Chronic Myeloid Leukemia with Deletions on Der(9) Shows Mir-199b Downregulated Expression.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1083-1083
Author(s):  
Francesco Albano ◽  
Luisa Anelli ◽  
Antonella Zagaria ◽  
Alessandra Pannunzio ◽  
Antonella Russo Rossi ◽  
...  

Abstract MicroRNAs (miRNAs) are small, single stranded non-coding RNAs, 19–24 nucleotides long, involved in crucial biological processes, including differentiation, apoptosis and proliferation. Recent evidence indicates that miRNAs may play an important role in tumorigenesis; changes in miRNAs expression level were identified in many types of human hematological and solid malignancies. To date, several papers have reported the occurrence of genomic deletions flanking the breakpoint on der(9)t(9;22) in 10%–18% of patients with chronic myeloid leukemia (CML). The most probable consequence of der(9) deletions is the loss of tumour suppressor genes, conferring a proliferative advantage to the Philadelphia-positive clone. On the other hand, two miRNAs, namely miR219-2 and miR-199b, are found to map centromeric to the ABL gene within the chromosomal region at 9q34 that is frequently lost in CML patients with der(9) deletions. In this study, we investigated the loss of miR-219-2 and miR-199b by fluorescence in situ hybridization (FISH) analysis with specific bacterial artificial chromosome (BAC) probes in 68 CML cases bearing der(9) deletions. We further evaluated miR-219-2 and miR- 199b expression levels by quantitative real-time polymerase chain reaction (qRT-PCR) experiments in cases showing deletions of at least one of these miRNAs. Depending on RNA sample availability, miRNAs expression level was evaluated in 7 and in 5 CML cases with miR-219-2 and miR-199b deletions, respectively. Statistical analysis of the relative expression results was performed by the Relative Expression Software Tool (REST). To explore the predicted miR-199b target genes, the miRGen targets database (http:// www.diana.pcbi.upenn.edu/cgi-bin/miRGen/v3/Targets.cgi) was queried; this interface provides integrated data of four widely used target prediction programs (miRanda, PicTar, TargetScan, DIANA-microT). FISH experiments revealed the loss of miR-219-2 and miR-199b in 17 (25%) and 10 (15%) out of 68 patients. The miR-199b expression study showed a downregulation in the analyzed group of 5 CML cases with miR-199b deletion as compared to a pool of 10 patients without deletions. The expression level of the miR-199b was 0.279 and the difference between the two groups was statistically significant (p= 0.028). On the contrary, the miR- 219-2 analysis did not reveal a detectable expression level in the examined patients. There were 26 predicted miR-199b target genes, involved in several biological processes such as signal transduction (Protein phosphatase inhibitor 2, PPP1R2), regulation of transcription (Hepatic leukaemia factor, HLF), chromosome organization and biogenesis (Zinc finger protein 238, ZNF238), cell proliferation (Mitogen-activated protein kinase 11, MAP3K11) and DNA repair (UV excision repair protein RAD23 homologue B, RAD23B). Among the CML patients evaluable for the response to the treatment, all cases with the miR-199b deletion were resistant to IFN-a and imatinib therapy. In conclusion, our data demonstrate a crucial role for miR-199b in CML cases bearing der(9) deletions. This miR-199b downregulation could influence the expression level of different target genes modifying important cellular pathways. Further analysis of miR-199b target genes will be needed to shed light on the link between miRNAs and CML.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed A. Ismail ◽  
Marzia Vezzalini ◽  
Hisham Morsi ◽  
Ahmad Abujaber ◽  
Ali Al Sayab ◽  
...  

