MicroRNA (miRNA)-29b Targets DNMT3A and B and Induces Re-Expression of the Hypermethylated ESR1 and p15 Genes in Acute Myeloid Leukemia (AML).

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 718-718
Author(s):  
Ramiro Garzon ◽  
Shujun Liu ◽  
Muller Fabbri ◽  
Zhongfa Liu ◽  
Jiuxia Pang ◽  
...  

Abstract Aberrant DNA methylation has been shown to play an important role in AML by silencing structurally normal genes important for hematopoiesis. MiRNAs are small non-coding RNAs that down-regulate gene expression. Although aberrant methylation of miRNAs has been reported, it is not known whether miRNAs themselves can modulate DNA methylation. To address this question, we tested the functional role of miRNAs that are predicted to target both DNA methyltransferase 3A and 3B (DNMT3A and B), in AML cells. We cloned the 3′UTR of both DNMT3s into a luciferase reporter and co-transfected K562 cells with scrambled or sense sequences of each of the miRNAs predicted to interact with DNMT3A and B. We found that miR-29b significantly repressed luciferase activity of both DNMT3A and B constructs (42% and 67%, respectively) compared with the controls. Transfection of the pre-miR-29b, but not of the scrambled, resulted in a marked reduction of the DNMT3A and B mRNA levels measured by qRT-PCR in MV4-11 cells (80% and 90%, respectively) and in K562 cells (23% and 67% respectively).We also observed a significant down-regulation of DNMT3s protein by immunoblotting in K562 cells transfected with miR-29b relative to the controls. These results were then validated in AML patients. Both miR-29b and DNMT3B expression levels were measured by qRT-PCR in bone marrow samples obtained from 12 AML patients with primary disease. We found that miR-29b expression was inversely correlated to DNMT3B mRNA levels (Pearson coefficient R=−0.66; P=0.03). Functionally, we showed that the mRNA expression of p15 and ESR1, that are silenced through promoter hypermethylation in AML, were increased in K562 and MV4-11 cells transfected with miR-29b compared with the controls. ESR1 was 1.9 and 1000 fold upregulated in miR-29b-tranfected K562 and MV4-11cells, respectively and p15 was 11.6 fold upregulated in miR-29b-tranfected MV 4–11 cells. Interestingly, we observed that the expression of miR-29b-1, which is silenced in K562 cell lines, was 6.5 fold up-regulated following treatment with 2.5 uM decitabine, a DNA hypomethylating nucleoside compared with untreated controls. Consistent with these results, we also showed 5.6 fold increase in miR-29b-1 expression in post-treatment CD34+ selected bone marrow blasts from AML patients (n=3) who received decitabine (20 mg/m2/day x 10 days) on a clinical protocol (OSU 0336) compared with pretreatment baselines. These results were consistent with the methylation analysis of CpGs up to 30kb upstream from the 5′ encoding regions of the miR-29b-1 precursors in the same patients. Using MassArray (sequenom) technology, we showed that all the CpGs were highly methylated (95 to 100%) in pre-treatment baseline samples and these methylation levels decreased by 20% after decitabine treatment. These preliminary data provide a functional link between miRNAs and aberrant epigenetics by suggesting that: miR-29b targets DNMT3A and B; miR-29b is silenced in AML cell lines and patient primary blasts and its expression is restored in vitro and in vivo by ypomethylating agents; 3) increase of miR-29b levels results in DNMTs down-regulation and re-expression of otherwise hypermethylated genes. Altogether, there data support a rationale for developing novel miRNA-based therapeutic strategies that alone and in combination with other hypomethylating agents may target aberrant epigenetics in AML.

2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods: H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results: The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions: This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2020 ◽  
Author(s):  
Xin Yang ◽  
Shumei Wang ◽  
Alimu Reheman

