL-1a, IL-3, M-CSF, SCF, SDF1-a, TRAIL, HGF, PDGF-bb, IL1b, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, G-CSF, GM-CSF, MIP-1a, TNF-a, and VEGF, were simultaneously evaluated using commercially available multiplex bead-based sandwich immunoassay kits. Results 33 out of 37 patients enrolled were available for an interim molecular analysis at 24 months: an optimal response was achieved in 25 patients, a warning response in 5 patients and a failure response in 3 patients. We observed a significant correlation between the expression of two genes involved in the regulation of stem cell pluripotency (NANOg) or cytokine signaling (SET) and patient outcome. Indeed, NANOg and SET mRNA were significantly down-regulated in PB samples at diagnosis of patients with optimal response compared to patients with warning/failure response (NANOg mRNA: 0.3±0.25 NCN vs 0.6±0.7 NCN, respectively; p=0.05; SET mRNA: 0.2±0.3 NCN vs 2.3±4.2 NCN, respectively; p=0.03). We also investigated the plasma level of several factors involved in the hematopoietic stem cells (HSCs). Some of these markers showed a significant correlation with patient's outcome when evaluated at diagnosis in either PB or BM samples. Indeed, high level of IL12 (in the BM samples), or HGF, mCSF and SCF (in the PB samples) were associated to a worst prognosis markers, since significantly correlating with no MMR@12months (IL12, p=0.03), intermediate/high Socal score (mCSF, p=0.03; SCF, p=0.03), no reduction of MMR below to 1 at 3 month (SCF, p=0.04) or warning/failure response to Nilotinib treatment (HGF, p=0.03; SCF, p=0.04). Indeed, we find a lower levels of PDGFb, SDF1, TNFa, TRAIL (in the BM samples), and HGF, SDF1, TRAIL (in the PB samples) in those patients with intermediate/high Hasford or Sokal score (PDGFb, p=0.0007; SDF1, p=0.02), warning/failure response to Nilotinib treatment (HGF, p=0.03) or lacking of MMR4.0 (SDF1, p=0.01; TNFa, p=0.02; TRAIL, p=0.05). Conclusion/Summary Taken together, our results suggest that the expression analysis of genes involved in cell pluripotency (NANOg) and/or cell signaling (SET) at baseline, may indicate early achievement of deep molecular response in shown CML-CP patients treated with nilotinib. In addition, in patients with optimal response to Nilotinib, high concentration of SDF-1, TRAIL (inversely correlated with BCR-ABL, and associated to an higher susceptibility to apoptosis in the leukemic blasts) were observed as well as BM TNF (cell-extrinsic and potent endogenous suppressor of HSC activity). A lower concentration of several factors associated to hematopoietic progenitor cell growth and survival (including HGF, SCF and IL12) were observed compared to patients failing to achieve response to Nilotinib. These data strongly suggest that stromal microenvironment supports the viability of BCR-ABL cells in BM niches through direct feeding, or environment releasing of survival factors. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Martinelli:MSD: Consultancy; BMS: Speakers Bureau; Roche: Consultancy; ARIAD: Consultancy; Novartis: Speakers Bureau; Pfizer: Consultancy. Saglio:Bristol-Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Novartis Pharmaceutical Corporation: Consultancy, Honoraria. Galimberti:Novartis: Employment. Giles:Novartis: Consultancy, Honoraria, Research Funding. Hochhaus:Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 361-369 ◽  
Author(s):  
PE Funk ◽  
PW Kincade ◽  
PL Witte

In suspensions of murine bone marrow, many stromal cells are tightly entwined with hematopoietic cells. These cellular aggregations appear to exist normally within the marrow. Previous studies showed that lymphocytes and stem cells adhered to stromal cells via vascular cell adhesion molecule 1 (VCAM1). Injection of anti-VCAM1 antibody into mice disrupts the aggregates, showing the importance of VCAM1 in the adhesion between stromal cells and hematopoietic cells in vivo. Early hematopoietic stem cells were shown to be enriched in aggregates by using a limiting-dilution culture assay. Myeloid progenitors responsive to WEHI-3CM in combination with stem cell factor (c-kit ligand) and B220- B-cell progenitors responsive to insulin-like growth factor-1 in combination with interleukin-7 are not enriched. We propose a scheme of stromal cell-hematopoietic cell interactions based on the cell types selectively retained within the aggregates. The existence of these aggregates as native elements of bone marrow organization presents a novel means to study in vivo stem cell-stromal cell interaction.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3603-3603 ◽  
Author(s):  
Kathleen Overholt ◽  
Satoru Otsuru ◽  
Victoria Best ◽  
Adam Guess ◽  
Timothy S. Olson ◽  
...  

