Anti-Tumor Cytotoxicity of γδ T Cells Expanded from Blood Cells of Myeloma and Leukemia Patients Against Self Tumor Cells — Enhancement of the Anti-Tumor Cytotoxicity by Type I IFN, Dendritic Cells, and Activated αβ T Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4762-4762
Author(s):  
Anri Saito ◽  
Miwako Narita ◽  
Norihiro Watanabe ◽  
Nozomi Tochiki ◽  
Noriyuki Satoh ◽  
...  

Abstract In order to establish an efficient gd T cell-mediated immunotherapy for hematological malignancies, we tried to clarify whether γδ T cells could be expanded from blood cells of patients with myeloma, lymphoma and acute leukemia by culture with zoledronate and a low dose of IL-2 and whether the expanded patients’ γδ T cells could kill tumor cells including self tumor cells with sparing normal clone cells. In addition, we explored the methods to enhance the anti-tumor cytotoxicity of the expanded γδ T cells by activating them with type I IFN, monocyte-derived dendritic cells (mo-DCs), or ab T cells. Although γδ T cells could be expanded in patients with myeloma, lymphoma and leukemia as well as normal persons, the amplification rates of gd T cells before and after the culture were varied from patient to patient in the patients with hematological malignancies. γδ T cells generated in patients with myeloma and lymphoma showed a potent cytotoxic ability against myeloma/lymphoma cell lines (RPMI8226, Daudi) as shown in γδ T cells generated in normal persons. In addition, γδ T cells generated in a patient with myeloma and acute leukemia showed a cytotoxic ability against self myeloma or leukemia cells freshly prepared from bone marrow. However, the same γδ T cells were not cytotoxic to normal lymphocytes of the patients. Then the expanded γδ T cells were stimulated with type I IFN, mo-DCs, or αβ T cells and the activation (CD69 expression) and cytotoxicity against tumor cells were examined. By the stimulation with type I IFN, the expression of CD69 and Trail of γδ T cells was increased and the cytotoxic ability of γδ T cells was enhanced at dose-dependent manner of type I IFN. CD69 expression on γδ T cells was enhanced by co-culture with both immature and mature mo-DCs in a cell-number-dependent fashion. CD69 expression was enhanced after the addition of mo-DCs of either autologous or allogeneic origin. Activation of γδ T cells with mo-DCs enhanced anti-tumor cytotoxicity of γδ T cells against RPMI8226 and CML blastic crisis cell line (C2F8) in an effector-to-target ratio-dependent manner. Although CD69 expression of γδ T cells was enhanced by the co-culture with allogeneic ab T cells, autologous ab T cells couldn’t activate γδ T cells. However, autologous ab T cells stimulated with IL-2 or PHA could induce the activation of γδ T cells. The activation of γδ T cells with stimulated αβ T cells required cell-to-cell interaction. These findings suggested that αβ T cells stimulated by allogeneic γδ T cells could activate the same allogeneic γδ T cells. The present data demonstrated that γδ T cells, which could be expanded in vitro from blood cells of the patients with myeloma, lymphoma and leukemia by culture with zoledronate and IL-2, possess an enough cytotoxic ability against tumor cells including self tumor cells with sparing normal cells. These findings suggested that in vitro generated patients’ γδ T cells could be applied to γδ T cell-mediated immunotherapy for hematological malignancies. Besides, potent γδ T cells activated by type I IFN, mo-DCs or activated αβ T cells were considered to be applicable for γδ T cell-mediated immunotherapy.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2385-2385
Author(s):  
Anri Saito ◽  
Miwako Narita ◽  
Norihiro Watanabe ◽  
Ayumi Yokoyama ◽  
Asuka Sekiguchi ◽  
...  

