A New Model of Acute Sickle Cell Vaso-Occlusion Elicited by IgGMediated Hemolytic Transfusion Reactions

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 122-122
Author(s):  
Jung-Eun Jang ◽  
Paul S. Frenette

Abstract Sickle cell disease (SCD) is caused by a single amino acid substitution in the β-globin chain of hemoglobin. Acute vaso-occlusive crisis (VOC) is an important complication of SCD and is a major cause of morbidity and mortality for these patients. Red blood cell (RBC) transfusion therapy is widely used to manage SCD. However, IgG-mediated delayed hemolytic transfusion reaction (HTR) represent a serious side effect of transfusion therapy, and HTR can frequently trigger VOC in SCD patients. To understand HTR pathophysiology in SCD, we established a model of alloimmune IgG-mediated HTRs using a well-characterized humanized murine model of SCD (Paszty et al., Science 1997). We previously showed that VOC in this murine model of SCD is caused by interactions in the microvasculature between sickle RBCs and adherent white blood cells (WBCs) (Turhan et al, P.N.A.S. 2002). In addition, because IgG-mediated HTRs in wild-type (WT) mice are associated with a cytokine storm (Hod et al., Blood 2008), we hypothesized that the circulating pro-inflammatory cytokines induced by HTRs would lead to VOC in the murine model of SCD. To this end, fluorescently labeled RBCs from human glycophorin A transgenic (hGPA-Tg) or WT mice were transfused into SCD mice that had been passively immunized with an IgG monoclonal anti-hGPA antibody. Serial flow cytometry analyses revealed that the survival of incompatible hGPA-Tg RBCs in passively immunized SCD mice was 42 ± 10% 2 hours after transfusion, whereas the survival of compatible WT RBCs was 98 ± 2%. Using intravital microscopy, we examined leukocyte recruitment in post-capillary and collecting venules, and evaluated the interactions between RBCs and WBCs in passively immunized mice that were not previously treated with inflammatory cytokines. As compared to the transfusion of compatible WT RBCs, transfusion of incompatible hGPA-Tg RBCs significantly increased leukocyte adhesion to the endothelium by 1.6 fold (2,669 ± 186 vs 1,717 ± 107 adherent WBCs per mm2; p<0.001) and sickle RBC-leukocyte interactions by 3.9 fold between 91 and 120 minutes (1.1 ± 0.2 vs 0.3 ± 0.2 RBC-WBC interactions per minute; p=0.01), leading to acute VOC in post-capillary venules by the 2 hour time point. Moreover, the survival of SCD mice transfused with incompatible RBCs was significantly shorter (by 3 hours) than control mice transfused with compatible RBCs (p=0.04, Log rank test). The time course of these complications correlated with increased levels of circulating pro-inflammatory cytokines (e.g. MCP-1, MIP-1β, KC) at 2 hours following incompatible transfusion, suggesting that endogenously produced cytokines may play an important role in the pathophysiology of VOC in this model. In conclusion, these in vivo results indicate that this IgG-mediated HTR model in SCD mice reproduces the VOC seen in SCD patients experiencing delayed HTRs. This model will be useful to identify the key inflammatory cytokine(s) that can trigger VOC and design novel therapies to alleviate this major manisfestation of the disease.

2018 ◽  
Vol 1 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Sofiya Matviykiv ◽  
Marzia Buscema ◽  
Gabriela Gerganova ◽  
Tamás Mészáros ◽  
Gergely Tibor Kozma ◽  
...  

Liposomal drug delivery systems can protect pharmaceutical substances and control their release. Systemic administration of liposomes, however, often activate the innate immune system, resulting in hypersensitivity reactions. These pseudo-allergic reactions can be interpreted as activating the complement system. Complement activation destroys and eliminates foreign substances, either directly through opsonization and the formation of the membrane attack complex (MAC), or by activating leukocytes and initiating inflammatory responses via mediators, such as cytokines. In this study, we investigated the in vitro immune toxicity of the recently synthesized Rad-PC-Rad liposomes, analyzing the liposome-induced complement activation. In five human sera, Rad-PC-Rad liposomes did not induce activation, but in one serum high sensitivity via alternative pathway was detected. Such a behavior in adverse phenomena is characteristic for patient-to-patient variation and, thus, the number of donors should be in the order of hundreds rather than tens, hence the present study based on six donors is preliminary. In order to further prove the suitability of mechano-responsive Rad-PC-Rad liposomes for clinical trials, the production of pro-inflammatory cytokines was examined by human white blood cells. The concentrations of the pro-inflammatory cytokines, IL-6, IL-12p70, TNF-α, and IL-1β, induced by Rad-PC-Rad liposomal formulations, incubated with whole blood samples, were smaller or comparable to saline (negative control). Because of this favorable in vitro hemo-compatibility, in vivo investigations using these mechano-responsive liposomes should be designed.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroto Nakajima ◽  
Atsushi Miyashita ◽  
Hiroshi Hamamoto ◽  
Kazuhisa Sekimizu

AbstractIn this study, we investigated a new application of bubble-eye goldfish (commercially available strain with large bubble-shaped eye sacs) for immunological studies in fishes utilizing the technical advantage of examining immune cells in the eye sac fluid ex vivo without sacrificing animals. As known in many aquatic species, the common goldfish strain showed an increased infection sensitivity at elevated temperature, which we demonstrate may be due to an immune impairment using the bubble-eye goldfish model. Injection of heat-killed bacterial cells into the eye sac resulted in an inflammatory symptom (surface reddening) and increased gene expression of pro-inflammatory cytokines observed in vivo, and elevated rearing temperature suppressed the induction of pro-inflammatory gene expressions. We further conducted ex vivo experiments using the immune cells harvested from the eye sac and found that the induced expression of pro-inflammatory cytokines was suppressed when we increased the temperature of ex vivo culture, suggesting that the temperature response of the eye-sac immune cells is a cell autonomous function. These results indicate that the bubble-eye goldfish is a suitable model for ex vivo investigation of fish immune cells and that the temperature-induced infection susceptibility in the goldfish may be due to functional impairments of immune cells.


2012 ◽  
Vol 19 (6) ◽  
pp. 367-376 ◽  
Author(s):  
Viktoriya Golovatscka ◽  
Helena Ennes ◽  
Emeran A. Mayer ◽  
Sylvie Bradesi

2021 ◽  
Vol 160 (6) ◽  
pp. S-574-S-575
Author(s):  
Maria Jesus Villanueva-Millan ◽  
Maritza Sanchez ◽  
Walter Morales ◽  
Gabriela Leite ◽  
Stacy Weitsman ◽  
...  

2021 ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background:Inflammatory osteolysis is a major complication of total joint replacement surgery that can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of pro-inflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (Porous Se@SiO2 nanospheres) for the management of inflammatory osteolysis. Results: Macrophage-membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) can attenuate lipopolysaccharide (LPS)-induced inflammatory osteolysis by a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduce toxin levels and neutralize pro-inflammatory cytokines. Moreover, the release of Se can induce the polarization of macrophages toward the anti-inflammatory M2-phenotype. These effects are mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase(ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduces the inhibition of osteogenic differentiation caused by pro-inflammation cytokines, confirmed through in vitro and in vivo experiments.Conclusion: Our findings suggest that M-Se@SiO2 has an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 is a promising engineered nano-platform for the treatment of osteolysis arising after arthroplasty.


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109387 ◽  
Author(s):  
Malin Wennström ◽  
Shorena Janelidze ◽  
Cecilie Bay-Richter ◽  
Lennart Minthon ◽  
Lena Brundin

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


Sign in / Sign up

Export Citation Format

Share Document