A SCID-hu In Vivo Mouse Model of Human Primary Mantle Cell Lymphoma.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2337-2337
Author(s):  
Michael Wang ◽  
Yuankai Shi ◽  
Liang Zhang ◽  
Xiaohong Han ◽  
Jing Yang ◽  
...  

Abstract Introduction: Mantle cell lymphoma (MCL) has a poor outcome and is a therapeutic challenge. Preclinical evaluation of investigational agents for MCL has been limited by lack of suitable animal models that mimic the natural history of human MCL and provide the microenvironment in which MCL cells thrive. Since MCL usually involves the bone marrow, we developed an in vivo mouse model for primary human MCL cells in severe combined immunodeficient mice (SCID-hu), which have been implanted with human fetal bone. Materials and Methods: Human primary MCL cells were obtained and isolated from spleen, lymph nodes, bone marrow aspirates, or peripheral blood of six different MCL patients. Purified patient primary MCL cells were directly inoculated into human fetal bone chip or injected into mouse tail vein. Immunohistochemical staining with anti-human CD20 or cyclin D1 antibodies and detection of circulating human beta 2-microglobulin (B2M) in mouse serum were used to monitor the engraftment, growth, and immigration of human primary MCL cells in SCID-hu mice. Results: A total of 30 SCID-hu mice and 5 SCID mice were used. Twenty of SCID-hu mice received inoculation of 0.5 – 5 × 106 of patient primary MCL cells (2–5 SCID-hu mice/patient sample) into human fetal bone chips implanted in mice subcutaneously. Five of SCID-hu mice and 5 of SCID mice (without human fetal hone chips) were injected intravenously with 5 × 106 of patient MCL cells. The same number of cells were injected into human bone chips in 5 SCID-hu mice with equal volume of PBS as controls. Successful primary MCL cell engraftment was observed in 15 out of 20 SCID-hu mice after injection of these cells into human fetal bones. But only one out of 5 SCID-hu mice had successful engraftment after the intravenous injection of primary MCL cells into mouse tail vein. Importantly, none of SCID mice had successful engraftment after intravenous injection of 5 × 106 of primary MCL cells. These data indicated that human fetal bone provides a critical microenvironment for the survival and growth of primary MCL cells. Increasing levels of circulating human B2M in mouse serum were found after successful engraftment and growth of human primary MCL cells in SCID-hu mice. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that, similar to the human disease, primary MCL cells homed to mouse lymph nodes, spleen, bone marrow, and gastrointestinal tract but not to mouse liver. Treatment of MCL-bearing SCID-hu mice with atiprimod suppressed B2M secreted by functioning human MCL cells and induced tumor regression. Conclusion: Human primary MCL cells from patient were able to successfully engraft in SCID-hu mice, and mimiced the natural organ involvement of human disease homing to mouse lymph node, spleen, bone marrow, and gastrointestinal tract but not to liver. This in vivo model mimiced the natural biological features of human MCL and is therefore useful for preclinical evaluation of new therapeutic agents.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1774-1774 ◽  
Author(s):  
Liang Zhang ◽  
Hui Zhang ◽  
Donglu Zhao ◽  
George Tsourdinis ◽  
Hyebin Park ◽  
...  