Abstract In order to establish an efficient anti-tumor cellular immunotherapy using blood γδ T cells, we investigated the cytotoxic activity of γδ T cells expanded from patients with leukemia against autologous leukemia cells and explored the potent methods for enhancing the anti-tumor cytotoxic activity of γδ T cells. We clarified that γδ T cells generated from leukemia patients possess the cytotoxic activity against autologous leukemia cells. Besides, anti-tumor cytotoxic activity of expanded γδ T cells was enhanced by the short-term culture of γδ T cells with type I IFN (IFN-α and IFN-β). The sensitivity of target leukemia cells to γδ T cells was enhanced by the exposure of the target cells to bisphosphonate such as zoledronate, which is one of the antigens recognized by γδ T cells and elevates the content of potent antigen for γδ T cells, isoprenyl pyrophosphate (IPP), in tumor cells. Blood γδ T cells were expanded from anti-CD3 microbead-separated T cells or anti-γδ TCR microbead-separated γδ T cells in the patients with acute myelogenous leukemia by the culture with zoledronate and a low concentration of IL-2 for 1–2 weeks. For the activation of expanded γδ T cells, cultured γδ T cells were exposed with type I IFN for 1–3 days. The supernatant prepared from the culture of type I IFN-activated γδ T cells was assayed for cytokine (IFN-γ, TNF-α, IL-4, IL-5, IL-10) concentration by cytometric bead array. Anti-tumor cytotoxicity of γδ T cells was evaluated by 51Cr-release assay by using purified γδ T cells as effector cells and autologous leukemia cells as target cells. In most patients with acute leukemia, γδ T cells could be markedly expanded by the culture with zoledronate and IL-2 and almost all the expanded γδ T cells possessed Vδ2 TCR. Expanded and purified γδ T cells derived from the patients with leukemia were demonstrated to be cytotoxic against autologous leukemia cells. By the culture of expanded γδ T cells with type I IFN, the expression of the activation marker CD69 and the apoptosis molecule Trail was enhanced at the concentration dependent of type I IFN especially IFN-β. The expanded γδ T cells were shown to produce a remarkable amount of IFN-γ and a considerable amount of TNF-α and the cytokine production was increased by the addition of type I IFN. In addition, the cytotoxic activity of γδ T cells was enhanced by incubating target leukemia cells with zoledronate for 1–2 days. The present study demonstrated that γδ T cells expanded from patient’s blood are cytotoxic to patient’s leukemia cells. It is also demonstrated that there are two methods practically available for enhancing the cytotoxic activity of expanded γδ T cells against leukemia cells, one of which is activating γδ T cells by using type I IFN, and the other is elevating the sensitivity of target cells by using bisphosphonate. These findings implied the possibility that type I IFN-activated γδ T cells could be efficiently applied for cellular immunotherapy in the patients with hematological malignancies who is being administered with bisphosphonate. Moreover, in vivo administration of bisphosphpnate, a low dose of IL-2 and type I IFN could be effective for tumors as γδ T cell-based cellular immunotherapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3895-3895
Author(s):  
Anri Saito ◽  
Miwako Narita ◽  
Norihiro Watanabe ◽  
Nozomi Tochiki ◽  
Yumi Hiroi ◽  
...  

Abstract In order to establish an efficient anti-tumor cellular immunotherapy using blood In order to establish an efficient anti-tumor cellular immunotherapy using blood γδ T cells, we investigated the in vitro expansion of γδ T cells in the patients with myeloma and lymphoma by the culture of PB-MNC with bisphosphonate and a low dose of IL-2 and we demonstrated the cytotoxic activity of the expanded γδ T cells against myeloma/lymphoma cells. Simultaneously we explored the potent methods for enhancing the anti-tumor cytotoxic activity of γδ T cells by both directions of activating the expanded γδ T cells and making target tumor cells sensitive to γδ T cells. For the activation of γδ T cells, expanded γδ T cells were exposed with type I IFN, monocyte-derived dendritic cells (mo-DC), or plasmacytoid dendritic cell like cell line PMDC05 (leukemia cell line established from CD4+ CD56+ acute leukemia in our laboratory) for 2 days. For the enhancement of sensitivity of target tumor cell to γδ T cells, we aimed to increase the content of IPP (the potent pyrophosphate antigen for γδ T cells) in tumor cells by decreasing the metabolic downstream of IPP. For decreasing the downstream of IPP, we tried to suppress FPP synthetase, which is involved in downstream metabolism of IPP, by using nitrogen-containing bisphosphonate. In addition, the expression of stress-induced molecules such as MICA/B on target tumor cells was evaluated in association with the level of cytotoxicity of γδ T cells against the tumor cells. Compared with normal control, the patients with myeloma (n=8) demonstrated decreased percentage and counts of PB γδ T cells. Patients with lymphoma (n=7) showed a wide range of values in PB γδ T cells, covering a normal range. Amplification rate of PB γδ T cells by culture with zoledronate and IL-2 varied markedly from patient to patient up to 120 times in myeloma and 90 times in lymphoma. Expanded γδ T cells generated in patients with myeloma/lymphoma were demonstrated to possess the cytotoxic activity against myeloma/lymphoma cells by 51Cr-release assay and CFSE-labeled target cell. The cytotoxic activity of expanded γδ T cells was enhanced by the exposure of γδ T cells with type I IFN (IFN-α and IFN-β). The activation of γδ T cells, which was evaluated by the elevation of CD69 expression, was observed by the exposure of γδ T cells with type I IFN, mo-DC, or PMDC05 for 2 days. The sensitivity of target myeloma/lymphoma cells to γδ T cells was enhanced by the exposure of the target cells to bisphosphonate such as zoledronate. The expression level of MICA/B on target tumor cells was demonstrated to be associated with the potency of cytotoxicity of γδ T cells against the tumor cells. The present study demonstrated that γδ T cells expanded from myeloma/lymphoma patient’s blood are cytotoxic to myeloma/lymphoma cells. There are two methods practically available for enhancing the cytotoxic activity of expanded γδ T cells against myeloma/lymphoma cells, one of which is activating γδ T cells and the other is elevating the sensitivity of target cells by using bisphosphonate.


