Gfi-1 Represses CDKN2B Encoding p15INK4B through Interaction with Miz-1

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3578-3578
Author(s):  
Qingquan Liu ◽  
Suchitra Basu ◽  
Yaling Qiu ◽  
Fan Dong

Abstract Zinc finger (ZF) transcriptional repressor Gfi-1 plays an important role in hematopoiesis and inner ear development, and also functions as an oncoprotein that cooperates with c-Myc in lymphomagenesis. Gfi-1 represses transcription by directly binding to the consensus DNA sequence in the promoters of its target genes. We report here an alternative mechanism by which Gfi-1 represses CDKN2B encoding the cyclin-dependent kinase inhibitor p15INK4B. Gfi-1 did not directly bind to CDKN2B, but interacted with Miz-1 and, via Miz-1, was recruited to the core promoter of CDKN2B. The C-terminal zinc finger domains of Gfi-1 and Miz-1 are involved in the interaction. Miz-1 is a POZ-ZF transcription factor that has been shown to mediate transcriptional repression by c-Myc. Like c-Myc, upon recruitment to the CDKN2B promoter, Gfi-1 repressed transcriptional activation of CDKN2B by Miz-1 and in response to TGFb. Notably, Gfi-1 and c-Myc formed a ternary complex with Miz-1 and were both recruited to the CDKN2B core promoter via Miz-1, and acted in collaboration to repress CDKN2B. Consistent with its role in repressing CDKN2B transcription, knockdown of Gfi-1 in human leukemic cells resulted in augmented levels of p15INK4B, which was associated with attenuated cell proliferation. The expression of p15INK4B was also significantly higher in Gfi-1−/− mouse bone marrow (BM) cells than in Gfi-1+/+ BM cells. Our data reveal a novel mechanism of transcriptional repression by Gfi-1 and also identify CDKN2B as a new Gfi-1 target gene. The findings may have important implications for understanding the role of Gfi-1 in normal development and the cooperation between Gfi-1 and c-Myc in lymphomagenesis.

2000 ◽  
Vol 20 (8) ◽  
pp. 2676-2686 ◽  
Author(s):  
Andrew W. Snowden ◽  
Lisa A. Anderson ◽  
Gill A. Webster ◽  
Neil D. Perkins

ABSTRACT The transcriptional coactivators p300 and CREB binding protein (CBP) are important regulators of the cell cycle, differentiation, and tumorigenesis. Both p300 and CBP are targeted by viral oncoproteins, are mutated in certain forms of cancer, are phosphorylated in a cell cycle-dependent manner, interact with transcription factors such as p53 and E2F, and can be found complexed with cyclinE-Cdk2 in vivo. Moreover, p300-deficient cells show defects in proliferation. Here we demonstrate that transcriptional activation by both p300 and CBP is stimulated by coexpression of the cyclin-dependent kinase inhibitor p21WAF/CIP1. Significantly this stimulation is independent of both the inherent histone acetyltransferase (HAT) activity of p300 and CBP and of the previously reported carboxyl-terminal binding site for cyclinE-Cdk2. Rather, we describe a previously uncharacterized transcriptional repression domain (CRD1) within p300. p300 transactivation is stimulated through derepression of CRD1 by p21. Significantly p21 regulation of CRD1 is dependent on the nature of the core promoter. We suggest that CRD1 provides a novel mechanism through which p300 and CBP can switch activities between the promoters of genes that stimulate growth and those that enhance cell cycle arrest.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4071-4082 ◽  
Author(s):  
Bob Argiropoulos ◽  
Eric Yung ◽  
Ping Xiang ◽  
Chao Yu Lo ◽  
Florian Kuchenbauer ◽  
...  

