Minimal Residual Disease (MRD) and T/NK Cell Dynamics during Fludarabine, Cyclophosphamide Plus Rituximab (FCR) Followed by Fludarabine Plus Rituximab (FR) and Remission Maintenance Therapy with Rituximab in Previously Untreated B-Chronic Lymphocytic Leukemia (B-CLL): Riskfactor Stratification in the Chairos Study

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3175-3175 ◽  
Author(s):  
Alexander Egle ◽  
Lukas Weiss ◽  
Franz Gassner ◽  
Gudrun Russ ◽  
Lisa Pleyer ◽  
...  

Abstract Based on the efficacy of Fludarabine, Cyclophosphamide plus Rituximab (FCR) as first-line therapy for chronic lymphocytic leukemia (CLL), we conducted a non-randomized multi-center phase II trial with early brief intensive induction with FCR for 3 cycles followed by fludarabine/rituximab for 3 cycles. In addition patients received a 2 year 3-monthly rituximab maintenance regimen. The trial recruited 42 patients. Clinical baseline data, clinical response results and toxicity of a planned first interim analysis were reported previously (Egle et al, ASH 2007). We now present the data from flow cytometric minimal residual disease (MRD) monitoring during the study in combination with the performed risk factor analyses and report on the findings of detailed analysis of T-cell and NK cell dynamics during the induction phase of the trial. From the previously reported high number of CRs (94% after complete 6 cycle induction) 64% were MRD negative by flow cytometric definition (less than 10−3 G/L CLL cells). All non CR patients were correctly called as MRD positive. Less than 0.1 G/L CLL cells after 3 cycles of FCR identified all patients achieving MDR negativity after the complete induction regimen. CD30 risk, as well as age, FISH cytogenetic analysis and analysis of IgVH mutation status were analysed for their impact on MRD dynamics. We could not find any difference in MRD responses between CD38 high and low risk groups or between age groups (> and <65a). Neither did abberations found in FISH cytogenetics predict the MRD responses and all CLL patients harboring an 11q deletion achieved MRD negativity. Interestingly, we found the only predictive factor to be the IgVH mutation status with 15 unmutated CLL patients significantly less likely to achieve MRD negativity after induction treatment (p=0,025). Especially, three patients with rearranged IgVH 3–21 did poorly, suggesting that these patients may need a different therapeutic approach. Six months of Rituximab maintenance therapy were able to convert 37% of patients from MRD positive state after remission induction to a MRD negative state. T and NK cell numbers and ratios were followed during therapy. In addition T cell subsets and their CD38 expression status were analysed. While absolute T and NK/NKT cell numbers decreased dramatically during treatment (CD4 and CD8 cell numbers decreased to medians of less than 100/μl after 6 cycles of induction treatment), a count of less than 200 CD4 cells/μl after 3 cycles of FCR was found to be predictive of MRD negativity. In addition, we observed an earlier recovery of NK and NKT cells after the end of induction treatment leading to an inverted NK(T) to T cell ratio early during maintenance treatment. This may have implications for NK-dependent ADCC during rituximab maintenance therapy. Regarding the CD4 and CD8 compartment we observed in addition to the reduction in absolute numbers a marked shift of T cell subsets. Naïve T cells were more completely depleted by FCR/FR treatment than T cells from the memory compartment, with central memory (CM) CD4 cells increasing from a median of 49% to 79%. This was less pronounced in the CD8 compartment. CD38 expression on T cells was monitored, because our group found that this was predictive of CLL course (Tinhofer Blood 2006). Interestingly we found a marked increase of the proportional representation of CD38+ CD8 and CD4 T cells in the T cell compartment with a more pronounced effect observed in the CD8 compartment. CD8 T cell counts were also quicker to recover during rituximab maintenance therapy. While these data point to essential caveats regarding the immunosuppressive toxicity of the treatment, they may also point to a window of opportunity regarding the modification of T cell responses during the phase of immune reconstitution after FCR/FR therapy. In conclusion we find that only IgVH mutation status was predictive of achievement of MRD negativity and we could show significant skewing of T cell and NK(T) cell subsets during chemoimmunotherapy. A better understanding of these T/NK cell dynamics may lead to the development of improved targeting of the immune recovery phase after chemotherapy using immunomodulating maintenance strategies.

2015 ◽  
Vol 3 (1) ◽  
pp. 11-20
Author(s):  
Kaushal Kishore Tiwari ◽  
Silverio Sbrana ◽  
Stefano Bevilacqua ◽  
Paola Giungato ◽  
Angela Pucci ◽  
...  

