Targeting Drug-Resistant CML and Ph+-ALL with the Spectrum Selective Protein Kinase Inhibitor XL228.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 474-474 ◽  
Author(s):  
Neil P. Shah ◽  
Corynn Kasap ◽  
Ronald Paquette ◽  
Jorge Cortes ◽  
Javier Pinilla ◽  
...  

Abstract The fusion protein BCR-ABL is a hallmark of chronic myelogenous leukemia (CML) and Philadelphia-positive acute lymphocytic leukemia (Ph+-ALL), and has been demonstrated as the primary driver of these diseases. Control of CML for considerable periods of time has been achieved through use of selective ABL kinase inhibitors, particularly imatinib. Once patients fail imatinib therapy, they are commonly found to harbor a mutated and activated form of BCR-ABL which is unable to bind the inhibitor. A more recent ABL inhibitor, dasatinib, can block growth of cells harboring most of the imatinib-resistant mutations, but T315I and F317L mutations are often seen in patients relapsing after dasatinib therapy. Thus once a patient develops CML harboring these mutations, there are few therapeutic options available. XL228 is a potent multi-targeted protein kinase inhibitor with activity against IGF1R, src, and Abl. It displays low nanomolar biochemical activity against wild type Abl kinase (Ki = 5 nM), as well as the T315I form of Abl resistant to imatinib and dasatinib (Ki = 1.4 nM). XL228 also inhibits Aurora A with an IC50 of approximately 3 nM, demonstrating a more balanced inhibition profile compared to other dual Abl /Aurora inhibitors. CML and ALL cell lines were evaluated for sensitivity to XL228, and in each case the IC50 for inhibition of proliferation was less than 100 nM. XL228 inhibits phosphorylation of BCR-ABL and its substrate STAT5 in K562 cells in vitro with IC50s of 33 and 43 nM, respectively. Single-dose pharmacodynamics studies demonstrate a potent effect of XL228 on BCR-ABL signaling in K562 xenograft tumors. Phosphorylation of BCR-ABL was decreased by 50% at XL228 plasma concentrations of 3.5 μM; a similar decrease in phospho-STAT5 occurred at 0.8 μM plasma concentration. XL228 showed clear superiority to MK-0457, imatinib, and dasatinib in downregulating BCR-ABL phosphorylation in BaF3 cells expressing the T315I form of BCR-ABL in vitro (406 nM, 6912 nM, >10,000 nM, >10,000 nM, respectively), and in xenograft experiments in vivo. These results indicate that XL228 potently inhibits wild type and T315I forms of BCR-ABL, and provide a rationale for the clinical development of this agent for the treatment of patients with drug-resistant disease. A phase I dose escalation study of XL228 in subjects with CML or Ph+-ALL who have failed prior imatinib and dasatinib therapy has been initiated, focusing on safety/tolerability, pharmacodynamics, and pharmacokinetics. Pharmacodynamic assessments include a flow cytometry-based phospho-CrkL assay, quantitative PCR for BCR-ABL, and plasma markers of XL228 activity. An update on our clinical experience with XL228 in subjects resistant or intolerant to imatinib and dasatinib will be presented.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 793-793 ◽  
Author(s):  
Amie S. Corbin ◽  
Shadmehr Demehri ◽  
Ian J. Griswold ◽  
Chester A. Metcalf ◽  
William C. Shakespeare ◽  
...  

Abstract Oncogenic mutations of the KIT receptor tyrosine kinase have been identified in several malignancies including gastrointestinal stromal tumors (GIST), systemic mastocytosis (SM), seminomas/dysgerminomas and acute myelogenous leukemia (AML). Mutations in the regulatory juxtamembrane domain are common in GIST, while mutations in the activation loop of the kinase (most commonly D816V) occur predominantly in SM and at low frequency in AML. Several ATP-competitive kinase inhibitors, including imatinib, are effective against juxtamembrane KIT mutants, however, the D816V mutant is largely resistant to inhibition. We analyzed the sensitivities of cell lines expressing wild type KIT, juxtamembrane mutant KIT (V560G) and activation loop mutant KIT (D816V,F,Y and murine D814Y) to a potent Src/Abl kinase inhibitor, AP23464, and analogs. IC50 values for inhibition of cellular KIT phosphorylation by AP23464 were 5–11 nM for activation loop mutants, 70 nM for the juxtamembrane mutant and 85 nM for wild type KIT. Consistent with this, IC50 values in cell proliferation assays were 3–20 nM for activation loop mutants and 100 nM for wild type KIT and the juxtmembrane mutant. In activation loop mutant-expressing cell lines, AP23464, at concentrations ≤50 nM, induced apoptosis, arrested the cell cycle in G0/G1 and down-regulated phosphorylation of Akt and STAT3, signaling pathways critical for the transforming capacity of mutant KIT. In contrast, 500 nM AP23464 was required to induce equivalent effects in wild-type KIT and juxtamembrane mutant-expressing cell lines. These data demonstrate that activation loop KIT mutants are considerably more sensitive to inhibition by AP23464 than wild type or juxtamembrane mutant KIT. Non-specific toxicity in parental cells occurred only at concentrations above 2 μM. Additionally, at concentrations below 100 nM, AP23464 did not inhibit formation of granulocyte/macrophage and erythrocyte colonies from normal bone marrow, suggesting that therapeutic drug levels would not impact normal hematopoiesis. We also examined in vivo target inhibition in a mouse model. Mice were subcutaneously injected with D814Y-expressing (D816V homologous) murine mastocytoma cells. Once tumors were established, compound was administered three-times daily by oral gavage. One hour post treatment we observed >90% inhibition of KIT phosphorylation in tumor tissue. Following a three-day treatment regimen, there was a statistically significant difference in tumor size compared to controls. Thus, AP23464 analogs effectively target D816-mutant KIT both in vitro and in vivo and inhibit activation loop KIT mutants more potently than the wild type protein. These data provide evidence that this class of kinase inhibitors may have therapeutic potential for D816V-expressing malignancies such as SM or AML.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Chen ◽  
Bernardo L. Sabatini