MEIS1 is a three–amino acid loop extension class homeodomain-containing homeobox (HOX) cofactor that plays key roles in normal hematopoiesis and leukemogenesis. Expression of Meis1 is rate-limiting in MLL-associated leukemias and potently interacts with Hox and NUP98-HOX genes in leukemic transformation to promote self-renewal and proliferation of hematopoietic progenitors. The oncogenicity of MEIS1 has been linked to its transcriptional activation properties. To further reveal the pathways triggered by Meis1, we assessed the function of a novel engineered fusion form of Meis1, M33-MEIS1, designed to confer transcriptional repression to Meis1 target genes that are otherwise up-regulated in normal and malignant hematopoiesis. Retroviral overexpression of M33-Meis1 resulted in the rapid and complete eradication of M33-Meis1–transduced normal and leukemic cells in vivo. Cell-cycle analysis showed that M33-Meis1 impeded the progression of cells from G1-to-S phase, which correlated with significant reduction of cyclin D3 levels and the inhibition of retinoblastoma (pRb) hyperphosphorylation. We identified cyclin D3 as a direct downstream target of MEIS1 and M33-MEIS1 and showed that the G1-phase accumulation and growth suppression induced by M33-Meis1 was partially relieved by overexpression of cyclin D3. This study provides strong evidence linking the growth-promoting activities of Meis1 to the cyclin D-pRb cell-cycle control pathway.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


Gut ◽  
2019 ◽  
Vol 68 (7) ◽  
pp. 1287-1296 ◽  
Author(s):  
Thomas Longerich ◽  
Volker Endris ◽  
Olaf Neumann ◽  
Eugen Rempel ◽  
Martina Kirchner ◽  
...  

ObjectiveWe aimed at the identification of genetic alterations that may functionally substitute for CTNNB1 mutation in ß-catenin-activated hepatocellular adenomas (HCAs) and hepatocellular carcinoma (HCC).DesignLarge cohorts of HCA (n=185) and HCC (n=468) were classified using immunohistochemistry. The mutational status of the CTNNB1 gene was determined in ß-catenin-activated HCA (b-HCA) and HCC with at least moderate nuclear CTNNB1 accumulation. Ultra-deep sequencing was used to characterise CTNNB1wild-type and ß-catenin-activated HCA and HCC. Expression profiling of HCA subtypes was performed.ResultsA roof plate-specific spondin 2 (RSPO2) gene rearrangement resulting from a 46.4 kb microdeletion on chromosome 8q23.1 was detected as a new morphomolecular driver of β-catenin-activated HCA. RSPO2 fusion positive HCA displayed upregulation of RSPO2 protein, nuclear accumulation of β-catenin and transcriptional activation of β-catenin-target genes indicating activation of Wingless-Type MMTV Integration Site Family (WNT) signalling. Architectural and cytological atypia as well as interstitial invasion indicated malignant transformation in one of the RSPO2 rearranged b-HCAs. The RSPO2 gene rearrangement was also observed in three β-catenin-activated HCCs developing in context of chronic liver disease. Mutations of the human telomerase reverse transcriptase promoter—known to drive malignant transformation of CTNNB1-mutated HCA—seem to be dispensable for RSPO2 rearranged HCA and HCC.ConclusionThe RSPO2 gene rearrangement leads to oncogenic activation of the WNT signalling pathway in HCA and HCC, represents an alternative mechanism for the development of b-HCA and may drive malignant transformation without additional TERT promoter mutation.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3939-3947 ◽  
Author(s):  
Ari Melnick ◽  
Graeme W. Carlile ◽  
Melanie J. McConnell ◽  
Adam Polinger ◽  
Scott W. Hiebert ◽  
...  

Abstract The AML-1/ETO fusion protein, created by the (8;21) translocation in M2-type acute myelogenous leukemia (AML), is a dominant repressive form of AML-1. This effect is due to the ability of the ETO portion of the protein to recruit co-repressors to promoters of AML-1 target genes. The t(11;17)(q21;q23)-associated acute promyelocytic leukemia creates the promyelocytic leukemia zinc finger PLZFt/RARα fusion protein and, in a similar manner, inhibits RARα target gene expression and myeloid differentiation. PLZF is expressed in hematopoietic progenitors and functions as a growth suppressor by repressing cyclin A2 and other targets. ETO is a corepressor for PLZF and potentiates transcriptional repression by linking PLZF to a histone deacetylase-containing complex. In transiently transfected cells and in a cell line derived from a patient with t(8;21) leukemia, PLZF and AML-1/ETO formed a tight complex. In transient assays, AML-1/ETO blocked transcriptional repression by PLZF, even at substoichiometric levels relative to PLZF. This effect was dependent on the presence of the ETO zinc finger domain, which recruits corepressors, and could not be rescued by overexpression of co-repressors that normally enhance PLZF repression. AML-1/ETO also excluded PLZF from the nuclear matrix and reduced its ability to bind to its cognate DNA-binding site. Finally, ETO interacted with PLZF/RARα and enhanced its ability to repress through the RARE. These data show a link in the transcriptional pathways of M2 and M3 leukemia.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1547-1547
Author(s):  
Samuel A. Stoner ◽  
Elizabeth T. Andrews ◽  
Russell Dekelver ◽  
Stephanie Weng ◽  
Miao-Chia Lo ◽  
...  

