The Bone Morphogenetic Protein (BMP)-4 Is Involved in the Regulation of Human Megakaryocytic Differentiation during Thrombopoietin Signaling.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1339-1339
Author(s):  
Franck E Nicolini ◽  
Sandrine Jeanpierre ◽  
Bastien Kaniewski ◽  
Charles Dumontet ◽  
Ruth Rimokh ◽  
...  

Abstract It has been shown in the past that Activin A, BMP-2 and BMP-4, three members of the TGF-β family, are involved in the regulation of hematopoiesis and particularly erythropoiesis, in humans. In this study, we explored the role of these molecules in human megakaryopoiesis using an in vitro serum-free assay initiated with purified normal CD34+ human bone marrow (BM) cells (from allogeneic BM donors), that allows the analysis of the impact of such molecules on all stages of megakaryocytic differentiation. We could demonstrate for the first time, that in the absence of thrombopoietin (TPO), BMP-4 is able to induce CD34+ progenitor commitment and differentiation into megakaryocytes throughout all stages through means of cytology, flow cytometry, CFU and LTC-IC and ploidy assays, as well as in vitro platelet production. We analyzed as well the expression of megakaryocytic specific factors such as FOG-2, Fli-1 and PF4 by RQ-PCR, and PF4, BMP-4 secretion in culture supernatants. While we have previously shown that Activin A and BMP-2 are involved in the erythropoietic commitment even in the absence of erythropoietin, we were not able to demonstrate any effect of these molecules on megakaryopoietic commitment and differentiation. Using signaling pathways specific inhibitors such as AG490 (JAK-2 pathway inhibitor), PD98059 (ERK pathway inhibitor), LY294002 (PI3-K inhibitor) and Rapamycin (mTOR pathway inhibitor), we could show that BMP-4, as TPO, exerts its effects on human megakaryopoiesis involving specifically the JAK/STAT and mTOR signaling pathways. In addition, the specific inhibition of the BMP signaling pathway with blocking antibodies (CD34+ BM cells cultured in the presence of anti-TPO-R and mouse anti-BMP-4 Antibody), natural soluble inhibitors [such as FLRG (Follistatin related gene) protein or Follistatin], or soluble BMP-receptors (sBMPR-Ia, sBMPR-Ib) has revealed that TPO uses the BMP-4 pathway to induce the megakaryopoietic commitment of human BM CD34+ progenitors. Finally, we could demonstrate that TPO up-regulates a BMP-4 autocrine loop in megakaryocytic progenitors, by inducing their own production of BMP-4 associated to an up-regulation of BMP-receptor expression. In conclusion, this study illustrates that BMP-4 represents an important actor in the regulation of human megakaryopoiesis.

Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3154-3163 ◽  
Author(s):  
Sandrine Jeanpierre ◽  
Franck Emmanuel Nicolini ◽  
Bastien Kaniewski ◽  
Charles Dumontet ◽  
Ruth Rimokh ◽  
...  

Abstract Activin A, BMP2, and BMP4, 3 members of the transforming growth factor-β family, are involved in the regulation of hematopoiesis. Here, we explored the role of these molecules in human megakaryopoiesis using an in vitro serum-free assay. Our results highlight for the first time that, in the absence of thrombopoietin, BMP4 is able to induce CD34+ progenitor differentiation into megakaryocytes through all stages. Although we have previously shown that activin A and BMP2 are involved in erythropoietic commitment, these molecules have no effect on human megakaryopoietic engagement and differentiation. Using signaling pathway-specific inhibitors, we show that BMP4, like thrombopoietin, exerts its effects on human megakaryopoiesis through the JAK/STAT and mTor pathways. Inhibition of the BMP signaling pathway with blocking antibodies, natural soluble inhibitors (FLRG or follistatin), or soluble BMP receptors reveals that thrombopoietin uses the BMP4 pathway to induce megakaryopoiesis, whereas the inverse is not occurring. Finally, we show that thrombopoietin up-regulates the BMP4 autocrine loop in megakaryocytic progenitors by inducing their production of BMP4 and up-regulating BMP receptor expression. In summary, this work indicates that BMP4 plays an important role in the control of human megakaryopoiesis.