G-protein-coupled-receptor (GPCR) signaling is exquisitely controlled to achieve spatial and temporal specificity. The endogenous protein kinase inhibitor peptide (PKI) confines the spatial and temporal spread of the activity of protein kinase A (PKA), which integrates inputs from three major types of GPCRs. Despite its wide usage as a pharmaceutical inhibitor of PKA, it was unclear whether PKI only inhibits PKA activity. Here, the effects of PKI on 55 mouse kinases were tested in in vitro assays. We found that in addition to inhibiting PKA activity, both PKI (6–22) amide and full-length PKIα facilitated the activation of multiple isoforms of protein kinase C (PKC), albeit at much higher concentrations than necessary to inhibit PKA. Thus, our results call for appropriate interpretation of experimental results using PKI as a pharmaceutical agent. Furthermore, our study lays the foundation to explore the potential functions of PKI in regulating PKC activity and in coordinating PKC and PKA activities.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3535 ◽  
Author(s):  
Halil I. Ciftci ◽  
Mohamed O. Radwan ◽  
Safiye E. Ozturk ◽  
N. Gokce Ulusoy ◽  
Ece Sozer ◽  
...  

Imatinib, an Abelson (ABL) tyrosine kinase inhibitor, is a lead molecular-targeted drug against chronic myelogenous leukemia (CML). To overcome its resistance and adverse effects, new inhibitors of ABL kinase are needed. Our previous study showed that the benzyl ester of gypsogenin (1c), a pentacyclic triterpene, has anti-ABL kinase and a subsequent anti-CML activity. To optimize its activities, benzyl esters of carefully selected triterpenes (PT1–PT6), from different classes comprising oleanane, ursane and lupane, and new substituted benzyl esters of gypsogenin (GP1–GP5) were synthesized. All of the synthesized compounds were purified and charachterized by different spectroscopic methods. Cytotoxicity of the parent triterpenes and the synthesized compounds against CML cell line K562 was examined; revealing three promising compounds PT5, GP2 and GP5 (IC50 5.46, 4.78 and 3.19 μM, respectively). These compounds were shown to inhibit extracellular signal-regulated kinase (ERK) downstream signaling, and induce apoptosis in K562 cells. Among them, PT5 was identified to have in vitro activity (IC50 = 1.44 μM) against ABL1 kinase, about sixfold of 1c, which was justified by molecular docking. The in vitro activities of GP2 and GP5 are less than PT5, hence they were supposed to possess other more mechanisms of cytotoxicity. In general, our design and derivatizations resulted in enhancing the activity against ABL1 kinase and CML cells.


1995 ◽  
Vol 67 ◽  
pp. 260
Author(s):  
Saloshi Tanaka ◽  
Satoshi Kohayashi ◽  
Kensuke Havasin ◽  
Shunsaku Hirai ◽  
Tomoaki Shirao

2020 ◽  
Author(s):  
Yao Chen ◽  
Bernardo L. Sabatini

AbstractG-protein-coupled-receptor (GPCR) signaling is exquisitely controlled to achieve spatial and temporal specificity. The endogenous protein kinase inhibitor peptide (PKI) confines the spatial and temporal spread of the activity of protein kinase A (PKA), which integrates inputs from three major types of GPCRs. Despite its wide usage as a pharmaceutical inhibitor of PKA, it was unclear whether PKI only inhibits PKA activity. Here, the effects of PKI on 55 mouse kinases were tested in in vitro assays. We found that in addition to inhibiting PKA activity, both PKI (6-22) amide and full-length PKIα facilitated the activation of multiple isoforms of protein kinase C (PKC), albeit at much higher concentrations than necessary to inhibit PKA. Thus, our results call for appropriate interpretation of experimental results using PKI as a pharmaceutical agent. Furthermore, our study lays the foundation to explore the potential functions of PKI in regulating PKC activity and in coordinating PKC and PKA activities.


Sign in / Sign up

Export Citation Format

Share Document