Abstract The t(8;21) chromosomal translocation is among the most frequent recurring cytogenetic abnormalities associated with acute myeloid leukemia (AML), found in 8-12% of de novo AML patients. The t(8;21) results in the stable fusion of the RUNX1 and RUNX1T1 genes, and formation of the oncofusion protein RUNX1-ETO (AML1-ETO). RUNX1-ETO is composed of the N-terminal DNA-binding domain of RUNX1 and nearly the entire ETO protein. RUNX1-ETO promotes leukemia development via the recruitment of transcription factor/transcriptional repression complexes (including NCOR, HDACs, p300, etc.) to regulatory regions of RUNX1 target genes known to be critical for myeloid differentiation and function, such as CEBPA, SPI1 (PU.1), NFE2, and CSF1R. Despite this knowledge, additional RUNX1-ETO target genes remain poorly characterized, and the complete molecular mechanism through which RUNX1-ETO leads to leukemic transformation remains to be elucidated. We propose that a better understanding of additional RUNX1-ETO target genes will lead to the potential for development of novel therapeutics to treat these patients. One such gene that we initially identified as markedly downregulated in RUNX1-ETO leukemia cells using a mouse model of t(8;21) AML is RASSF2 (Lo et al, Blood, 2012). Assessment of publicly available gene expression data revealed that RASSF2 is specifically downregulated in the bone marrow of t(8;21) AML patients compared to patients of different cytogenetic subtypes or to non-t(8;21) FAB subtype M2 AML patients. Additionally, RT-qPCR analysis confirmed that RASSF2 transcript is downregulated 10-100-fold in the t(8;21) AML cell lines, Kasumi-1 and SKNO-1, compared to non-t(8;21) AML cell lines and normal CD34+ hematopoietic cells. Expression of RUNX1-ETO in a non-t(8;21) AML cell line led to a reduction in RASSF2 mRNA expression, while knockdown of RUNX1-ETO in Kasumi-1 cells resulted in a ~5-fold increase in RASSF2 expression. Assessment of published ChIP-seq data showed that RUNX1-ETO directly binds at two regulatory regions within the RASSF2 genomic locus in t(8;21) AML cell lines and patient samples. Re-expression of RASSF2 at physiological levels in t(8;21) AML cell lines resulted in a modest negative growth phenotype, and greatly sensitized these cells to apoptosis following stimulation with various pro-apoptotic agents. Re-expression of RASSF2 in RUNX1-ETO-transduced primary mouse bone marrow caused these cells to lose their long-term self-renewal ability after 3 weeks in a serial replating/colony formation assay. This loss of self-renewal ability in co-transduced cells was accompanied by a marked increase in apoptosis during each of the first three weeks of replating. Mechanistically, re-expression of full-length RASSF2, but not of a deletion mutant lacking the SARAH heterodimerization domain (RASSF2ΔSARAH), in t(8;21) AML cell lines resulted in increased protein amount of the pro-apoptotic kinase, MST1. This suggests that RASSF2 may be a critical regulator of MST1 protein stability in AML cells. Importantly, modest (2-3-fold) overexpression of MST1 in t(8;21) AML cell lines resulted in a significant increase in apoptosis and caused growth arrest. The effects of RASSF2 or MST1 expression in non-t(8;21) AML cell lines were greatly reduced, suggesting that the cellular context of RUNX-ETO-driven leukemias makes them highly susceptible to MST1-dependent apoptosis. Overall, we have identified the importance of a MST1-driven pro-apoptotic signaling axis in t(8;21) leukemia. RUNX1-ETO-dependent transcriptional repression of RASSF2 may be essential for evasion of this apoptosis signaling during leukemic transformation via reduction of MST1 protein stability. MST1, perhaps better known as the mammalian orthologue of the drosophila Hippo kinase, is a critical tumor suppressor in many solid tumor types; and we believe our studies warrant the continued investigation of this pathway in hematological malignancy. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Yonathan Lukito ◽  
T Chujo ◽  
TK Hale ◽  
W Mace ◽  
LJ Johnson ◽  
...  

