Epistatic Interaction between Fibrinogen alpha and gamma Genes and Factor V Leiden in Children with Venous Thrombosis: Results from a Family-Based Association Study.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1640-1640
Author(s):  
Ulrike Nowak-Gottl ◽  
Hartmut Weiler ◽  
Tanja Seehafer ◽  
Sabine Thedieck ◽  
Monika Stoll

Abstract Background: Fibrinogen, the precursor of fibrin, is an essential component of the hemostatic system. A previous large case-control study showed that genetic variation in the fibrinogen gamma gene (FGG) increased the risk for VT in adults. Here we investigated the association of haplotypes comprising the fibrinogen alpha (FGA) and gamma (FGG) genes, carriership of the Factor V Leiden mutation and risk for VT in a large family-based study sample for pediatric VT. Methods: We genotyped 188 pediatric VT families for seven single nucleotide polymorphisms (SNPs) (rs6050, rs2070016, rs2070014 and rs2070011, rs1049636, rs2066861, rs2066860) as well as the G1691A Factor V Leiden (FV) polymorphism. Association was assessed using the Transmission Disequilibrium Test (TDT) and corrected for multiple testing using permutation testing as implemented in HAPLOVIEW. Interaction between FV and FGA and FGG, respectively, was assessed by TDT in families stratified for presence or absence of the FV mutation in the affected child. Results: rs6050, rs2070016, rs2070014 and rs2070011 located in the FGA gene are in tight linkage disequilibrium (LD) and define 5 common haplotypes (HT) and are linked with the neighboring FGG gene (q= 0.91). rs1049636, rs2066861, rs2066860 located in FGG are in tight LD and define 4 HTs. HTs in both, FGA and FGG are significantly overtransmitted from parents to affected offspring (FGA: HT1 (AACT), HT frequency 0.32, T:U 62: 32, p=0.0025; FGG: HT2 (ATC), HT frequency 0.32, T:U 60:32, p=0.0035). When stratifying for FV status, it became apparent that the association between FGA and FGG and VT was more pronounced in FV-negative families (FGA, HT1, T:U 55:24, p=0.0006; FGG, HT2, T:U 55:24, p=0.0005), while absent in FV-positive families. Conclusion: Our results indicate that genetic variation in FGA and FGG are risk factors for VT in children, and further that an epistatic interaction between FGA/FGG and FV Leiden influences the risk of FGG and FGA on pediatric VT. Our study highlights the complex nature of VT and the necessity to evaluate gene-gene interactions in association studies of complex, polygenic diseases.

2004 ◽  
Vol 12 (6) ◽  
pp. 478-482 ◽  
Author(s):  
Astrid van Hylckama Vlieg ◽  
Lodewijk A Sandkuijl ◽  
Frits R Rosendaal ◽  
Rogier M Bertina ◽  
Hans L Vos

2000 ◽  
Vol 83 (03) ◽  
pp. 366-370 ◽  
Author(s):  
Sandra Hasstedt ◽  
Peter Callas ◽  
Julia Valliere ◽  
Bruce Scott ◽  
Kenneth Bauer ◽  
...  

