BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling

Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3154-3163 ◽  
Author(s):  
Sandrine Jeanpierre ◽  
Franck Emmanuel Nicolini ◽  
Bastien Kaniewski ◽  
Charles Dumontet ◽  
Ruth Rimokh ◽  
...  

Abstract Activin A, BMP2, and BMP4, 3 members of the transforming growth factor-β family, are involved in the regulation of hematopoiesis. Here, we explored the role of these molecules in human megakaryopoiesis using an in vitro serum-free assay. Our results highlight for the first time that, in the absence of thrombopoietin, BMP4 is able to induce CD34+ progenitor differentiation into megakaryocytes through all stages. Although we have previously shown that activin A and BMP2 are involved in erythropoietic commitment, these molecules have no effect on human megakaryopoietic engagement and differentiation. Using signaling pathway-specific inhibitors, we show that BMP4, like thrombopoietin, exerts its effects on human megakaryopoiesis through the JAK/STAT and mTor pathways. Inhibition of the BMP signaling pathway with blocking antibodies, natural soluble inhibitors (FLRG or follistatin), or soluble BMP receptors reveals that thrombopoietin uses the BMP4 pathway to induce megakaryopoiesis, whereas the inverse is not occurring. Finally, we show that thrombopoietin up-regulates the BMP4 autocrine loop in megakaryocytic progenitors by inducing their production of BMP4 and up-regulating BMP receptor expression. In summary, this work indicates that BMP4 plays an important role in the control of human megakaryopoiesis.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1339-1339
Author(s):  
Franck E Nicolini ◽  
Sandrine Jeanpierre ◽  
Bastien Kaniewski ◽  
Charles Dumontet ◽  
Ruth Rimokh ◽  
...  

Abstract It has been shown in the past that Activin A, BMP-2 and BMP-4, three members of the TGF-β family, are involved in the regulation of hematopoiesis and particularly erythropoiesis, in humans. In this study, we explored the role of these molecules in human megakaryopoiesis using an in vitro serum-free assay initiated with purified normal CD34+ human bone marrow (BM) cells (from allogeneic BM donors), that allows the analysis of the impact of such molecules on all stages of megakaryocytic differentiation. We could demonstrate for the first time, that in the absence of thrombopoietin (TPO), BMP-4 is able to induce CD34+ progenitor commitment and differentiation into megakaryocytes throughout all stages through means of cytology, flow cytometry, CFU and LTC-IC and ploidy assays, as well as in vitro platelet production. We analyzed as well the expression of megakaryocytic specific factors such as FOG-2, Fli-1 and PF4 by RQ-PCR, and PF4, BMP-4 secretion in culture supernatants. While we have previously shown that Activin A and BMP-2 are involved in the erythropoietic commitment even in the absence of erythropoietin, we were not able to demonstrate any effect of these molecules on megakaryopoietic commitment and differentiation. Using signaling pathways specific inhibitors such as AG490 (JAK-2 pathway inhibitor), PD98059 (ERK pathway inhibitor), LY294002 (PI3-K inhibitor) and Rapamycin (mTOR pathway inhibitor), we could show that BMP-4, as TPO, exerts its effects on human megakaryopoiesis involving specifically the JAK/STAT and mTOR signaling pathways. In addition, the specific inhibition of the BMP signaling pathway with blocking antibodies (CD34+ BM cells cultured in the presence of anti-TPO-R and mouse anti-BMP-4 Antibody), natural soluble inhibitors [such as FLRG (Follistatin related gene) protein or Follistatin], or soluble BMP-receptors (sBMPR-Ia, sBMPR-Ib) has revealed that TPO uses the BMP-4 pathway to induce the megakaryopoietic commitment of human BM CD34+ progenitors. Finally, we could demonstrate that TPO up-regulates a BMP-4 autocrine loop in megakaryocytic progenitors, by inducing their own production of BMP-4 associated to an up-regulation of BMP-receptor expression. In conclusion, this study illustrates that BMP-4 represents an important actor in the regulation of human megakaryopoiesis.