© 2019 John Wiley & Sons Ltd Studies on the regulation of fungal secondary metabolism highlight the importance of histone H3K4 methylation regulators Set1, CclA (Ash2) and KdmB (KDM5), but it remains unclear whether these proteins act by direct modulation of H3K4me3 at the target genes. In filamentous fungi, secondary metabolite genes are frequently located near telomeres, a site where H3K4 methylation is thought to have a repressive role. Here we analyzed the role of CclA, KdmB and H3K4me3 in regulating the subtelomeric EAS and LTM cluster genes in Epichloë festucae. Depletion of H3K4me3 correlated with transcriptional activation of these genes in ΔcclA, similarly enrichment of H3K4me3 correlated with transcriptional repression of the genes in ΔkdmB which was accompanied by significant reduction in the levels of the agriculturally undesirable lolitrems. These transcriptional changes could only be explained by the alterations in H3K4me3 and not in the subtelomerically-important marks H3K9me3/K27me3. However, H3K4me3 changes in both mutants were not confined to these regions but occurred genome-wide, and at other subtelomeric loci there were inconsistent correlations between H3K4me3 enrichment and gene repression. Our study suggests that CclA and KdmB are crucial regulators of secondary metabolite genes, but these proteins likely act via means independent to, or in conjunction with the H3K4me3 mark.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1614-1614
Author(s):  
Tomas Stopka ◽  
Derek F. Amanatullah ◽  
Arthur I. Skoultchi

Abstract Current work indicates that transcriptional repression is at least as important as transcriptional activation in normal development. Inappropriate or untimely transcriptional repression in immature hematopoietic cells is often the basis for a block to differentiation in hematologic malignancies. Activation of PU.1, a myeloid and B-cell specific transcription factor, in erythroid cells plays a key role in Friend virus-induced mouse erythroleukemia (MEL). Previous results from our laboratory showed that PU.1 blocks the erythroid differentiation-promoting activity of GATA-1 by binding directly to GATA-1 on DNA and inhibiting its transcriptional function. PU.1-mediated repression of GATA-1 on transiently transfected GATA-1 target genes is dependent on the corepressor pRb that also binds to PU.1 (Rekhtman et al., Genes & Dev 1999 and Mol Cell Biol 2003). To further investigate the mechanism of PU.1-mediated repression of GATA-1 in chromatin, we examined the occupancy of several GATA-1 target genes by PU.1 and pRb, as well as the state of core histone modifications at these loci in MEL cells by quantitative chromatin immunoprecipitation. These studies included both endogenous GATA-1 target genes and an exogenous GATA-1 target gene (alpha globin) integrated at a specific locus in MEL cells by Recombinase-Mediated Cassette Exchange. We found that GATA-1 sites at both the exogenous, integrated gene as well as at endogenous genes (including the regulatory regions of the alpha globin, beta globin, alas-e, eklf, p45 nf-e2) are occupied by a GATA1 - PU.1 - pRb complex in undifferentiated MEL cells. The presence of all three components of the complex is dependent on intact GATA-1 binding sites in the exogenous, integrated gene. The histone methyltransferase Suv39H1 and the histone H3MeK9 binding protein, HP1alpha, are also present at the repressed loci. During induced differentiation of MEL cells, PU.1, pRb, Suv39H1 and HP1alpha occupancy at these sites declines but GATA-1 continues to be present at its binding sites. The disruption of the repression complex at these loci during differentiation as well as during siRNA-mediated PU.1 knock down is associated with conversion of methylated H3K9 to acetylated H3K9 and significant transcriptional derepression of these GATA-1 target genes. These findings support a model for repression of GATA-1 by PU.1 at endogenous loci through recruitment of the corepressor pRb and associated histone methyltransferase (Suv39H1) and H3MeK9 binding (HP1alpha) activities.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2615-2615
Author(s):  
Jose M. Polo ◽  
Stella Maris Ranuncolo ◽  
Samir Parek ◽  
Jose Arcaya ◽  
Ari M. Melnick