AbstractProtein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Amy G. Starr ◽  
Sushma R. Jonna ◽  
Joeffrey J. Chahine ◽  
Bhaskar V. Kallakury ◽  
Chaitra S. Ujjani

Lymphadenopathy in chronic myeloid leukemia (CML) is usually due to extramedullary involvement with accelerated or blast phases of the disease. The occurrence of non-Hodgkin lymphoma (NHL) as a synchronous malignancy with CML is rare. We report a case of a 73-year-old male who presented with dyspnea and right-sided lower extremity edema in the setting of leukocytosis. Bone marrow evaluation indicated a chronic phase chronic myeloid leukemia (CML), confirmed by molecular testing. Imaging of the chest for persistent dyspnea revealed supraclavicular and mediastinal lymphadenopathy. Biopsy of the cervical node showed expanded lymphoid follicles with atypical germinal centers that were positive for CD10, BCL-2, and BCL-6, consistent with follicular lymphoma (FL). Nodal PCR demonstrated clonal IGH and IGK gene rearrangements, and FISH analysis was positive for IGH-BCL-2 fusion. Together, these tests supported the diagnosis of FL. Additionally, the lymph node showed paracortical expansion by maturing pan-hematopoietic elements, no blastic groups, and positive RT-PCR analysis for BCR-ABL1, indicating concomitant involvement by chronic phase-CML. To our knowledge, this is the first reported case of a patient with a concurrent diagnosis of CML and FL.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4839-4839
Author(s):  
Rossana Bonomi ◽  
Pablo Lopez ◽  
Daniela Infante ◽  
Isabel Moro ◽  
Victoria Elizondo ◽  
...  

Abstract Abstract 4839 Introduction. Chronic myeloid leukemia (CML) is characterized by the Philadelphia chromosome (Ph) observed in more than 90% of patients with CML as a result of t(9;22)(q34;q11), leading to the formation of chimeric gene BCR/ABL encoding for proteins with abnormal tyrosine kinase activity. Cytogenetic variants of Ph chromosome can be identifed in 5 to 10% of CML patients, involving additional chromosomes other than 9 and 22. To explain the formation of variant translocations one-step, two-step and multi-step mechanisms have been proposed. Rarely, the variant Ph chromosome results from a BCR insertion on the ABL region and form a BCR/ABL fusion gene, generally mapping to 9q34, instead of the usual location at 22q11. In very few variant Ph cases, the insertion of the BCR/ABL product in a third chromosome was demonstrated. Case Report 28 year-old man, with bilateral central scotoma and gingivorragia. Physical examination: Grade 4 splenomegaly. Peripheral blood count showed hemoglobin concentration 11.5 g/dl, platelet count: 300.000/mm3, and white blood cell count 590.000/mm3. Blood smear: myelemia exhibiting 30% of myeloid blasts. Bone marrow biopsy: panmyelosis showing 20% of myeloid blasts. Cytogenetic analysis by G-banding performed in peripheral blood verified the following karyotype: 46, XY, t(9;22;10)(q34;q11;q24)[20] The analysis of the BCR-ABL fusion gene according to standard protocols detected the presence of the b3a2 isoform. Fluorescence in situ hybridization (FISH) studies using dual color dual fusion probes in metaphases showed a signal pattern 1F2G1R. The fusion signal mapped to 10q24, the red signal to 9q34, and the normal green signal to chromosome 22, while a second low intensity green signal mapped to the Ph chromosome. No signal was observed in der(9). Interphase FISH analysis in nuclei (n=200) presented the same signal pattern. Instead of using whole chromosome probes for 9 and 22, we hybridised probes used to detect DiGiorge syndrome. These probes detect gene control ARSA (spectrum green) localized at 22q13 and Tuple1 at 22q11 (spectrum orange). Two signals, green and orange were identified in normal chromosome 22. Ph chromosome showed the orange signal, whereas the green signal mapped to der(10). Discussion. The localization of the hybrid BCR/ABL gene on chromosomes other than 22q is a rare event wich can only be detected by FISH techniques. When these unusual translocation occurs, the hypothesis most often put forward is that several consecutive chromosome rearrangements have taken place. In the present case the interpretation of karyotypes, FISH data and molecular evidence lead to the following hypothesis: Insertion of the BCR sequence from chromosome 22 to chromosome 9 may have ocurred, producing a BCR/ABL fusion in der(9). The Ph chromosome detected by G-banding showed a different green fluorescence intensity in the metaphase FISH signal pattern with BCR/ABL dual color dual fusion probes, as a result of an insertion on chromosome 9. This first event was followed by the translocation between the derivative 9 and chromosome 10, being the final localization of the BCR/ABL gene in 10q24. FISH analysis using a DiGeorge syndrome probe, supports the hypothesis of a multistep mechanism underlying insertion and translocations events in the present case. The relocation of BCR/ABL fusion sequence on sites other than chromosme 22q11 represent a rare type of variant Ph translocation. At least 21 cases described in the literature, showed fusion gene BCR/ABL located at 9q24. Only 12 patients with variant Ph were reported bearing BCR/ABL on a third chromosome. All of them involved a masked Ph chromosome. To our best knowledge this is the first report showing a variant Ph chromosome detected by G-banding in a CML patient due to a BCR insertion on ABL sequences and exhibiting the fusion signal in a third chromosome. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5184-5184
Author(s):  
Daniele Costa Abreu ◽  
Ana Paula Castilho, Bachelor ◽  
Vivian Dionísio Niewiadonski, Bachelor ◽  
Mauricio Drummond ◽  
Nelson Gaburo

