scholarly journals Macrophage-Biomimetic Porous Se@SiO2 Nanocomposites For “Dual Model” Immunotherapy Against Inflammatory Osteolysis

Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background:Inflammatory osteolysis is a major complication of total joint replacement surgery that can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of pro-inflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (Porous Se@SiO2 nanospheres) for the management of inflammatory osteolysis. Results: Macrophage-membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) can attenuate lipopolysaccharide (LPS)-induced inflammatory osteolysis by a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduce toxin levels and neutralize pro-inflammatory cytokines. Moreover, the release of Se can induce the polarization of macrophages toward the anti-inflammatory M2-phenotype. These effects are mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase(ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduces the inhibition of osteogenic differentiation caused by pro-inflammation cytokines, confirmed through in vitro and in vivo experiments.Conclusion: Our findings suggest that M-Se@SiO2 has an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 is a promising engineered nano-platform for the treatment of osteolysis arising after arthroplasty.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background Inflammatory osteolysis, a major complication of total joint replacement surgery, can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of proinflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (porous Se@SiO2 nanospheres) to manage inflammatory osteolysis. Results Macrophage membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) attenuated lipopolysaccharide (LPS)-induced inflammatory osteolysis via a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduced endotoxin levels and neutralized proinflammatory cytokines. Moreover, the release of Se could induce macrophage polarization toward the anti-inflammatory M2-phenotype. These effects were mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase (ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduced the inhibition of osteogenic differentiation caused by proinflammation cytokines, as confirmed through in vitro and in vivo experiments. Conclusion Our findings suggest that M-Se@SiO2 have an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 are a promising engineered nanoplatform for the treatment of osteolysis occurring after arthroplasty. Graphical Abstract


2020 ◽  
Vol 39 (10) ◽  
pp. 1333-1344
Author(s):  
S Li ◽  
L Jiang ◽  
Y Yang ◽  
J Cao ◽  
Q Zhang ◽  
...  

Chronic obstructive pulmonary disease (COPD), characterized by chronic inflammation, is a recognized global health crisis. Sialic acid-binding immunoglobulin-like lectin 1 (siglec1 or CD169), mainly expressed in macrophages and dendritic cells, is markedly upregulated after encountering pathogens or under acute/chronic inflammation conditions. However, it is rarely reported that whether siglec1 plays a role in the development of COPD. In this study, we found that siglec1 had higher expression in the lungs from COPD rats and in peripheral blood mononuclear cells (PBMCs) from COPD patients. Knockdown of siglec1 in vivo and in vitro dramatically decreased pro-inflammatory cytokines production in pulmonary macrophages and alleviated pulmonary inflammatory responses in COPD rats as well as inactivated nuclear factor kappa B (NF-κB) signaling. In addition, we identified a new microRNA, miR-195-5p, which has never explored in COPD, was lower expressed in COPD rats and PBMC of COPD patients, and could negatively modulate siglec1 expression in macrophages. Moreover, overexpression of miR-195-5p via miR-195-5p mimics in vitro and in vivo could significantly alleviate pro-inflammatory cytokines production in pulmonary macrophages and pulmonary inflammatory responses in COPD rats. Together, our findings suggested that miR-195-5p inhibited the development of COPD via targeting siglec1, which might become a therapeutic target to improve COPD.


2018 ◽  
Vol 1 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Sofiya Matviykiv ◽  
Marzia Buscema ◽  
Gabriela Gerganova ◽  
Tamás Mészáros ◽  
Gergely Tibor Kozma ◽  
...  

Liposomal drug delivery systems can protect pharmaceutical substances and control their release. Systemic administration of liposomes, however, often activate the innate immune system, resulting in hypersensitivity reactions. These pseudo-allergic reactions can be interpreted as activating the complement system. Complement activation destroys and eliminates foreign substances, either directly through opsonization and the formation of the membrane attack complex (MAC), or by activating leukocytes and initiating inflammatory responses via mediators, such as cytokines. In this study, we investigated the in vitro immune toxicity of the recently synthesized Rad-PC-Rad liposomes, analyzing the liposome-induced complement activation. In five human sera, Rad-PC-Rad liposomes did not induce activation, but in one serum high sensitivity via alternative pathway was detected. Such a behavior in adverse phenomena is characteristic for patient-to-patient variation and, thus, the number of donors should be in the order of hundreds rather than tens, hence the present study based on six donors is preliminary. In order to further prove the suitability of mechano-responsive Rad-PC-Rad liposomes for clinical trials, the production of pro-inflammatory cytokines was examined by human white blood cells. The concentrations of the pro-inflammatory cytokines, IL-6, IL-12p70, TNF-α, and IL-1β, induced by Rad-PC-Rad liposomal formulations, incubated with whole blood samples, were smaller or comparable to saline (negative control). Because of this favorable in vitro hemo-compatibility, in vivo investigations using these mechano-responsive liposomes should be designed.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109387 ◽  
Author(s):  
Malin Wennström ◽  
Shorena Janelidze ◽  
Cecilie Bay-Richter ◽  
Lennart Minthon ◽  
Lena Brundin

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


2021 ◽  
Author(s):  
Baishun Li ◽  
Liyang Guo ◽  
Ying He ◽  
Xinran Tu ◽  
Jialin Zhong ◽  
...  