Abstract Background: Runt-related transcription factor 3 (RUNX3) is a developmental regulator, and methylation of the RUNX3 is significantly associated with the occurrence and development of carcinogenesis. Previous studies have identified an association of increased methylation level of RUNX3 in prostate cancer (PCa); however, the role and molecular mechanism underlying aberrant methylation of the RUNX3 gene in prostate tumorigenesis remain elusive. In this study, we will investigate the role of RUNX3 promoter methylation and its gene expression in PCa cells. Methods: The methylation of the RUNX3 in the promoter region in PCa cells was detected by bisulfite-sequencing PCR (BSP). Following treatment of the PCa cells with DNA methylation transferase inhibitor 5-AZA-2'-deoxycytidine (AZA), the effect on methylation level and expression of RUNX3 were analyzed by qRT-PCR, Western blot, and BSP assays. Furthermore, we investigated the effect of the demethylated RUNX3 on proliferation, cell cycle and apoptosis of PCa cells using CCK-8 and flow cytometry assays. Using the DNA methylation transferase (DNMT3b) knockout or overexpression models, the relationship between DNMT3b and RUNX3 methylation was further assessed by qRT-PCR, Western blot and methylation-specific PCR (MSP). Results: The results indicated that the methylation level of RUNX3 in PCa cell lines was significantly higher than that of normal prostate epithelial (RWPE-1) cells. Furthermore, treatment with AZA not only promoted the demethylation of RUNX3 but also restored the mRNA and protein expression of RUNX3, and the reactivation of expression of the later exhibited its anti-tumor effects through regulation of the cycle progression in PCa cells. Moreover, DNMT3b could regulate the expression level of RUNX3 by altering the DNA methylation of the RUNX3 in PCa cells. Conclusion: RUNX3 is hypermethylated in a panel of PCa cell lines; Inhibits DNA methylation of RUNX3 could restored its gene expression, which in turn induced its anti-cancer effects. Thus, RUNX3 may serve as a novel putative molecular target gene for PCa therapy.


2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1556-1556
Author(s):  
Marcus M. Schittenhelm ◽  
Max Kaiser ◽  
Gunnar Blumenstock ◽  
Kerstin Maria Kampa-Schittenhelm

Abstract ASPP1 belongs to a family of p53-binding proteins and enhances apoptosis by stimulation of p53-transactivation of selected proapoptotic target genes. It is preferentially expressed in hematopoietic stem cells (HSC) and together with p53 preserves the genomic integrity of the HSC pool. Consequently, attenuated expression of ASPP1 which is linked to methylation of the promoter region has been associated with malignant transformation and development of acute lymphoblastic leukemia and lymphomas. We now provide evidence that ASPP1 is highly altered in AML suggesting a role in leukemogenesis as well as therapy response. ASPP1 mRNA and protein expression levels of freshly isolated native patient samples (68) and healthy bone marrow donors (29) were determined by qRT-PCR and western immunoblotting. Statistical analyseswere performed. To explore implications of attenuated ASPP1 levels with regard to apoptosis induction and proliferation, ASPP1-expressing leukemia cell lines (MOLM14, Jurkat), native patient blasts or native bone marrow donor samples were stably silenced using a retroviral shRNA approach. Vice versa, ASPP1 was stably overexpressed in AML cell lines expressing per se low ASPP1 levels. Expression was thereby confirmed by qRT-PCR and western blotting. XTT viability and annexin V-based apoptosis assays were performed using standard chemotherapeutics in comparison to empty vector controls. Decitabine was used as an epigenetic sensitizer via hypomethylation of the promoter region. ASPP1 mRNA expression was found to be frequently and highly statistically significantly (p=0.001) attenuated in AML. Low ASPP1 mRNA levels thereby translated into attenuated protein expression. Retroviral ASPP1-interference lead to perturbed proliferation capacities (up to 3-fold increase) and attenuated apoptosis upon standard chemotherapeutics in leukemia cell lines as well as native leukemia blasts. As expected, overexpression of ASPP1 resulted in significantly attenuated proliferation and higher induction of apoptosis in all tested cell lines and patient blasts. Intriguingly, epigenetic therapy using the hypomethylating agent decitabine resulted in upregulation of ASPP1 expression in leukemia cells with originally low basal ASPP1 levels as confirmed by qRT-PCR and western blotting. Consequently, decitabine pretreatment sensitized these patient samples towards chemotherapy with a favorable proapoptotic overall efficacy compared to chemotherapy alone. Our results demonstrate that dysfunctional regulation of ASPP1 expression likely contributes to the biology of leukemogenesis and to primary therapy resistance in a subgroup of patients with acute leukemia and seems to be linked to hypermethylation. Prospective clinical studies are warranted to evaluate the roleas a biomarker for risk stratification in leukemia patients and for monitoring therapy responses. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2017 ◽  
Vol 44 (5) ◽  
pp. 1882-1895 ◽  
Author(s):  
Zhigang Bai ◽  
Jin Wang ◽  
Tingting Wang ◽  
Yuan Li ◽  
Xiaomu Zhao ◽  
...  