2007 ◽  
Vol 232 (8) ◽  
pp. 979-992 ◽  
Author(s):  
Robert J. Wordinger ◽  
Abbot F. Clark

The human genome encodes at least 42 different members of the transforming growth factor-β superfamily of growth factors. Bone morphogenetic proteins (BMPs) are the largest subfamily of proteins within the transforming growth factor-β superfamily and are involved in numerous cellular functions including development, morphogenesis, cell proliferation, apoptosis, and extracellular matrix synthesis. This article first reviews BMPs and BMP receptors, BMP signaling pathways, and mechanisms controlling BMP signaling. Second, we review BMP and BMP receptor expression during embryonic ocular development/ differentiation and in adult ocular tissues. Lastly, future research directions with respect to BMP, BMP receptors, and ocular tissues are suggested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yumeko Satou-Kobayashi ◽  
Jun-Dal Kim ◽  
Akiyoshi Fukamizu ◽  
Makoto Asashima

AbstractActivin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann’s organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.


2014 ◽  
Vol 26 (1) ◽  
pp. 177
Author(s):  
H.-R. Lee ◽  
R.-E. Go ◽  
K.-C. Choi

Activated oestrogen receptor (ER) signaling pathway by 17β-estadiol (E2) appeared to suppress transforming growth factor β (TGF-β) signaling pathway by cross-talk with TGF-β components in ER-positive cancer cells. In this study, we further examined the inhibitory effects of alkylphenols, including 4-nonylphenol (NP), 4-otylphenol (OP), bisphenol A (BPA), and benzophenon-1 (BP-1), in TGF-β signaling pathway. The transcriptional and translational levels of TGF-β-related genes were examined by reverse-transcription PCR (RT-PCR), Western blotting analysis in xenografted mouse models of ovarian cancer BG-1 cells. The NP, OP, and BPA induced the expression of snoN, a TGF-β pathway inhibitor. Treatment with NP, BPA, and BP-1 resulted in decreased phosphorylation of Smad3, a downstream target of TGF-β. With these 2 effects, NP and BPA stimulated the proliferation of BG-1 cells via inhibition of the TGF-β signaling pathway. In a xenograft mouse model, transplanted BG-1 ovarian cancer cells showed significantly decreased phosphorylation of Smad3 and increased expression of snoN in the ovarian tumour masses following treatment with E2, NP, or BPA. In parallel with an in vitro model, the expressions of TGF-β signaling pathway were similarly regulated by NP or BPA in a xenograft mouse model, revealing consistent results. Taken together, these results support that NP and BPA may cause the disruption of the TGF-β signaling pathway and increase the risk of oestrogen-dependent cancers such as ovarian cancer. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ009599), Rural Development Administration, Republic of Korea.


2010 ◽  
Vol 30 (14) ◽  
pp. 3685-3694 ◽  
Author(s):  
Monika Krampert ◽  
Sridhar Reddy Chirasani ◽  
Frank-Peter Wachs ◽  
Robert Aigner ◽  
Ulrich Bogdahn ◽  
...  

ABSTRACT Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner.


2016 ◽  
Vol 311 (5) ◽  
pp. F926-F934 ◽  
Author(s):  
Lucas L. Falke ◽  
Hiroshi Kinashi ◽  
Amelie Dendooven ◽  
Roel Broekhuizen ◽  
Reinout Stoop ◽  
...  

Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-β expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yanlu Xiong ◽  
Yangbo Feng ◽  
Jinbo Zhao ◽  
Jie Lei ◽  
Tianyun Qiao ◽  
...  