Abstract Intruduction Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma with poor outcome and therapeutic challenge. Oral single-agent ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, elicited a response rate of 68% in phase II clinical trial and has been approved by FDA for the treatment of MCL patients who received at least one prior therapy. To increase the response rate, the combination of ibrutinib with rituximab would be an ideal regimen because: (1) Both BTK and CD20 are effective therapeutic targets for MCL; (2) CD20-dependent apoptosis occurs associated with B-cell receptor (BCR) activity. Regardless rituximab-mediated immune response (ADCC and CDC) and ibrutinib-mediated ITK inhibition (Th1 polarization), an important potential effect of ibrutinib and rituximab may enhance the direct anti-MCL cytotoxicity of the combination. Methods and Results We investigated the effects of ibrutinib and/or rituximab in 6 established MCL cell lines and 3 freshly isolated primary MCL cells in vitro. First, ibrutinib, as well as BTK-siRNA, inhibited the growth of MCL cells. Then we found that ibrutinib induced the growth inhibition and apoptosis of most MCL cell lines and primary MCL cells in a dose-dependent manner during 5-7 days of culture (IC50 range from 1.5 to 15 µM). On the other hand, rituximab alone induced 10-30% growth inhibition and apoptosis of both established and primary MCL cells in vitro. Importantly, our results showed that ibrutinib and rituximab combination synergistically induced apoptosis of MCL cells during 5-7 days of culture in vitro. Next, our animal study confirmed the compartmental shift phenomenon mediated by ibrutinib which was similar with the data from clinical study. Briefly, SCID mice were subcutaneously implanted with human fetal bone chips (SCID-hu). After 6 weeks of bone implantation, the freshly isolated MCL cells from patients were directly engrafted into the human fetal bone chips. The engrafted MCL cells produced measurable levels of human β2-microglobulin (β2M) in mouse serum. Once human β2M had been detected in mouse serum, the primary MCL-bearing SCID-hu mice were treatment with 25 mg/kg ibrutinib oral gavage daily. A transient increase of human CD5+CD20+ cells in mouse peripheral blood was detected by flow cytometry from day 8 of treatment, representing a shift of human MCL cells from human fetal bone chip to mouse peripheral blood. At this time, 10 mg/kg rituximab was intravenously administrated every 3 days for total 7 doses. Our results demonstrated that rituximab and ibrutinib combination eradicated MCL cells in vivo and kept mice survival longer than either ibrutinib or rituximab alone. Conclusions Based on our preclinical data of rituximab and ibrutinib combination in vitro and in primary MCL-bearing SCID-hu mice, ibrutinib plus rituximab could be an effective regimen in a clinical trial of relapsed or refractory MCL. Disclosures Off Label Use: Ibrutinib plus rituximab may enhance the direct anti-MCL cytotoxicity. Wang:Pharmacyclics: Honoraria, Research Funding.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Abstract Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2455-2455
Author(s):  
Pierfrancesco Tassone ◽  
Paola Neri ◽  
Daniel R. Carrasco ◽  
Renate Burger ◽  
Laurence Catley ◽  
...  

Abstract Human multiple myeloma (MM) xenografts in immunodeficient mice have limitations as a model for the human disease since they lack the human bone marrow (huBM) microenvironment. In contrast, murine models harboring a huBM microenvironment with implantation of patient MM cells in the huBM recapitulate the in vivo pathophysiology of MM and have significant advantages over conventional murine models for pre-clinical evaluation of investigational drugs. However, there are significant limitations in using patient MM cells in such models since i) not all patient MM samples engraft in the huBM; ii) only a fraction of engrafted specimens produce measurable paraprotein and/or osteolytic lesions; and iii) a limited number of MM cells can be harvested from an individual patient, thus limiting the number of mice that can be injected with cells from the same patient. To overcome these limitations, we have developed a novel murine model of MM by engrafting INA-6, a cytokine-dependent human MM cell line into SCID mice previously implanted with a human fetal bone chip (SCID-hu mice). INA-6 cells require either exogenous IL-6 or interaction with the bone marrow stromal cells (BMSCs) to proliferate in vitro. In this model, we monitored the in vivo growth of INA-6 cells stably transfected with a green fluorescent protein (GFP) expression vector (INA-6GFP+). Serum soluble human IL-6 receptor (shuIL-6R) and fluorescence imaging of host animals were sensitive indicators of tumor burden with time dependent increase. Fluorescence imaging was able to detect the myeloma cell growth earlier than measurement of sIL-6R levels. INA-6 MM cells grew in SCID-hu mice, but not in SCID mice injected subcutaneously or intravenously without the human fetal bone. We have further confirmed the feasibility of this model in monitoring the response to therapeutic agents such as dexamethasone by detecting reduction in the intensity of the fluorescent lesions as well as shuIL-6R in SCID-hu mice following anti-MM treatment. This highly reproducible model therefore allows for evaluation of investigational drugs targeting MM cells in the huBM milieu.


1997 ◽  
Vol 108 (3) ◽  
pp. 302-307 ◽  
Author(s):  
Mohammad A. Vasef ◽  
L. Jeffrey Medeiros ◽  
Chae Koo ◽  
Althea Mccourty ◽  
Russell K. Brynes

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1253-1253 ◽  
Author(s):  
Pei-Yu Kuo ◽  
Zewei Jiang ◽  
Deepak Perumal ◽  
Violetta V Leshchenko ◽  
Alessandro Lagana' ◽  
...  