Abstract Introduction In January 2013 was received in our lab service a bone marrow sample for cytogenetic analysis. The 61 years old female patient presents an elevated white blood cell count (118,000 x10³/mm³) and clinical diagnosis as Chronic Myeloid Leukemia (CML). According the medical information the treatment began with hydroxyurea 3g daily and allopurinol 300mg daily. Methods We proceeded with cytogenetic examination of the patient’s bone marrow aspirate by conventional G-banding analysis performed on unstimulated short-term cultures (24 hrs). FISH for BCR/ABL translocation was tested using a dual fusion dual color probe. Because of the sample stability we were unable to performed RT-PCR test. Results Chromosome analysis showed the translocation (9;22)(p24;q11.2) as a sole abnormality in 100% (20/20) of analyzed metaphases. Chronic myeloid leukemia presents as a specific chromosomal abnormality the Philadelphia chromosome, t(9;22)(q34;q11) which is different from the results obtained where the region of translocation of chromosome 9 was p24 instead of the classic q34. This result suggests it is BCR/JACK2 translocation. The FISH analysis showed the presence of a complex Ph chromosome: ABL con BCRx1 (one fusion) and BCRx2;ABLx2. Conclusion The patient took imatinib without answer. She is still in clinical monitoring with persistent hyperleucocytosis and the treatment is following with hydroxyurea 500mg daily and Interferon 5000 UI three times a week. Further molecular and cytogenetic tests will be performed in a second sample to contribute with evaluation of disease progression and monitoring treatment response. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5181-5181
Author(s):  
Jishi Wang ◽  
Sixi Wei ◽  
Yating Wang ◽  
Qixiang Chai ◽  
Qin Fang ◽  
...  

Abstract Background There are limited eligible clinical markers at present to monitor the progress of chronic myeloid leukemia (CML). Heme oxygenase-1 (HO-1), as one of the most important oxidation-regulating enzymes in vivo, suggests the onset and progression of cancer when highly expressed. Furthermore, HO-1 level is related with the occurrence and development of hematological diseases. But the relationship between HO-1 expression and progression/relapse of CML has seldom been studied hitherto. This study aimed to investigate the relationship between them to find out a new molecular marker for prediction. Methods A total of 60 peripheral blood and bone marrow (BM) samples from 25 CML patients in different phases were collected respectively to detect the expressions of HO-1 and bcr/abl using real-time PCR. Routine blood test was performed to detect the changes of leukocyte and platelet counts. The proportion of primitive cells in BM was detected by flow cytometry. The relationship between high HO-1 expression and CML progression and relapse was explored by the analysis of variance by Wilcoxon test and linear regression analysis. The diagnostic accuracy and cutoff values were determined by receiver operating characteristic curve. Results Relative expression of HO-1 mRNA in CML patients peripheral blood was significantly higher than that of donors (P <0.0001), which were 0.57±3.78 and (1.417±1.125)×10–6, respectively. HO-1 expression level in CML patients was 0.061 5±0.062 4, which decreased to 0.009 4±0.006 7 upon CMoR, and remained remarkably higher 0.016 3±0.017 5 than that of normal donors (1.417±1.125)×10–6, P <0.001. When relapse occurred, HO-1 expression significantly increased from 0.020 6±0.021 0 to 3.852±10.285 in CMoR stage and undergoing relapse. According to progression of CML, HO-1 expression level in CML patients increased from CP (0.009 5±0.017 6) to AP (0.028 0±0.055 7) and then to BP (0.276 7± 0.447 0) . And there was a linear correlation between HO-1 expression and proportion of primitive CML cells. The diagnostic accuracies and cutoff values of HO-1 expression for CML-CP, CML-AP, and CML-BP were 1.0, 0.748, and 0.965, respectively, as well as 0.000 070, 0.001 917, and 0.020 696, respectively. Conclusion HO-1 may be a potential molecular indicator for the progression and relapse of CML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Chunmei Guo ◽  
Qiuling Zhang ◽  
Jinsong Yan ◽  
Xinxin Lv ◽  
Frederick T Greenaway ◽  
...  