AbstractTranscription factor AP-2α (TFAP2A) was previously regarded as a critical regulator during embryonic development, and its mediation in carcinogenesis has received intensive attention recently. However, its role in lung adenocarcinoma (LUAD) has not been fully elucidated. Here, we tried to investigate TFAP2A expression profiling, clinical significance, biological function and molecular underpinnings in LUAD. We proved LUAD possessed universal TFAP2A high expression, indicating a pervasively poorer prognosis in multiple independent datasets. Then we found TFAP2A was not indispensable for LUAD proliferation, and exogenous overexpression even caused repression. However, we found TFAP2A could potently promote LUAD metastasis possibly by triggering epithelial–mesenchymal transition (EMT) in vitro and in vivo. Furthermore, we demonstrated TFAP2A could transactivate Pregnancy-specific glycoprotein 9 (PSG9) to enhance transforming growth factor β (TGF-β)-triggering EMT in LUAD. Meanwhile, we discovered suppressed post-transcriptional silencing of miR-16 family upon TFAP2A partly contributed to TFAP2A upregulation in LUAD. In clinical specimens, we also validated cancer-regulating effect of miR-16 family/TFAP2A/PSG9 axis, especially for lymph node metastasis of LUAD. In conclusion, we demonstrated that TFAP2A could pivotally facilitate LUAD progression, possibly through a novel pro-metastasis signaling pathway (miR-16 family/TFAP2A/PSG9/ TGF-β).


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. 655-664 ◽  
Author(s):  
Pang-Pin Liu ◽  
Hsun-Ming Chang ◽  
Jung-Chien Cheng ◽  
Peter C K Leung

Activin A is one of the members of transforming growth factor-β superfamily that is expressed in human large luteal cells, and may act in an autocrine/paracrine manner to regulate luteal function. Prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme and its derivative, prostaglandin E2 (PGE2), play significant roles in the regulation of corpus luteum formation and maintenance. To date, whether activin A can induce the expression of PTGS2 and the production of PGE2 in human granulosa-lutein cells is largely unknown. The aim of this study was to examine the effects of activin A on the regulation of PTGS2 expression and PGE2 production in human granulosa-lutein cells, and to investigate the underlying signal transduction mechanisms. In this study, the immortalized (SVOG cells) and primary human granulosa-lutein cells were used as the cell models. A TGF-β/activin type I receptor inhibitor, SB431542 and small interfering RNAs were used to investigate the activin A-induced downstream signaling pathway. We have demonstrated that activin A upregulated the expression of PTGS2 and increased the production of PGE2 via an ACVR1B-mediated SMAD2/3–SMAD4 signaling pathway. Our results suggest that activin A may be involved in the modulation of human corpus luteum formation via the induction of PTGS2 expression and PGE2 production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Caijuan Huan ◽  
Wangting Xu ◽  
Yaru Liu ◽  
Kexin Ruan ◽  
Yueli Shi ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing unremitting extracellular matrix deposition. Transforming growth factor-β (TGF-β) superfamily involves bone morphogenetic proteins (BMPs) and TGF-β, and the balance between the activation of TGF-β-dependent SMADs (Smad2/3) and BMP-dependent SMADs (Smad1/5/8) is essential for fibrosis process. GREM2, initially identified as a TGF-β-inducible gene, encodes a small secreted glycoprotein belonging to a group of matricellular proteins, its role in lung fibrosis is not clear. Here, we identified Gremlin2 as a key regulator of fibroblast activation. Gremlin2 was highly expressed in the serum and lung tissues in IPF patients. Bleomycin-induced lung fibrosis model exhibited high expression of Gremlin2 in the bronchoalveolar lavage fluid (BALF) and lung tissue. Isolation of primary cells from bleomycin-induced fibrosis lung showed a good correlation of Gremlin2 and Acta2 (α-SMA) expressions. Overexpression of Gremlin2 in human fetal lung fibroblast 1 (HFL-1) cells increased its invasion and migration. Furthermore, Gremlin2 regulates fibrosis functions through mediating TGF-β/BMP signaling, in which Gremlin2 may activate TGF-β signaling and inhibit BMP signaling. Therefore, we provided in vivo and in vitro evidence to demonstrate that Gremlin2 may be a potential therapeutic target for the treatment of IPF.


Sign in / Sign up

Export Citation Format

Share Document