Abstract MCL (Mantle cell lymphoma) is an aggressive and incurable B cell malignancy with a median survival of 5-6 years. Cyclin D1 (CCND1) overexpression is a key diagnostic feature of this disease, observed in more than 90% of MCL tumors. However, murine models over-expressing CCND1 in B cells do not recapitulate the phenotype of MCL. The SOX11 transcription factor is aberrantly expressed in 80-90% of primary MCL. Our published data demonstrated that SOX11 binds and functionally regulates key components in multiple oncogenic pathways in MCL such as WNT and TGFβ pathways. Recent studies have also showed that SOX11 regulates PAX5 and PDGFA to block differentiation and facilitate lymphoma growth. We thus hypothesize that SOX11 expression may contribute directly and functionally cooperate with CCND1 in MCL pathogenesis. To study the role of SOX11 in MCL tumorigenesis in vivo, we have generated a novel SOX11 transgenic mouse model with B cell-specific tissue expression under the E-mu enhancer and an IRES-eGFP tag to monitor the expression of SOX11. The presence of SOX11 can be readily detected in pre-pro-B stage in the bone marrow coincided with the activation of E-mu enhancer and was persistent through all stages of B cells. SOX11 over-expression in our mouse model led to an aberrant oligo-clonal expansion of CD19+/CD5+ B cells. This phenotype was evident in all SOX11 transgenic mice studied (100% penetrance, n= 42 mice) with an average of 7-12 fold increase (p<0.03) of the CD5+ B cell populations as compared to littermate controls starting from 1.5 months. Using Mass Cytometry (CyTOF), we further characterized this B cell population to be CD23-, CD21/35 dim, CD138-, high surface IgM, and variable IgD expression, a naive B cell phenotype consistent with an early precursor stage of human MCL. This MCL phenotype is most prominent in peripheral blood and spleen and, to a much lesser extent, in peritoneal cavity and bone marrow. Transplanting bone marrow from SOX11 transgenic mouse to lethally-irradiated wild type mice successfully transferred the observed phenotypic CD19+/CD5+/CD23- B cell hyperplasia, suggesting that SOX11 overexpression in early B cells drives this MCL phenotype. We next studied the cooperation between CCND1 and SOX11 by crossing SOX11 transgenic mice with a CCND1 transgenic mouse model, which over-expresses CCND1 in a B-cell specific manner under a similar E-mu enhancer. Overexpression of both CCND1 and SOX11 in the double transgenic mice model dramatically enhanced (average 10x, range 6x-30x) the aberrant MCL phenotype (CD19+/CD5+/CD23-) in peripheral blood, spleen, bone marrow, peritoneal cavity and lymph nodes compared to age-matched SOX11 and CCND1 single-transgenic mice. We report here the first direct evidence in vivo that SOX11 expression drives an aberrant expansion of B cells consistent with early human MCL and functionally collaborates with CCND1 in "full blown" MCL pathogenesis, mimicking the commonly observed co-expression of SOX11 and CCND1 in most human MCL tumors. This model captures the underpinning molecular pathogenesis events occurred in the majority of human MCL and overcomes constraints of previous MCL models that develop a phenotype after long latency or with low penetrance, making it a valuable tool for testing anti-MCL therapeutics. We are currently developing small molecule SOX11 inhibitors using SOX11 DNA binding domain models and consensus SOX11 binding nucleotides to screen a large library of compounds to identify new therapeutics for this fatal disease and gain better understanding of the molecular mechanisms of MCL tumorigenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3971-3978 ◽  
Author(s):  
Silvia-Renate Goan ◽  
Ilse Junghahn ◽  
Manuela Wissler ◽  
Michael Becker ◽  
Jutta Aumann ◽  
...  