2019 ◽  
Vol 28 (12) ◽  
pp. 1686-1699 ◽  
Author(s):  
Chongfeng Chen ◽  
Yujia Yang ◽  
Yue Yao

Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic encephalopathy (HIE). However, the therapeutic effects of HBO and its associated mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone morphogenetic protein (BMP) play important roles in mammalian nervous system development. The present study examined whether HBO stimulates the differentiation of neural stem cells (NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with the advantage of reducing the number of astrocytes. These effects were most pronounced when these two were combined together. In addition, the expression of Wnt3a, BMP2, and β-catenin nuclear proteins were increased after HBO treatment. However, blockade of Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve as a potential therapeutic strategy for treating HIE.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5195-5204 ◽  
Author(s):  
Yin Xia ◽  
Jodie L. Babitt ◽  
Yisrael Sidis ◽  
Raymond T. Chung ◽  
Herbert Y. Lin

Abstract Hemojuvelin (HJV) is a coreceptor for bone morphogenetic protein (BMP) signaling that regulates hepcidin expression and iron metabolism. However, the precise combinations of BMP ligands and receptors used by HJV remain unknown. HJV has also been demonstrated to bind to neogenin, but it is not known whether this interaction has a role in regulating hepcidin expression. In the present study, we show that BMP-2, BMP-4, and BMP-6 are endogenous ligands for HJV in hepatoma-derived cell lines, and that all 3 of these ligands are expressed in human liver. We demonstrate in vitro that HJV selectively uses the BMP type II receptors ActRIIA and BMPRII, but not ActRIIB, and HJV enhances utilization of ActRIIA by BMP-2 and BMP-4. Interestingly, ActRIIA is the predominant BMP type II receptor expressed in human liver. While HJV can use all 3 BMP type I receptors (ALK2, ALK3, and ALK6) in vitro, only ALK2 and ALK3 are detected in human liver. Finally, we show that HJV-induced BMP signaling and hepcidin expression are not altered by neogenin overexpression or by inhibition of endogenous neogenin expression. Thus, HJV-mediated BMP signaling and hepcidin regulation occur via a distinct subset of BMP ligands and BMP receptors, independently of neogenin.


2020 ◽  
Vol 21 (18) ◽  
pp. 6498
Author(s):  
Chen Xie ◽  
Wenjuan Jiang ◽  
Jerome J. Lacroix ◽  
Yun Luo ◽  
Jijun Hao

Activins transduce the TGF-β pathway through a heteromeric signaling complex consisting of type I and type II receptors, and activins also inhibit bone morphogenetic protein (BMP) signaling mediated by type I receptor ALK2. Recent studies indicated that activin A cross-activates the BMP pathway through ALK2R206H, a mutation associated with Fibrodysplasia Ossificans Progressiva (FOP). How activin A inhibits ALK2WT-mediated BMP signaling but activates ALK2R206H-mediated BMP signaling is not well understood, and here we offer some insights into its molecular mechanism. We first demonstrated that among four BMP type I receptors, ALK2 is the only subtype able to mediate the activin A-induced BMP signaling upon the dissociation of FKBP12. We further showed that BMP4 does not cross-signal TGF-β pathway upon FKBP12 inhibition. In addition, although the roles of type II receptors in the ligand-independent BMP signaling activated by FOP-associated mutant ALK2 have been reported, their roles in activin A-induced BMP signaling remains unclear. We demonstrated in this study that the known type II BMP receptors contribute to activin A-induced BMP signaling through their kinase activity. Together, the current study provided important mechanistic insights at the molecular level into further understanding physiological and pathophysiological BMP signaling.


2019 ◽  
Vol 20 (10) ◽  
pp. 2500 ◽  
Author(s):  
Vrathasha Vrathasha ◽  
Hilary Weidner ◽  
Anja Nohe

Background: Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. Methods: Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. Results: Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. Conclusion: CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 461-471 ◽  
Author(s):  
S Navarro ◽  
N Debili ◽  
JP Le Couedic ◽  
B Klein ◽  
J Breton-Gorius ◽  
...  