Abstract Hematopoietic stem cells reside in the bone marrow within specialized microenvironments designated the stem cell niche. The remarkable advances over the past decade have dramatically enhanced our perception of the niche; yet, the operative mechanisms after radioablation in preparation for bone marrow transplantation (BMT) remain poorly understood. We have previously described a profound remodeling of the bone marrow architecture after total body irradiation (TBI). This remodeling, comprised of enlarged, proliferating marrow osteoblasts and megakaryocyte migration from the central marrow space to the endosteal surface, is essential for efficient engraftment of donor cells after BMT; hence, marrow remodeling seems to represent an adaptation of the endosteal niche. To investigate whether hematopoietic cells regulate these changes, we sought to deplete all hematopoietic cells prior to TBI. We generated mice expressing the diphtheria toxin receptor (DTR) in all CD45-derived cells using the Cre/loxP model. To validate this strategy, we first crossed CD45Cre mice, where cre is expressed under the control of the endogenous promoter, with Z/RED mice which will then irreversibly express red fluorescent protein (RFP) in all cells that were derived from CD45-expressing progenitors. Surprisingly, we identified a population of RFP-expressing cells residing among osteoblasts along the endosteal and trabecular bone surfaces (designated red Bone Lining Cell, red BLC). By immunofluorescence staining, these cells lacked expression of CD45, lineage markers (Gr1, CD11b, F 4/80, CD3, B220, Ter119), and cathepsin K indicating it is not a hematopoietic cell, specifically not an osteal macrophage or osteoclast, but was unequivocally derived from CD45-expressing progenitors. We reproduced this fate map by crossing vav1Cre mice with Z/RED mice, confirming the identification and hematopoietic lineage of the red BLC. When crossed with Col2.3GFP transgenic mice, which express green fluorescent protein (GFP) in mature osteoblasts, red BLCs lacked GFP co-expression indicating it is not a generic osteoblast. Interestingly, after TBI, red BLCs markedly proliferate, but do not enlarge, in the metaphysis and epiphysis, but not in the diaphysis, coincident with the osteoblast proliferation suggesting a possible role in marrow remodeling. To pursue our original hypothesis that hematopoietic cells may regulate marrow remodeling, we treated mice expressing DTR in all CD45-derived cells and their non-expressing littermates (controls) with diphtheria toxin (DT) followed by TBI to induce marrow remodeling without the effect of CD45-derived cells. Marrow remodeling ensued; however, the characteristically enlarged endosteal osteoblasts adopted a strikingly flattened morphology (cell thickness, 8.45±0.31 vs. 3.42±0.11 μm, P<0.0001). We then used our competitive secondary transplantation assay to assess engraftment of long-term hematopoietic stem cells (HSCs) in primary recipients. Only 1 of 15 CD45-cell depleted mice engrafted HSCs compared to 10 of 15 control mice (P=0.0017) indicating a critical role of osteoblast morphology, governed by a CD45-derived cell, for donor stem cell engraftment in BMT. Megakaryocytes (Mks) and monocytes/macrophages (MMs) are the two marrow hematopoietic lineages that are recognized to survive short term after TBI and we have shown that the CD45-derived red BLC survives and proliferates after TBI. To determine if these cells regulate osteoblasts, we depleted Mks by treating Mk-specific DTR-expressing mice (generated with PF4Cre mice) with DT (>95%), and in separate cohort, MMs using clondronate (>95%). In each cohort, post-TBI marrow remodeling included the expected enlarged endosteal osteoblasts indistinguishable from controls, suggesting that neither Mks nor MMs direct the acquired osteoblast morphology. Collectively, our data indicate that enlarging of endosteal osteoblasts after marrow ablation is critical for donor cell engraftment, possibly due to altered adhesive properties for primitive hematopoietic cells. During post-TBI marrow remodeling, a CD45-derived cell that survives radioablation governs this osteoblast morphology. Our data implicate the red BLC as this key regulatory element. Understanding the red BLC will likely offer new insight into the niche and may lead to novel strategies to enhance HSC engraftment in BMT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1255-1255
Author(s):  
Hideaki Nakajima ◽  
Miyuki Ito ◽  
David Smookler ◽  
Fumi Shibata ◽  
Yumi Fukuchi ◽  
...  