Abstract Background: As members of the CT10 regulation of kinase (CRK) adaptor protein family, CRK-like (CRKL) and CRKII are involved in cell proliferation, survival, adhesion, migration and differentiation. However, the exact role and underlying mechanism of CRKL and CRKII in leukemic cell differentiation are still unknown. Methods: Quantitative real-time qPCR (qRT-PCR) was used to detect the expression levels of CRKL and CRKII in chronic myeloid leukemia (CML) patients and complete remission (CR) patients; Western blotting (WB) was used to measure the expression levels of CRKL and CRKII during hemin-induced erythroid differentiation of K562 cells; Benzidine staining, isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis, cDNA microarray assay, qRT-PCR and WB were used to examine the effects of CRKL and CRKII deregulation on erythroid and megakaryocyte differentiation of K562 cells; PD98059 was used to investigate the underlying mechanism of CRKL in erythropoiesis and megakaryopoiesis. Results: CRKL was found to be overexpressed in chronic myeloid leukemia (CML) patients compared with normal samples, while its expression level was lower in CR patients than in corresponding CML patients. The CRKL expression level was significantly decreased during the erythroid differentiation of K562 cells following hemin treatment. Moreover, CRKL downregulation promoted erythroid and megakaryocyte differentiation of K562 cells accompanied by increased expression level of the erythroid differentiation markers γ-globin, glycophorin (GPA) and the megakaryocyte differentiation markers CD41, CD61. Furthermore, gene microarray and iTRAQ quantitative proteomic analysis showed that CRKL downregulation increased hemoglobin (HB) molecules HBD, HBA1, HBA2, HBZ, HBE1, HBG1 and globin transcription factor 1 (GATA1), high-mobility group protein (HMGB2) expression levels. Mechanistically, CRKL inhibited erythroid and megakaryocyte differentiation of K562 cell via inactivating Raf/MEK/ERK/Elk-1 pathway. Conversely, CRKII was only slightly overexpressed in CML patients and had no effect on erythroid differentiation of K562 cells. Conclusions: Taken together, our results demonstrate that CRKL but not CRKII contributes to development, progression, erythropoiesis and megakaryopoiesis of CML, providing novel insights into effective diagnosis and therapy for CML patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5069-5069
Author(s):  
Myung-Hyun Nam ◽  
Ju-Yeon Kim ◽  
Soo-Young Yoon ◽  
Chae Seung Lim ◽  
Chang Kyu Lee ◽  
...  

Abstract Abstract 5069 Atypical chronic myeloid leukemia (aCML) is a rare leukemic disorder which shows myelodysplastic and myeloproliferative features simultaneously. Some cases of JAK2 V617F mutation in aCML were reported before WHO criteria introduced (Jelinek J et al. Blood 2005; Jones AV et al. Blood 2005; Levine RL et al. Blood 2005). However, Fend F et al observed no JAK2 V617F mutation in aCML as defined by WHO classification (Fend F et al. Leuk Res 2008), which result was refuted by a case report (Campiotti L et al. Leuk Res 2009). Here we analyzed JAK2 V617F mutation with amplification refractory mutation system (ARMS) and direct sequencing in three cases of aCML and found a case with JAK2 V617F mutation. All three cases were diagnosed as aCML according to WHO classification and showed significant myelodysplastic/myeloproliferative features in peripheral blood and bone marrow aspirates. Absence of BCR/ABL1 gene rearrangement was confirmed by FISH analysis, and conventional cytogenetic analysis revealed trisomy 8 in a case with no JAK2 V617F mutation. The patient with JAK2 V617F mutation poorly responds with hydroxyurea therapy and is showing prolonged leukocytosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4348-4357 ◽  
Author(s):  
D Van den Berg ◽  
M Wessman ◽  
L Murray ◽  
J Tong ◽  
B Chen ◽  
...  