Little is known about the presence, frequency, and in vivo proliferative potential of stromal cells within blood-derived hematopoietic transplants. In this study, nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were injected with human CD34+ peripheral blood cells (PBCs) or cord blood cells (CBCs, either enriched for CD34 or density-gradient separated mononuclear cells). Flow cytometric analysis 5 to 11 weeks after transplantation revealed the presence of a human lymphomyeloid hematopoiesis within the murine bone marrow. Immunohistochemical staining of bone marrow cell suspensions using human-specific antibodies showed human cells staining positive for human fibroblast markers, human von Willebrand factor (vWF) and human KDR (vascular endothelial growth factor receptor-2) in mice transplanted with CD34+ PBCs or CBCs, with mean frequencies between 0.6% and 2.4%. In stromal layers of bone marrow cultures established from the mice, immunohistochemical staining using human-specific antibodies revealed flattened reticular cells or spindle-shaped cells staining positive with human-specific antifibroblast antibodies (mean frequency, 2.2%). Cell populations of more rounded cells stained positive with human-specific antibodies recognizing CD34 (1.5%), vWF (2.2%), and KDR (1.6%). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and subsequent complementary DNA sequencing detected transcripts of human KDR (endothelial specific) and human proline hydroxylase-α (fibroblast specific) within the bone marrow and spleen of transplanted mice. Analysis of nontransplanted control mice yielded negative results in immunocytochemistry and RT-PCR. Cells expressing endothelial and fibroblast markers were also detected in the grafts before transplantation, and their numbers increased up to 3 log in vivo after transplantation. These results indicate that stromal progenitor cells are present in human cytokine-mobilized peripheral blood or cord blood that engraft in NOD/SCID mice.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3971-3978 ◽  
Author(s):  
Silvia-Renate Goan ◽  
Ilse Junghahn ◽  
Manuela Wissler ◽  
Michael Becker ◽  
Jutta Aumann ◽  
...  

Abstract Little is known about the presence, frequency, and in vivo proliferative potential of stromal cells within blood-derived hematopoietic transplants. In this study, nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were injected with human CD34+ peripheral blood cells (PBCs) or cord blood cells (CBCs, either enriched for CD34 or density-gradient separated mononuclear cells). Flow cytometric analysis 5 to 11 weeks after transplantation revealed the presence of a human lymphomyeloid hematopoiesis within the murine bone marrow. Immunohistochemical staining of bone marrow cell suspensions using human-specific antibodies showed human cells staining positive for human fibroblast markers, human von Willebrand factor (vWF) and human KDR (vascular endothelial growth factor receptor-2) in mice transplanted with CD34+ PBCs or CBCs, with mean frequencies between 0.6% and 2.4%. In stromal layers of bone marrow cultures established from the mice, immunohistochemical staining using human-specific antibodies revealed flattened reticular cells or spindle-shaped cells staining positive with human-specific antifibroblast antibodies (mean frequency, 2.2%). Cell populations of more rounded cells stained positive with human-specific antibodies recognizing CD34 (1.5%), vWF (2.2%), and KDR (1.6%). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and subsequent complementary DNA sequencing detected transcripts of human KDR (endothelial specific) and human proline hydroxylase-α (fibroblast specific) within the bone marrow and spleen of transplanted mice. Analysis of nontransplanted control mice yielded negative results in immunocytochemistry and RT-PCR. Cells expressing endothelial and fibroblast markers were also detected in the grafts before transplantation, and their numbers increased up to 3 log in vivo after transplantation. These results indicate that stromal progenitor cells are present in human cytokine-mobilized peripheral blood or cord blood that engraft in NOD/SCID mice.


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 713-716 ◽  
Author(s):  
Pierfrancesco Tassone ◽  
Paola Neri ◽  
Daniel R. Carrasco ◽  
Renate Burger ◽  
Victor S. Goldmacher ◽  
...  

Abstract We developed a novel in vivo multiple myeloma (MM) model by engrafting the interleukin 6 (IL-6)-dependent human MM cell line INA-6 into severe combined immunodeficiency (SCID) mice previously given implants of a human fetal bone chip (SCID-hu mice). INA-6 cells require either exogenous human IL-6 (huIL-6) or bone marrow stromal cells (BMSCs) to proliferate in vitro. In this model, we monitored the in vivo growth of INA-6 cells stably transduced with a green fluorescent protein (GFP) gene (INA-6GFP+ cells). INA-6 MM cells engrafted in SCID-hu mice but not in SCID mice that had not been given implants of human fetal bone. The level of soluble human IL-6 receptor (shuIL-6R) in murine serum and fluorescence imaging of host animals were sensitive indicators of tumor growth. Dexamethasone as well as experimental drugs, such as Atiprimod and B-B4-DM1, were used to confirm the utility of the model for evaluation of anti-MM agents. We report that this model is highly reproducible and allows for evaluation of investigational drugs targeting IL-6-dependent MM cells in the human bone marrow (huBM) milieu. (Blood. 2005;106:713-716)


Sign in / Sign up

Export Citation Format

Share Document