Abstract Regulating transition of hematopoietic stem cells (HSCs) between quiescent and cycling states is critical for maintaining homeostasis of blood cell production in the adult bone marrow. Quiescent HSCs are rapidly recruited into the cell cycle when they face hematopoietic demands such as myelosuppression, returning to quiescence once they produce enough progenitors. It was previously shown that quiescent HSCs express Tie2 and that Tie2/angiopoietin-1 (Ang-1) signaling plays a critical role for maintaining HSC quiescence. However, molecular cues for recruiting HSCs from a quiescent state into cycle remain poorly understood. Extracellular signals are often regulated by the extracellular matrix environment, which is modulated by metalloproteinase (MMP) activities. TIMP-3 is an endogenous inhibitor of MMPs, and we have previously proposed that TIMP-3 may play a critical role in HSC physiology. In addition, TIMP-3 has been reported to suppress angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling. By analogy with VEGF inhibition, we reasoned that TIMP-3 might suppress Ang-1 signaling in HSC and act as a molecular cue for HSC recruitment. In order to investigate a role of TIMP-3 in the HSC recruitment, we first examined whether TIMP-3 is regulated in the BM upon myelosuppression. Analyses by reverse transcription polymerase chain reaction (RT-PCR) and immunostaining revealed that the injection of 5-fluorouracil (5-FU) or irradiation induced TIMP-3 at the endosteal surface of the BM after 3-days of treatment. We next tested the hypothesis that TIMP-3 might be regulating Ang-1 signals by using cell line models. This revealed that the pre-treatment of cells with TIMP-3 suppressed autophosphorylation of Tie-2 in response to Ang-1. BIAcore and in vitro binding assay revealed that TIMP-3 directly interacted with Ang-1 and Tie-2, indicating that TIMP-3 suppressed Ang-1 signaling through interfering ligand-receptor interaction. Next we examined the effect of TIMP-3 on HSC physiology. TIMP-3 promoted the proliferation of CD34-KSL cells in vitro by approximately 2–3 fold. This was mainly due to the enhanced production of multipotential progenitors from CD34-KSL cells, which was accomplished by an enhanced symmetrical cell division of multipotential progenitors as revealed by paired-daughter cell analysis. Bone marrow transplantation study of TIMP-3-treated CD34-KSL cells showed that they sustained long-term repopulating potential comparable to the control-treated cells. Furthermore, in vivo administration of TIMP-3 into mice accelerated recovery and protected mice from myelosuppression, and in turn, the bone marrow recovery after myelosuppression was delayed in TIMP-3-deficient animals. In summary, TIMP-3 is induced by myelosuppression in the BM niche, stimulates HSC proliferation by inhibiting Ang-1 signaling, and thereby promotes production of multipotential progenitors from HSCs. These results demonstrate that TIMP-3 acts as a molecular cue for recruiting quiescent HSCs from the BM niche.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1356-1356
Author(s):  
Christian Brandts ◽  
Miriam Rode ◽  
Beate Lindtner ◽  
Gabriele Koehler ◽  
Steffen Koschmieder ◽  
...  

Abstract Activating mutations in Flt3, N- and K-Ras have been reported in all AML subtypes and represent common molecular defects in de novo AML. We have previously shown that these mutations lead to constitutive AKT phosphorylation and activation. As a consequence, Akt phosphorylation is found in myeloid blasts of the majority of AML patients. We reasoned that constitutively active AKT may contribute to leukemia development, and therefore we assessed the contribution of AKT in oncogenic transformation in vivo. For this purpose, we established an inducible mouse model expressing myristylated AKT1 under the control of the scl-3′ enhancer (MyrAKT1). This system restricts activated AKT1 to endothelium, hematopoietic stem cells and myeloid lineage cells at a low but detectable level. About 40% of induced mice developed a myeloproliferative disorder after latencies of 7 to 22 months. Onset of disease was frequently associated with hemangioma formation, due to endothelial MyrAKT1 expression. The myeloproliferative disorder was associated with splenomegaly with increased extramedullary hematopoiesis, while the peripheral blood contained mature granulocytes. Furthermore, the stem cell and progenitor cell compartment in spleens and bone marrow of these mice was altered compared to control mice. Colony formation assays with MyrAKT1-expressing bone marrow suggested that overactivation of AKT1 enhanced proliferation. The AKT1-induced disease was transplantable by both bone marrow and spleen cells. These findings highlight the oncogenic capacity of constitutively activated AKT1 in vivo and indicate that AKT is an attractive target for therapeutic intervention in AML.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 727-727 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W Kincade ◽  
...  