We attempted to determine the frequency of normal hematopoietic stem cells (HSC) and contaminating leukemic cells in mobilized peripheral blood (MPB) collected from chronic myeloid leukemia (CML) patients, intolerant of alpha-interferon or with interferon-resistant disease. A total of 14 MPB samples, six from patients in chronic phase (CP) and eight from patients in accelerated phase or blast crisis (AP/BC) were studied. Cytogenetic analysis of MPB collected from AP/BC patients showed that 100% of the cells were Ph+, whereas cells from four of five CP MPB were Ph-. By contrast, fluorescence in situ hybridization (FISH) analysis of CP MPB showed a mean frequency of 14.7% Ph+ cells, while AP/BC MPB contained 39.2% Ph+ cells. In an attempt to purify normal HSC, subpopulations of the MPB CD34+ cells were isolated based on expression of the Thy-1 antigen (CDw90). The mean Ph+ cell frequency as determined by FISH within the CD34+Thy-1+Lin- and CD34+Thy-1-Lin- populations from CP patients was 19.2% and 33.9%, respectively. In the AP/BC patients, levels of residual leukemic cells were significantly greater with mean Ph+ cell frequencies of 59.2% and 72.7% for the CD34+Thy-1+Lin- and CD34+Thy-1-Lin- fractions, respectively. The frequency of cobblestone area forming cells (CAFC) was used as a means of quantitating the numbers of functional HSC within these cell subpopulations. The mean CAFC frequency was 1 of 19 for the CD34+Thy- 1+Lin- cells as compared with 1 of 133 for the Thy-1-fraction indicating a higher frequency of primitive progenitor cells in the Thy- 1+ subpopulation. CD34+ cell subsets from two patients were also injected into SCID-hu bone assays to determine the in vivo behavior of these cell populations. After 8 weeks, multilineage donor engraftment was observed in these grafts. FISH analysis of the donor cells within the grafts showed that 55.3% and 60.0% of the cells were Ph+. We conclude that unfractionated MPB from this patient population is not leukemia-free and that the CD34+Thy-1+Lin- cell subpopulation, although predominantly enriched for normal HSC, still contains substantial numbers of residual leukemic cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Krzysztof Lewandowski ◽  
Michał Gniot ◽  
Maria Lewandowska ◽  
Anna Wache ◽  
Błażej Ratajczak ◽  
...  

The coexistence of two diseases chronic myeloid leukemia (CML) and B-cell chronic lymphocytic leukemia (B-CLL) is a rare phenomenon. Both neoplastic disorders have several common epidemiological denominators (they occur more often in men over 50 years of age) but different origin and long term prognosis. In this paper we described the clinical and pathological findings in patient with CML in major molecular response who developed B-CLL with 11q22.3 rearrangement and Coombs positive hemolytic anemia during the imatinib treatment. Due to the presence of the symptoms of autoimmune hemolytic anemia and optimal CML response to the imatinib treatment, the decision about combined therapy with prednisone and imatinib was made. During the follow-up, the normalization of complete blood count and resolution of peripheral lymphadenopathy were noted. The hematologic response of B-CLL was diagnosed. The repeated FISH analysis of cultured peripheral blood lymphocytes showed 2% of cells carrying 11q22.3 rearrangement. At the same time, molecular monitoring confirmed the deep molecular response of CML. The effectiveness of such combination in the described case raises the question about the best therapeutic option in such situation, especially in patients with good imatinib tolerance and optimal response.


Sign in / Sign up

Export Citation Format

Share Document