Abstract Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro. Experiments on odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1β and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulated the gene expression of IL-1β and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155-/- mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1. In conclusion, these data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Leon Islas-Weinstein ◽  
Brenda Marquina-Castillo ◽  
Dulce Mata-Espinosa ◽  
Iris S. Paredes-González ◽  
Jaime Chávez ◽  
...  

The cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) in vivo and in its causative agent Mycobacterium tuberculosis (Mtb) has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease. In addition, we performed immunohistochemistry in lung tissue to determine the cellular expression of cholinergic system components, and then administered nicotinic receptor (nAChR) antagonists to validate their effect on lung bacterial burden, inflammation, and pro-inflammatory cytokines. Finally, we subjected Mtb cultures to colorimetric analysis to reveal the production of ACh and the effect of ACh and nAChR antagonists on Mtb growth. Our results show high concentrations of ACh and expression of its synthesizing enzyme choline acetyltransferase (ChAT) during early infection in lung epithelial cells and macrophages. During late progressive TB, lung ACh upregulation was even higher and coincided with ChAT and α7 nAChR subunit expression in immune cells. Moreover, the administration of nAChR antagonists increased pro-inflammatory cytokines, reduced bacillary loads and synergized with antibiotic therapy in multidrug resistant TB. Finally, in vitro studies revealed that the bacteria is capable of producing nanomolar concentrations of ACh in liquid culture. In addition, the administration of ACh and nicotinic antagonists to Mtb cultures induced or inhibited bacterial proliferation, respectively. These results suggest that Mtb possesses a cholinergic system and upregulates the lung non-neuronal cholinergic system, particularly during late progressive TB. The upregulation of the cholinergic system during infection could aid both bacterial growth and immunomodulation within the lung to favor disease progression. Furthermore, the therapeutic efficacy of modulating this system suggests that it could be a target for treating the disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1626-1626
Author(s):  
Dror Mevorach ◽  
Veronique Amor ◽  
Yehudith Shabat

Abstract Background: Chimeric antigen receptor (CAR)-modified T cells with specificity against CD19 have demonstrated dramatic promise against highly refractory hematologic malignancies. Clinical responses with complete remission rates as high as 90% have been reported in children and adults with relapsed/refractory acute lymphoblastic leukemia (ALL). However, very significant toxicity has been observed and as many as 30% in average developing severe forms of CRS and possibly related neurotoxicity. CRS is occurring due to large secretion of pro-inflammatory cytokines, mainly from macrophages/monocytes, and resembles macrophage-activating syndrome and hemophagocytosis in response to CAR T-secreting IFN-g and possibly additional cytokines. To better understand the mechanisms leading to CRS and to treat or prevent it, we have developed in vitro and in vivo models of CRS with and without CAR-modified T cells. Early apoptotic cells that have been successfully tested for the prevention of acute GVHD, including in 7 ALL patients, were tested in these models for their effect on cytokines and CAR T cell cytotoxicity. Methods: CD19-expressing HeLa cells were used alone or with co-incubation with human macrophages for in vitro experiments and intraperitoneal experiments. Raji was used in vivo for leukemia induction. LPS and IFN-γ were used to trigger additional cytokine release. CD19-specific CAR-modified cells were used (ProMab) for anti-tumor effect against CD19-bearing cells. Cytotoxicity assay was examined in vivo using 7-AAD with flow cytometry and in vitro by survival curves and analysis of tumor load in bone marrow and liver. CRS occurred spontaneously or in response to LPS and IFN-γ. Mouse IL-10, IL-1β, IL-2, IP-10, IL-4, IL-5, IL-6, IFNα, IL-9, IL-13, IFN-γ, IL-12p70, GM-CSF, TNF-α, MIP-1α, MIP-1β, IL-17A, IL-15/IL-15R, and IL-7, as well as 32 human cytokines were evaluated by Luminex technology using the MAPIX system analyzer (Mereck Millipore) and MILLIPLEX Analyst software (Merek Millipore). Mouse IL-6Rα, MIG (CXCL9), and TGF-β1 were evaluated by Quantikine ELISA (R&D systems). Bone marrow and liver were evaluated using flow cytometry and immunohistochemistry. The IFN-γ effect was evaluated by STAT1 phosphorylation and biological products. Human macrophages and dendritic cells were generated from monocytes. Early apoptotic cells were produced as shown in GVHD clinical trial; at least 50% of cells were annexin V-positive and less than 5% were PI-positive. Results: Apoptotic cells had no negative effect in vitro or in vivo on CAR-modified T cells with specificity against CD19. There were comparable E/T ratios for CAR T in the presence or absence of apoptotic cells in vitro, and comparable survival curves in vivo. On the other hand, significant downregulation (p<0.01) of pro-inflammatory cytokines, including IL-6, IP-10, TNF-a, MIP-1α, MIP-1β, was documented. IFN-γ was not downregulated, but its effect on macrophages and dendritic cells was inhibited at the level of phosphorylated STAT1 and IFN-γ-induced expression of CXCL10 and CXCL9 was reduced. Conclusion: CRS evolves from several factors, including tumor biology, interaction with monocytes/macrophages/dendritic cells, and as a response to the CAR T cell effect and expansion. Apoptotic cells decrease pro-inflammatory cytokines that originate from innate immunity and inhibit the IFN-γ effect on monocyte/macrophages/ dendritic cells without harming IFN-γ levels or CAR-T cytotoxicity. Disclosures Mevorach: Enlivex: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Amor:Enlivex: Employment. Shabat:Enlivex: Employment.


Sign in / Sign up

Export Citation Format

Share Document