SummaryLikelihood analysis was used to test the effect of the G20210A prothrombin mutation and the His107Pro protein C mutation (resulting from a C insertion) on thrombosis status and prothrombin level in a large kindred of French Canadian descent with type I protein C deficiency. Genotypes were available on 279 pedigree members or their spouses. Of this total, 36 pedigree members were heterozygous for the G20210A variant and one pedigree member was homozygous for G20210A, while 64 were heterozygous for the His107Pro protein C mutation. The factor V Leiden mutation (Arg506Gln) was observed in only one of 181 tested family members. Objectively verified thrombosis was present in 26 of the 279 pedigree members. Thrombosis was suspected in an additional 19 pedigree members. The transmission disequilibrium test of Spielman, 1996, as extended to pedigrees, was used to test for excess transmission of G20210A or His107Pro to thrombosis cases, with transmission of 0.5 specifying no effect. Although the His107Pro mutation was over transmitted (0.837 ± 0.075 p <0.001) to thrombosis cases in this pedigree, the G20210A variant was not (0.491 ± 0.130 NS).Measured genotype analysis was used to examine a total of 184 individuals for the relationship between prothrombin level and both the G20210A variant and thrombosis. The G20210A variant increased prothrombin level from 97 ± 2% to 124 ± 4% (p <0.0001), but thrombosis status was not associated with any additional increase in prothrombin level. Thus, in a large thrombophilic, protein C deficient kindred, with the G20210A variant present in a proportion (13%) far higher than the general Caucasian population (∼2%), neither the presence of the variant nor the plasma concentration of prothrombin were associated with increased risk for thrombosis. These findings contrast with those of others who have established the G20210A variant as a thrombophilic risk factor; and emphasize the complex nature of the multigenic pathogenesis of thrombophilia.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2336-2341 ◽  
Author(s):  
Ulrike Nowak-Göttl ◽  
Birgit Fröhlich ◽  
Sabine Thedieck ◽  
Andreas Huge ◽  
Monika Stoll

Abstract To clarify the role of protein Z (PZ) in children with stroke/thromboembolism (TE), the present haplotype (HT)–based family study was performed. We genotyped 365 pediatric stroke/TE families (stroke n = 216; TE n = 149) for 4 single nucleotide polymorphisms (SNPs; rs3024718, rs3024731, rs3024772, and rs3024778) to assess the association between genetic variation within a conserved block of linkage disequilibrium harboring the PZ gene and pediatric TE. Association was assessed with use of the transmission disequilibrium test (TDT), corrected for multiple testing (permutation testing: HAPLOVIEW). In addition, PZ antigen was determined and correlated with carriership of PZ haplotypes and the FV G1691A mutation. Rs3024718, rs3024731, and rs3024772 are in tight linkage disequilibrium (LD) and define 4 haplotypes, capturing 97% of the genetic variation for this LD block. HT1 (ATG) was significantly overtransmitted from parents to affected offspring (HT frequency 73.5%, T:U 122:80, χ2 = 8.791, P = .003). The ATG risk haplotype was significantly correlated with greater PZ antigen levels. Multivariate analysis adjusted for age, sex, established thrombophilias, smoking, fibrinogen, and PZ levels revealed a significant association of the ATG haplotype and TE in children (odds ratio [OR] 1.4; 95% confidence interval [95% CI] 1.08-1.93). Our results suggest that the ATG haplotype of the PZ gene is a genetic marker for symptomatic TE in white German children.


VASA ◽  
2015 ◽  
Vol 44 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Lea Weingarz ◽  
Marc Schindewolf ◽  
Jan Schwonberg ◽  
Carola Hecking ◽  
Zsuzsanna Wolf ◽  
...  

Abstract. Background: Whether screening for thrombophilia is useful for patients after a first episode of venous thromboembolism (VTE) is a controversial issue. However, the impact of thrombophilia on the risk of recurrence may vary depending on the patient’s age at the time of the first VTE. Patients and methods: Of 1221 VTE patients (42 % males) registered in the MAISTHRO (MAin-ISar-THROmbosis) registry, 261 experienced VTE recurrence during a 5-year follow-up after the discontinuation of anticoagulant therapy. Results: Thrombophilia was more common among patients with VTE recurrence than those without (58.6 % vs. 50.3 %; p = 0.017). Stratifying patients by the age at the time of their initial VTE, Cox proportional hazards analyses adjusted for age, sex and the presence or absence of established risk factors revealed a heterozygous prothrombin (PT) G20210A mutation (hazard ratio (HR) 2.65; 95 %-confidence interval (CI) 1.71 - 4.12; p < 0.001), homozygosity/double heterozygosity for the factor V Leiden and/or PT mutation (HR 2.35; 95 %-CI 1.09 - 5.07, p = 0.030), and an antithrombin deficiency (HR 2.12; 95 %-CI 1.12 - 4.10; p = 0.021) to predict recurrent VTE in patients aged 40 years or older, whereas lupus anticoagulants (HR 3.05; 95%-CI 1.40 - 6.66; p = 0.005) increased the risk of recurrence in younger patients. Subgroup analyses revealed an increased risk of recurrence for a heterozygous factor V Leiden mutation only in young females without hormonal treatment whereas the predictive value of a heterozygous PT mutation was restricted to males over the age of 40 years. Conclusions: Our data do not support a preference of younger patients for thrombophilia testing after a first venous thromboembolic event.