Background/Aims: More and more reports have shown that the dysregulation of miRNAs can contribute to the progression and metastasis of human cancers. Many studies have shown that the down-regulation of the miR-495 level occurs in a variety of cancers, including colorectal cancer (CRC). However, the precise molecular mechanisms of miR-495 in CRC have not been well clarified. In the current study, we investigated the biological functions and molecular mechanisms of miR-495 in CRC cell lines. Methods: qRT-PCR was used to determine the level of miR-495 in CRC cell lines and tissues. A miR-495 mimic and inhibitor were transfected into CRC cells, and the effects of miR-495 on the invasion and EMT were explored by qRT-PCR as well as transwell and Western blot assays. Meanwhile, luciferase assays were performed to validate Annexin A3 as a miR-495 target in CRC cells. Results: In our study, we found that miR-495 is down-regulated in CRC tissues and cell lines. Moreover, the low level of miR-495 was associated with increased expression of Annexin A3 in CRC tissues and cell lines. The invasion and EMT of CRC cells were suppressed by the overexpression of miR-495. However, the down-regulation of miR-495 promoted the invasion and EMT of CRC cells. Bioinformatics analysis predicted that Annexin A3 was a potential target gene of miR-495. Next, the luciferase reporter assay confirmed that miR-495 could directly target Annexin A3. Consistent with the effect of miR-495, the down-regulation of Annexin A3 by siRNA inhibited the invasion and EMT of CRC cells through the up-regulation of p53. The introduction of Annexin A3 in CRC cells partially blocked the effects of the miR-495 mimic. Conclusion: The introduction of miR-495 directly targeted Annexin A3 to inhibit the invasion and EMT of CRC cells by up-regulating p53, and the down-regulation of Annexin A3 was essential for inhibiting the invasion and EMT of CRC cells by overexpressing miR-495. Overall, the re-activation of the miR-495/Annexin A3/ p53 axis may represent a new strategy for overcoming metastasis of CRC.


2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2020 ◽  
Author(s):  
Xin Yang ◽  
Shumei Wang ◽  
Alimu Reheman

Abstract Background: Runt-related transcription factor 3 (RUNX3) is a developmental regulator, and methylation of the RUNX3 is significantly associated with the occurrence and development of carcinogenesis. Previous studies have identified an association of increased methylation level of RUNX3 in prostate cancer (PCa); however, the role and molecular mechanism underlying aberrant methylation of the RUNX3 gene in prostate tumorigenesis remain elusive. In this study, we will investigate the role of RUNX3 promoter methylation and its gene expression in PCa cells. Methods: The methylation of the RUNX3 in the promoter region in PCa cells was detected by bisulfite-sequencing PCR (BSP). Following treatment of the PCa cells with DNA methylation transferase inhibitor 5-AZA-2'-deoxycytidine (AZA), the effect on methylation level and expression of RUNX3 were analyzed by qRT-PCR, Western blot, and BSP assays. Furthermore, we investigated the effect of the demethylated RUNX3 on proliferation, cell cycle and apoptosis of PCa cells using CCK-8 and flow cytometry assays. Using the DNA methylation transferase (DNMT3b) knockout or overexpression models, the relationship between DNMT3b and RUNX3 methylation was further assessed by qRT-PCR, Western blot and methylation-specific PCR (MSP). Results: The results indicated that the methylation level of RUNX3 in PCa cell lines was significantly higher than that of normal prostate epithelial (RWPE-1) cells. Furthermore, treatment with AZA not only promoted the demethylation of RUNX3 but also restored the mRNA and protein expression of RUNX3, and the reactivation of expression of the later exhibited its anti-tumor effects through regulation of the cycle progression in PCa cells. Moreover, DNMT3b could regulate the expression level of RUNX3 by altering the DNA methylation of the RUNX3 in PCa cells. Conclusion: RUNX3 is hypermethylated in a panel of PCa cell lines; Inhibits DNA methylation of RUNX3 could restored its gene expression, which in turn induced its anti-cancer effects. Thus, RUNX3 may serve as a novel putative molecular target gene for PCa therapy.


2019 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xudong Wang ◽  
Taiqiu Chen ◽  
Zhihuai Deng ◽  
Wenjie Gao ◽  
Tongzhou Liang ◽  
...  

Abstract Background Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. Methods BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. Results MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. Conclusion MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


Sign in / Sign up

Export Citation Format

Share Document