INTRODUCTION: Ascending thoracic aortic aneurysm (TAA) is a multi-factorial process in which histological modifications and immune-mediated inflammation are closely associated. The predominant role of a Th1-mediated response in influencing aortic wall remodeling, dilation, and aneurysm formation has been suggested by previous studies. Recently, the importance of chemokine receptors for Th1 cells recruitment into vascular inflammatory sites, as well as of the balance between pro- and anti-inflammatory T-cell subsets in influencing the severity of coronary artery disease, have been described.MATERIAL AND METHODS: We evaluated activation markers and chemokine receptors expression on peripheral T-cell and NK cell subsets of subject with aortic valve disease associated with ascending TAA (ascending aortic diameter > 4 cm) and undergoing elective surgery for TAA (Group A), in comparison with patients with aortic valve disease without TAA (ascending aortic diameter < 4 cm) (Group B). Peripheral blood samples from the two groups were also compared for intracellular T-lymphocyte cytokine production, frequency of regulatory T cells (Treg) and soluble levels of cytokine and chemokines. The aortic size index (ASI) was considered a parameter able to reflect aortic pathophysiological modifications leading to aortic dilation.RESULTS: The results demonstrated correlations between ASI values and CCR5 expression on CD3+, CD3+/CD8+, CD4+ and CD4+/CD28- T-cell subsets. In Group A the expression of CCR5 was higher on CD3+/CD8+, CD4+ and CD4+/CD28- T-cell subsets, when compared with Group B. CD4+ and CD4+/CD28- T-cells in Group A showed also a higher expression for the co-stimulatory molecule CD28 and the activation marker CD25, respectively. An increased expression of CXCR3 was found on CD4+, CD3+/CD8+ and CD3+/TCR+ T-cell subsets in Group A. A higher circulating fraction of NK cells, together with a higher NK cell positivity for CX3CR1, were observed in aneurysmatic patients. Intracellular cytokine analysis demonstrated a higher fraction of CD3+/CD4+ T-cells producing IL-17A and IL-10 in Group A, together with a higher intracellular content for IL-21. Finally, a higher soluble level of fractalkine (CX3CL1) has been detected in aneurysm group.CONCLUSION: Results indicate a higher activation state, migratory capacity and cytotoxic potential of peripheral blood NK and T-cell subsets in patients with aortic valve disease associated with ascending TAA, when compared with patients affected by aortic valve disease alone. These findings, together with the observed higher polarization towards a Th17 in patients with aortic aneurysm could suggest the involvement of autoimmune mechanisms leading to cellular loss, inflammation and fibrosis during ascending aortic wall dilation and aneurysmatic progression.Journal of Universal College of Medical Sciences Vol. 3, No. 1, 2015: 11-20


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Timothy J Stevenson ◽  
Youssef Barbour ◽  
Brian J McMahon ◽  
Lisa Townshend-Bulson ◽  
Annette M Hewitt ◽  
...  

Abstract Background Chronic hepatitis C virus (HCV) infection diminishes immune function through cell exhaustion and repertoire alteration. Direct acting antiviral (DAA)-based therapy can restore immune cell subset function and reduce exhaustion states. However, the extent of immune modulation following DAA-based therapy and the role that clinical and demographic factors play remain unknown. Methods We examined natural killer (NK) cell, CD4+, and CD8+ T cell subsets along with activation and exhaustion phenotypes across an observational study of sofosbuvir-based treatment for chronic HCV infection. Additionally, we examined the ability of clinical variables and duration of infection to predict 12 weeks of sustained virologic response (SVR12) immune marker outcomes. Results We show that sofosbuvir-based therapy restores NK cell subset distributions and reduces chronic activation by SVR12. Likewise, T cell subsets, including HCV-specific CD8+ T cells, show reductions in chronic exhaustion markers by SVR12. Immunosuppressive CD4+ regulatory T cells decrease at 4-weeks treatment and SVR12. We observe the magnitude and direction of change in immune marker values from pretreatment to SVR12 varies greatly among participants. Although we observed associations between the estimated date of infection, HCV diagnosis date, and extent of immune marker outcome at SVR12, our regression analyses did not indicate any factors as strong SVR12 outcome predictors. Conclusion Our study lends further evidence of immune changes following sofosbuvir-based therapy. Further investigation beyond SVR12 and into factors that may predict posttreatment outcome is warranted.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2171
Author(s):  
Isabel Valhondo ◽  
Fakhri Hassouneh ◽  
Nelson Lopez-Sejas ◽  
Alejandra Pera ◽  
Beatriz Sanchez-Correa ◽  
...  

Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3300-3300
Author(s):  
Don Benson ◽  
Leslie Andritsos ◽  
Mehdi Hamadani ◽  
Thomas Lin ◽  
Joseph Flynn ◽  
...  

Abstract Introduction: Chronic lymphocytic leukemia (CLL), the most common form of leukemia in the Western hemisphere, is associated with severe innate, adaptive and humoral immune dysregulation. CLL remains essentially incurable, with the potential exception of allogeneic stem cell transplantation (ASCT). Natural killer (NK) cells are CD56(+), CD3(−) large granular lymphocytes that comprise a key cellular subset of the innate immune system. Preliminary in vitro data suggest an NK cell versus CLL effect exists, similar to that observed in acute myeloid leukemia (AML) and other blood cancers. Novel immune therapies for CLL (e.g., rituximab, alemtuzumab) likely exert anti-tumor effect, in part, through NK cells, in fact. Although NK cells contribute to the graft-versus-tumor effect following ASCT for other blood cancers, little is known regarding the potential role NK cells may play in the clinical allogeneic transplant setting for CLL. Herein, we provide, to our knowledge, the first report regarding NK cell immune reconstitution following ASCT for CLL. Methods: 27 CLL patients underwent reduced intensity conditioning (RIC) with ASCT. Median age was 52 years (43–69), median number of prior therapies was 3 (2–11). 55% had chemotherapy-refractory disease, and 55% had “high-risk” cytogenetics by FISH (deletion 17p or 11q22-23 abnormality). 14 patients had sibling donors, 15 had volunteerunrelated donors. Conditioning regimens included Fludarabine/TBI/Alemtuzumab (n=8), Fludarabine/Busulfan with (n=9) or without ATG (n=6), and Fludarabine/Cyclophosphamide (n=4). GVHD prophylaxis consisted of tacrolimus/MMF (n=8) or tacrolimus/methotrexate (n=19). Patients underwent bone marrow assessment prior to day +75 following ASCT. Marrow was studied for engraftment, donor chimerism, and disease status as well as lymphoid immune reconstitution by percentage of total lymphocytes and absolute lymphocyte counts by multi-color flow cytometry. Results: NK cell immune reconstitution was predicted by disease status at transplantation. Patients in complete or partial remission at the time of ASCT had more robust NK cell recovery (mean = 45% of total lymphocytes +/− SEM 5%) as compared to patients entering transplant with refractory disease (16% +/− 1, p < 0.01). No differences were observed in CD4(+) or CD8(+) T cells and no lymphocyte subset recovery was associated with CD34(+) or CD3(+) cell dosage. Achieving complete donor chimerism by day +60 was associated with robust NK cell recovery (55% +/− 1 versus 7% +/−1, p = 0.02), recovery of CD4 and CD8 T cells was not associated with chimerism status, however. Patients who went onto exhibit a complete response to ASCT had greater early NK cell reconstitution (31% +/− 3) as compared to those who had no response (8% +/− 1, p = 0.01). No differences in T cell subsets were associated with response. Patients who ultimately achieved complete remission following transplant had a lower CLL:NK cell ratio in marrow (0.35 +/− 0.07) than those who did not (8.1 +/− 1, p = 0.01). However, differences in CLL:CD4(+) and CLL:CD8(+) T cells were not predictive of response. Trends to improvement in progression free survival and overall survival were observed for patients with NK cell reconstitution above the median for the group as compared to those below; no such trends were observed regarding T cell subsets. Greater NK cell reconstitution trended towards ultimate eradication of minimal residual disease following ASCT, but no such trends were observed for T cell subsets. Conclusions: Early NK cell recovery predicts survival following autologous and allogeneic SCT in a number of hematologic malignancies; however, little is known regarding this phenomenon in CLL. To our knowledge, these are the first findings to implicate a potentially important therapeutic role for early NK cell compartment recovery in CLL following ASCT. Further research into restoring and augmenting NK cell function following RIC/ASCT for CLL is warranted.