1998 ◽  
Vol 80 (08) ◽  
pp. 344-345 ◽  
Author(s):  
Pasra Arnutti ◽  
Motofumi Hiyoshi ◽  
Wichai Prayoonwiwat ◽  
Oytip Nathalang ◽  
Chamaiporn Suwanasophon ◽  
...  

1995 ◽  
Vol 74 (05) ◽  
pp. 1255-1258 ◽  
Author(s):  
Arnaldo A Arbini ◽  
Pier Mannuccio Mannucci ◽  
Kenneth A Bauer

SummaryPatients with hemophilia A and B and factor levels less than 1 percent of normal bleed frequently with an average number of spontaneous bleeding episodes of 20–30 or more. However there are patients with equally low levels of factor VIII or factor IX who bleed once or twice per year or not at all. To examine whether the presence of a hereditary defect predisposing to hypercoagulability might play a role in amelio rating the hemorrhagic tendency in these so-called “mild severe” hemophiliacs, we determined the prevalence of prothrombotic defects in 17 patients with hemophilia A and four patients with hemophilia B selected from 295 and 76 individuals with these disorders, respectively, followed at a large Italian hemophilia center. We tested for the presence of the Factor V Leiden mutation by PCR-amplifying a fragment of the factor V gene which contains the mutation site and then digesting the product with the restriction enzyme Mnll. None of the patients with hemophilia A and only one patient with hemophilia B was heterozygous for Factor V Leiden. None of the 21 patients had hereditary deficiencies of antithrombin III, protein C, or protein S. Our results indicate that the milder bleeding diathesis that is occasionally seen among Italian hemophiliacs with factor levels that are less than 1 percent cannot be explained by the concomitant expression of a known prothrombotic defect.


1996 ◽  
Vol 75 (03) ◽  
pp. 520-521 ◽  
Author(s):  
D C Rees ◽  
M Cox ◽  
J B Clegg

1996 ◽  
Vol 75 (03) ◽  
pp. 422-426 ◽  
Author(s):  
Paolo Simioni ◽  
Alberta Scudeller ◽  
Paolo Radossi ◽  
Sabrina Gavasso ◽  
Bruno Girolami ◽  
...  

SummaryTwo unrelated patients belonging to two Italian kindreds with a history of thrombotic manifestations were found to have a double heterozygous defect of factor V (F. V), namely type I quantitative F. V defect and F. V Leiden mutation. Although DNA analysis confirmed the presence of a heterozygous F. V Leiden mutation, the measurement of the responsiveness of patients plasma to addition of activated protein C (APC) gave results similar to those found in homozygous defects. It has been recently reported in a preliminary form that the coinheritance of heterozygous F. V Leiden mutation and type I quantitative F. V deficiency in three individuals belonging to the same family resulted in the so-called pseudo homozygous APC resistance with APC sensitivity ratio (APC-SR) typical of homozygous F. V Leiden mutation. In this study we report two new cases of pseudo homozygous APC resistance. Both patients experienced thrombotic manifestations. It is likely that the absence of normal F. V, instead of protecting from thrombotic risk due to heterozygous F. V Leiden mutation, increased the predisposition to thrombosis since the patients became, in fact, pseudo-homozygotes for APC resistance. DNA-analysis is the only way to genotype a patient and is strongly recommended to confirm a diagnosis of homozygous F. V Leiden mutation also in patients with the lowest values of APC-SR. It is to be hoped that no patient gets a diagnosis of homozygous F. V Leiden mutation based on the APC-resi-stance test, especially when the basal clotting tests, i.e., PT and aPTT; are borderline or slightly prolonged.


Sign in / Sign up

Export Citation Format

Share Document