2014 ◽  
Vol 211 (13) ◽  
pp. 2599-2615 ◽  
Author(s):  
Daniel G. Pellicci ◽  
Adam P. Uldrich ◽  
Jérôme Le Nours ◽  
Fiona Ross ◽  
Eric Chabrol ◽  
...  

αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Felipe Olguín-Contreras ◽  
Anna N. Mendler ◽  
Grzegorz Popowicz ◽  
Bin Hu ◽  
Elfriede Noessner

Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.


2019 ◽  
Vol 11 (513) ◽  
pp. eaax9364 ◽  
Author(s):  
Yin Wu ◽  
Fernanda Kyle-Cezar ◽  
Richard T. Woolf ◽  
Cristina Naceur-Lombardelli ◽  
Julie Owen ◽  
...  

Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αβ T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αβ TCRs. However, whereas in most cases TCRαβ repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αβ T cells.


2015 ◽  
Vol 84 (2) ◽  
pp. 580-589 ◽  
Author(s):  
Getahun Abate ◽  
Charles T. Spencer ◽  
Fahreta Hamzabegovic ◽  
Azra Blazevic ◽  
Mei Xia ◽  
...  

Numerous pathogens, includingMycobacterium tuberculosis, can activate human γ9δ2T cells to proliferate and express effector mechanisms. γ9δ2T cells can directly inhibit the growth of intracellular mycobacteria and may also act as antigen-presenting cells (APC). Despite evidence for γδ T cells having the capacity to function as APC, the mechanisms involved and importance of these effects on overall tuberculosis (TB) immunity are unknown. We preparedM. tuberculosis-specific γ9δ2T cell lines to study their direct protective effects and APC functions forM. tuberculosis-specific αβ T cells. The direct inhibitory effects on intracellular mycobacteria were measured, and the enhancing effects on proliferative and effector responses of αβ T cells assessed. Furthermore, the importance of cell-to-cell contact and soluble products for γ9δ2T cell effector responses and APC functions were investigated. We demonstrate, in addition to direct inhibitory effects on intracellular mycobacteria, the following: (i) γ9δ2T cells enhance the expansion ofM. tuberculosis-specific αβ T cells and increase the ability of αβ T cells to inhibit intracellular mycobacteria; (ii) although soluble mediators are critical for the direct inhibitory effects of γ9δ2T cells, their APC functions do not require soluble mediators; (iii) the APC functions of γ9δ2T cells involve cell-to-cell contact that is dependent on CD40-CD40 ligand (CD40L) interactions; and (iv) fully activated CD4+αβ T cells and γ9δ2T cells provide similar immune enhancing/APC functions forM. tuberculosis-specific T cells. These effector and helper effects of γ9δ2T cells further indicate that these T cells should be considered important new targets for new TB vaccines.


Sign in / Sign up

Export Citation Format

Share Document