1999 ◽  
Vol 190 (8) ◽  
pp. 1189-1196 ◽  
Author(s):  
Paul Gadue ◽  
Neil Morton ◽  
Paul L. Stein

T lymphocytes express two Src tyrosine kinases, Lck and Fyn. While thymocyte and T cell subsets are largely normal in fyn−/− mice, animals lacking Lck have impaired T cell development. Here, it is shown that Fyn is required for the rapid burst of interleukin (IL)-4 and IL-13 synthesis, which occurs promptly after T cell receptor activation. The lack of cytokine induction in fyn mutant mice is due to a block in natural killer (NK) T cell development. Studies using bone marrow chimeras indicate that the defect behaves in a cell-autonomous manner, and the lack of NK T cells is probably not caused by inappropriate microenvironmental cues. Both NK T cells and conventional T cells express similar levels of Lck, implying that Fyn and Lck have distinct roles in regulating NK T cell ontogeny. The fyn mutation defines the first signaling molecule that is selectively required for NK T cell, but not for T lymphocyte or NK cell development.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1590-1590 ◽  
Author(s):  
Zhi-Zhang Yang ◽  
Hyo Jin Kim ◽  
Shahrzad Jalali ◽  
Hongyan Wu ◽  
Tammy Price-Troska ◽  
...  

Abstract T cell Ig and ITIM domain (TIGIT) is an immune checkpoint molecule that is expressed on a variety of cell types including NK cells, effector and memory T cells, and Treg cells. Upon ligation with CD155, TIGIT delivers an inhibitory signal and negatively regulates anti-tumor responses. While important in normal T-cell biology, the pathological significance of TIGIT expression and function in the tumor microenvironment of the patients with follicular lymphoma (FL) is largely unknown. The present study sought to phenotypically and functionally characterize TIGIT+ T cell subsets in FL. While its expression is not detected on resting T cells in peripheral blood, we found that TIGIT is highly expressed on intratumoral T cells from FL. Treatment with cytokines such as IL-4 and TGF-β downregulated TIGIT expression on T cells. We found that TIGIT is predominantly expressed on effector memory T cells (TEM) with an activation/exhausted phenotype, and TIGIT+ T cells have higher expression levels of CD69 and PD-1 when compared to TIGIT- T cells. Functionally, TIGIT+ T cells displayed reduced capacity of cell proliferation and cytokine production (IFN-γ and IL-2). Using mass cytometry (CyTOF), we observed that TIGIT is abundantly expressed on some intratumoral Treg (CD4+CD25+Foxp3+) cells, while other Treg cells lack TIGIT expression in FL, forming two subsets of Treg cells: CD4+CD25+TIGIT+ and CD4+CD25+TIGIT-. These two subsets are phenotypically distinct in that CD25+TIGIT+ cells exhibited increased expression of activation/costimulatory markers such as CD69, CD27 and CD28 compared to CD25+TIGIT-, suggesting an activated Treg subset of CD25+TIGIT+ cells. This CD25+TIGIT+ subset had increased suppressive function and could more effectively inhibit activation and proliferation of CD8+ T cells than CD25+TIGIT- cells. Furthermore, we found that lymphoma B cells promoted the development of TIGIT-expressing T cells as TGF-β-mediated downregulation of TIGIT on T cells was inhibited when CD19+ lymphoma cells were present. Using a cohort of 31 FL patients, we found that intratumoral TIGIT-expressing T cells were associated with a favorable prognosis. Patients with TIGIT+ T cell numbers greater than 50% had better overall survival than patients with TIGIT+ T cell numbers less than 50%. Taken together, our results reveal a role of TIGIT in defining Treg cell subsets with different immune function and TIGIT expression may be useful in predicting patient outcome in FL. Disclosures Ansell: Takeda: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer: Research Funding; Seattle Genetics: Research Funding; Celldex: Research Funding; Regeneron: Research Funding; LAM Therapeutics: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Merck & Co: Research Funding.


2013 ◽  
Vol 81 (12) ◽  
pp. 4649-4658 ◽  
Author(s):  
Justin M. Chan ◽  
Ganive Bhinder ◽  
Ho Pan Sham ◽  
Natasha Ryz ◽  
Tina Huang ◽  
...  