Abstract Interleukin-6 (IL-6) is a pleiotropic cytokine that plays an important role in the megakaryocytic differentiation. Recently, we have observed that IL-6 is synthesized by several human cell lines with megakaryocytic features. In this study, we have investigated whether a similar phenomenon occurs during normal megakaryocytic differentiation. Human megakaryocytes (MK) were obtained by culturing normal marrow in liquid culture with aplastic plasma (AP). First, an IL-6 secretion in bone marrow culture enriched in MK as well as in purified MK populations was demonstrated by a biologic assay. Second, IL-6 mRNA was detected in a purified population of MK by the polymerase chain reaction and dot blot analysis. IL-6 mRNA and protein were undetectable in platelets. Third, in situ hybridization procedure demonstrated the presence of IL-6 mRNA in individual immature MK. Fourth, IL-6 protein was detected in MK at the unicellular level by an immunoalkaline phosphatase technique using a monoclonal antibody against IL-6. Furthermore, the presence of IL-6 receptor (IL-6-R) on MK was demonstrated by in situ hybridization using an IL-6-R probe and in situ autoradiography after binding with [125I]-labeled recombinant IL-6. The IL-6 endogenously produced in liquid cultures containing normal human plasma or AP was subsequently neutralized. This resulted in a 50% decrease of the MK growth with a minor shift in the ploidy distribution toward lower values. In semisolid cultures the addition of anti-IL-6 antibodies led to a 42% decrease in colony number in cultures stimulated by IL-3 but not in other conditions of culture. These results suggest that normal human megakaryocytopoiesis might be regulated in part by an IL-6 autocrine loop.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


2006 ◽  
Vol 174 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Lisa M. Hoffman ◽  
Kamal Garcha ◽  
Konstantina Karamboulas ◽  
Matthew F. Cowan ◽  
Linsay M. Drysdale ◽  
...  

The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the gene for the retinoic acid (RA) synthesis enzyme Aldh1a2 as a principal target of BMP signaling; prochondrogenic BMPs or GDFs lead to attenuation of Aldh1a2 expression and, consequently, to reduced activation of the retinoid signaling pathway. Consistent with this, antagonism of retinoid signaling phenocopies BMP4 action, whereas RA inhibits the chondrogenic stimulatory activity of BMP4. BMP4 also down-regulates Aldh1a2 expression in organ culture and, consistent with this, Aldh1a2 is actively excluded from the developing cartilage anlagens. Collectively, these findings provide novel insights into BMP action and demonstrate that BMP signaling governs the fate of prechondrogenic mesenchyme, at least in part, through regulation of retinoid signaling.


1995 ◽  
Vol 15 (1) ◽  
pp. 141-151 ◽  
Author(s):  
B M Johansson ◽  
M V Wiles

Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation, there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells, which resemble primitive ectoderm, can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM, this differentiation is responsive to TGF-beta family members in a concentration-dependent manner, with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm, including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1, -beta 2, or -beta 3, acid FGF, or basic FGF is added individually to CDM. In vivo, at day 6.5 of mouse development, activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together, our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhechun Zhang ◽  
Steven Zwick ◽  
Ethan Loew ◽  
Joshua S. Grimley ◽  
Sharad Ramanathan

Abstract Morphogen signals are essential for cell fate specification during embryogenesis. Some receptors that sense these morphogens are known to localize to only the apical or basolateral membrane of polarized cell lines in vitro. How such localization affects morphogen sensing and patterning in the developing embryo remains unknown. Here, we show that the formation of a robust BMP signaling gradient in the early mouse embryo depends on the restricted, basolateral localization of BMP receptors. The mis-localization of receptors to the apical membrane results in ectopic BMP signaling in the mouse epiblast in vivo. With evidence from mathematical modeling, human embryonic stem cells in vitro, and mouse embryos in vivo, we find that the geometric compartmentalization of BMP receptors and ligands creates a signaling gradient that is buffered against fluctuations. Our results demonstrate the importance of receptor localization and embryo geometry in shaping morphogen signaling during embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document