Abstract Hematopoietic stem cells (HSC) are an important cell type with the capacity for self-renewal as well as differentiation into multi-lineage blood cells, maintaining the immune system throughout life. Many studies have attempted to identify unique markers associated with these extremely rare cells. In bone marrow of adult mice, the Lin-c-kitHi Sca1+ CD34−/Lo Thy1.1Lo subset is known to include HSC with long-term repopulating capacity. However, several of these parameters differ between strains of mice, change dramatically during developmental age and/or are expressed on many non-HSC during inflammation. Efficient HSC-based therapies and the emerging field of regenerative medicine will benefit from learning more about what defines stem cells. We previously determined that the most primitive cells with lymphopoietic potential first develop in the paraaortic splanchnopleura/aorta-gonad-mesonephros (AGM) region of embryos using Rag1/GFP knock-in mice. We also reported that Rag1/GFP-c-kitHi Sca1+ cells derived from E14.5 fetal liver (FL) reconstituted lympho-hematopoiesis in lethally irradiated adults, while Rag1/GFPLo c-kitHi Sca1+ cells transiently contributed to T and B lymphopoiesis. To extend those findings, microarray analyses were conducted to search for genes that characterize the initial transition of fetal HSC to primitive lymphopoietic cells. The comparisons involved mRNA from Rag1Lo ckitHi Sca1+, early lymphoid progenitors (ELP) and the HSC-enriched Rag1-ckitHi Sca1+ fraction isolated from E14.5 FL. While genes potentially related to early lymphopoiesis were discovered, our screen also identified genes whose expression seemed to correlate with HSC. Among those, endothelial cell-selective adhesion molecule (ESAM) attracted attention because of its conspicuous expression in the HSC fraction and sharp down-regulation on differentiation to ELP. ESAM was originally identified as an endothelial cell-specific protein, but expression on megakaryocytes and platelets was also reported (J. Biol. Chem., 2001, 2002). Flow cytometry analyses with anti-ESAM antibodies showed that the HSC-enriched Rag1-c-kitHi Sca1+ fraction could be subdivided into two on the basis of ESAM levels. The subpopulation with the high density of ESAM was enriched for c-kitHi Sca1Hi cells, while ones with negative or low levels of ESAM were found in the c-kitHi Sca1Lo subset. Among endothelial-related antigens on HSC, CD34 and CD31/PECAM1 were uniformly present on Rag1-c-kitHi Sca1+ cells in E14.5 FL and neither resolved into ESAMHi and ESAM−/Lo fractions. Expression profiles of Endoglin and Tie2 partially correlate with ESAM. The primitive ESAMHi fraction uniformly expressed high levels of Endoglin and Tie2, but many of the more differentiated ESAM−/Lo cells still retained the two markers. ESAM expression correlated well with HSC activity. Cells in the ESAMHi Rag1-ckitHi Sca1+ fraction formed more and larger colonies than those in the ESAM-/Lo Rag1-ckitHi Sca1+ fraction. Particularly, most CFU-Mix, primitive progenitors with both myeloid and erythroid potential, were found in the ESAMHi fraction. In limiting dilution stromal cell co-cultures, we found that 1 in 2.1 ESAMHi Rag1-ckitHi Sca1+ cells and 1 in 3.5 ESAM−/Lo Rag1-ckitHi Sca1+ cells gave rise to blood cells. However, while only 1 in 125 ESAM−/Lo Rag1-ckitHi Sca1+ cells were lymphopoietic under these conditions, 1 in 8 ESAMHi Rag1-ckitHi Sca1+ cells produced CD19+ B lineage cells. In long-term reconstituting assays, ESAMHi Rag1-ckitHi Sca1+ cells contributed highly to the multi-lineage recovery of lympho-hematopoiesis in recipients, but no chimerism was detected in mice transplanted with ESAM−/Lo Rag1-ckitHi Sca1+ cells. These results suggested that HSC in E14.5 FL are exclusively present in the ESAMHi fraction. Tie2+ c-kit+ lympho-hematopoietic cells of E10.5 AGM also expressed high levels of ESAM. Furthermore, ESAM expression in adult bone marrow was detected on primitive progenitors and cells in the side population within the Lin-ckitHi Sca1+ fraction. Interestingly, the expression was up-regulated in aged mice. Based on these observations, we conclude that ESAM marks HSC throughout life in mice. We also observed that many of human cord blood CD34+ CD38− cells express ESAM, suggesting potential application for the purification of human HSC.


Sign in / Sign up

Export Citation Format

Share Document