ABSTRACTBoth idiopathic and infectious forms of colitis disrupt normal intestinal epithelial cell (IEC) proliferation and differentiation, although the mechanisms involved remain unclear. Recently, we demonstrated that infection by the attaching and effacing murine pathogenCitrobacter rodentiumleads to a significant reduction in colonic goblet cell numbers (goblet cell depletion). This pathology depends on T and/or B cells, asRag1−/−mice do not suffer this depletion during infection, instead suffering high mortality rates. To address the immune mechanisms involved, we reconstitutedRag−/−mice with either CD4+or CD8+T cells. Both T cell subsets increasedRag1−/−mouse survival during infection, with mice that received CD8+T cells developing colonic ulcers but not goblet cell depletion. In contrast, mice that received CD4+T cells showed goblet cell depletion in concert with exaggerated IEC proliferation. To define the possible involvement of T cell-derived cytokines, we infected gamma interferon receptor gene knockout (IFN-γR−/−) mice and wild-type mice given interleukin 17A (IL-17A) neutralizing antibodies and found that IFN-γ signaling was required for both goblet cell depletion and increased IEC proliferation. Immunostaining revealed thatC. rodentiumcells preferentially localized to nonhyperplastic crypts containing numerous goblet cells, whereas hyperplastic, goblet cell-depleted crypts appeared protected from infection. To address whether goblet cell depletion benefits theC. rodentium-infected host, we increased goblet cell numbers using the γ-secretase inhibitor dibenzazepine (DBZ), which resulted in greatly increased pathogen burdens and mortality rates. These results demonstrate that goblet cell depletion reflects host immunomodulation of IEC homeostasis and reflects a novel host defense mechanism against mucosal-adherent pathogens.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3069-3069
Author(s):  
Anna Kreutzman ◽  
Perttu Koskenvesa ◽  
Kasanen Tiina ◽  
Ulla Olsson-Strömberg ◽  
Jesper Stentoft ◽  
...  

Abstract Background: Tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukemia (CML) are not entirely selective for the BCR-ABL1 kinase but also inhibit a variety of other kinases, sometimes triggering unpredicted biological effects. As an example, the TKIs dasatinib and bosutinib both inhibit Src-kinases, which are important mediators of T-cell function. Earlier in vitro data has shown that dasatinib can suppress activation and proliferation of T and NK cells, but it can also elicit signs of immunostimulation in patients, including rapid mobilization of lymphocytes and LGL lymphocytosis. No extensive analyses of the immunological in vivoeffects of bosutinib have been performed thus far. Therefore, we aimed at characterizing T and NK cell phenotypes and functional features in CML patients in a clinical setting in the context of first-line bosutinib and imatinib treatment. Methods:Peripheral blood samples were obtained from newly diagnosed CML CP patients enrolled in the BFORE clinical trial (NCT02130557), receiving bosutinib (n=13) or imatinib (n=20) as frontline TKI treatment. Samples were drawn at diagnosis and following 3 and 12 months of therapy. Detailed immunophenotyping of NK and T cells was performed with multicolor flow cytometry. In addition, mononuclear cells were used to study the function of NK and T cells (CD107ab degranulation upon stimulation with K562 cells and detection of IFN-γ/TNF-α secretion after stimulation with anti-CD3/anti-CD28 antibodies, respectively). Moreover, blood differential counts were taken before and 2 hours after drug intake at 3 and 12 months to examine the direct effects on lymphocyte counts (mobilization). Results: No significant changes were observed in absolute white blood cell or lymphocyte counts directly (2 hours) after bosutinib or imatinib intake, in contrast to what has been observed in dasatinib treated patients. Analysis of T cell subsets during bosutinib treatment revealed that the proportion of CD4+ cells increased after the start of treatment (median dg. 60.0% vs. 3 months 62.0% p=0.06; vs. 12 months 72.8% p=0.03), but no significant changes were observed in the phenotype. Correspondingly, the proportion of CD8+ T-cells decreased moderately (dg. 31.6% vs. 3 months 25.5% p=0.01) after the therapy start. Interestingly, the proportion of PD1+ (dg. 19.6% vs. 3 months 11.9%, p=0.06; vs. 12 months 14.3%, p=0.11) and DNAM+ CD8+ T-cells decreased (dg. 73.1% vs. 3 months 66.2% p=0.004; vs. 12 months 64.6% p=0.02). No changes in the cytokine production of any of the studied subgroups of T-cells was observed. Moreover, the proportion, phenotype and function of NK-cells were not affected by bosutinib treatment. In contrast, during imatinib treatment the proportion of CD56+CD16+ NK-cells significantly increased (dg 4.3% vs. 3 months 9.9% p=0.0005; vs 12 months 14.4% p=0.002; 8.1% in bosutinib treated patients). Moreover, in imatinib patients NK-cells downregulated CD27 (dg 9.0% vs. 3 months 5.2% p=0.004; vs. 12 months 4.9%; p=0.002). Further, NK-cells from imatinib-treated patients expressed more CD107ab upon stimulation with K562 at 3 and 12 months, when compared to samples from diagnosis (dg 13.0% vs. 3 months 16.1%, p=0.01; vs. 12 months 23.2%, p=0.008). The proportion of CD4+ T-cells increased 3 months after the start of imatinib treatment (dg 60.1% vs. 3 months 63.5% p=0.01), whereas the percentage of CD8+ T-cells decreased (dg. 38.6% vs. 3 months 31.5% p=0.02). Decreased expression of DNAM (dg 73.5% vs. 3 months 67.9% p=0.0008; vs. 12 months 62.4% p=0.002) was observed in the CD4+ T-cells. Similarly as in bosutinib treated patients, the proportion of PD1+ CD8+ cells decreased during imatinib treatment (dg 18.2% vs. 3 months 14.7%, p=0.02; vs. 12 months 14.8%, p=0.03). Both CD4+ and CD8+ T-cell subsets from imatinib-treated patients secreted less cytokines after the start of treatment when compared to the pre-treatment samples. Conclusions: Despite of the Src-kinase inhibitory profile of bosutinib, no major changes were observed in T- or NK-cell phenotype or function during first-line bosutinib treatment. In contrast, in imatinib treated patients the proportion of NK-cells increased and their degranulation responses were significantly higher than in untreated CML patients. Comparison of these data with the clinical variables and treatment outcome is warranted. Disclosures Stentoft: Novartis: Research Funding; Bristol-Myers-Squibb: Research Funding; Pfizer: Research Funding; Ariad: Research Funding. Gjertsen:BerGenBio AS: Consultancy, Research Funding. Janssen:Pfizer: Honoraria; Novartis: Research Funding; Ariad: Honoraria; BMS: Honoraria. Brümmendorf:Pfizer: Research Funding; Novartis: Research Funding. Richter:BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Ariad: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding. Mustjoki:Pfizer: Honoraria, Research Funding; Ariad: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Author(s):  
Cirino Botta ◽  
Catarina Da Silva Maia ◽  
Juan-José Garcés ◽  
Rosalinda Termini ◽  
Cristina Perez ◽  
...  

Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P &lt;.001), and of progression-free (HR: 4.09; P &lt;.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4027-4027
Author(s):  
Christopher Sauter ◽  
Chandra Biswas ◽  
Cavan Bailey ◽  
Michelle Panis ◽  
Tulin Budak-Alpdogan ◽  
...  

Abstract Abstract 4027 The success of haploidentical (HI) hematopoietic stem cell transplantation (HSCT), suggests that graft-versus-leukemia (GVL) effect might have a substantial role in this transplant modality. Rigorous T-cell depletion (TCD) of the graft decreases the occurrence of graft-versus-host disease (GVHD) in HI-HSCT, however this results in immunodeficiency and high disease relapse rate, especially in patients with resistant or residual leukemia. Therefore, enhancing GVL activity of HSCT without increasing GVHD is crucial for improving the outcome of haploidentical transplant. Post-transplant IL-15 administration is shown to enhance immune reconstitution, particularly donor-derived NK and CD8+ T cell populations in murine models. We evaluated the efficacy of IL-15 for enhancing GVL effect in recipients of HI-HSCT. For developing clinically relevant haploidentical transplant models, different hybrid mice with B6 background that share the same haplotype (H2Kb) are used for our murine haploindentical transplant experiments. Lethally irradiated B6D2F1/J (H2Kb/d) mice are transplanted with B6CBAF1/J (H2Kb/k) TCD bone marrow (BM) and T cells at varying doses. Some animals were also given P815 tumor cells on the day of transplant. Administration of IL-15 significantly increased the numbers of CD8+ T and NK cells in the spleen and BM in the T cell depleted model at post-transplant day 28. Infusion of very low dose haploidentical T cells (1×104) with TCD-BM resulted in a conflicting effect on immune reconstitution, i.e. increased T cell numbers, and decreased NK cell population. Post-transplant IL-15 administration also changed this immune reconstitution pattern and significantly increased both T and NK cell numbers in recipients of HI-HSCT. In P815 challenged mice that were transplanted with very low dose T cell added TCD-BM, IL-15 administration significantly increased anti-tumor activity of the graft and improved survival (Figure 1) without increasing GVHD. This effect was observed when IL-15 administration was given at a later time point rather than immediately following transplantation, possibly allowing for more donor cell engraftment and T cell proliferation to take place. IL-15 administration without T cell infusion did not result in any survival improvement. We conclude that in our experimental HI transplant models, IL-15 administration augments anti-tumor effect of the HI-HSCT without increasing GVHD risk, and this effect requires presence of donor derived T cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document