Abstract The BCL6 (B-Cell-Lymphoma-6) oncoprotein is required for formation of germinal centers by normal B-cells and is frequently constitutively activated in B-cell lymphomas. BCL6 is a transcriptional repressor of the BTB/POZ - zinc finger family of proteins. Transcriptional repressors are generally believed to function by binding to specific DNA sequences in target promoters and then recruiting a cohort of corepressor proteins that physically alter the chromatin structure of the locus leading to silencing. BCL6 can recruit several different corepressors. Accordingly, N-CoR, SMRT and BCoR bind to the BTB domain of BCL6, the NuRD complex binds to the second repression domain and ETO binds to the C-terminal zinc finger domain. These proteins recruit additional corepressors such as HDACS, thus forming multi-protein complexes. BCL6 is involved in both licensing germinal center B-cells for survival as well as blocking differentiation to memory or plasma cells. However, we found that blockade of the BCL6 BTB domain with a specific inhibitor causes only apoptosis but not differentiation of B-cells. In order to identify BCL6 target genes and the mechanism through which they are silenced, we performed extensive ChIP on chip analysis of BCL6, its corepressors, and their chromatin signatures using tiled oligonucleotide arrays containing 1.5 KB of 24,000 promoters. These were performed in the presence or absence of BCL6 shRNA and other BCL6 inhibitor molecules, in tandem with expression arrays as a functional readout. We also performed in depth ChIP on chip experiments using custom arrays, where sets of entire BCL6 target loci were tiled through with overlapping oligos. From these studies we i) identified a large cohort of direct BCL6 target genes involved in apoptosis, cell damage, protein degradation and differentiation that provide critical insight into the mechanism of action of BCL6 in normal and malignant B-cells; ii) discovered that cohorts of BCL6 direct target genes involved in different pathways are regulated by specific corepressors, which are mutually exclusive in their binding to BCL6 target loci, iii) that BCL6 can repress genes through a variety of different mechanisms with unique chromatin signatures. Thus, previously unrecognized mechanisms exist in transcriptional repression, that determine formation of specific corepressor complexes. Using this information, we have been able to re-activate discrete cohorts of BCL6 target genes controlled by specific corepressors, resulting in specific biological effects such as apoptosis or differentiation of lymphoma cells. These results provide fundamental insights into the transcriptional and biological mechanism of action of BCL6 in B-cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 229-229
Author(s):  
Michael Heuser ◽  
Eric Yung ◽  
Courteney Lai ◽  
Bob Argiropoulos ◽  
Florian Kuchenbauer ◽  
...  

Abstract Abstract 229 Overexpression of MN1 (meningioma 1) is a negative prognostic factor in acute myeloid leukemia (AML) patients with normal cytogenetics, and induces a rapidly lethal AML in mice. We have shown previously that MN1, a transcription cofactor of retinoic acid receptor alpha (RARA), increases resistance to all-trans retinoic acid (ATRA) by greater than 3000-fold in an in-vitro differentiation model. We investigated the molecular mechanisms involved in the MN1-induced myeloid differentiation block by fusing potent transcriptional activation or repression domains to MN1, conducting a structure-function analysis of MN1, gene expression profiling, ChIP-on chip experiments, and functional validation of MN1 target genes. We found that (1) MN1 inhibits myeloid differentiation through transcriptional repression; (2) the C-terminal domain of MN1 is critical for induction of resistance to ATRA; (3) EGR2 is a putative direct target of MN1 and RARA that is repressed in MN1 leukemias; and (4) that constitutive upregulation of EGR2 in MN1 leukemias permits differentiation and prevents engraftment of transplanted cells. To investigate whether MN1 impacts on myeloid differentiation through transcriptional activation or repression we fused a strong transcriptional activation domain (VP16) or repression domain (M33) to MN1. MN1VP16 immortalized murine bone marrow cells, however, these cells could differentiate to mature granulocytes, and succumbed to cell cycle arrest upon treatment with ATRA. Mice receiving transplants of MN1VP16 cells had a median survival of 143 days (n=16) compared to 35 days in mice receiving MN1-transduced cells (n=18; p<.001). Morphologic analysis of bone marrow mostly showed mature granulocytes with less than 20 percent immature forms consistent with a diagnosis of myeloproliferative-like disease. Conversely, mice receiving transplants with cells transduced with the fusion of MN1 to the transcriptional repression domain of M33 (n=7) developed leukemia with a similar latency and phenotype as mice receiving transplants from MN1-transduced cells (survival, P=.6). These data suggest that MN1 inhibits myeloid differentiation by transcriptional repression rather than activation of its target genes. A structure-function analysis was performed to identify the domain(s) of MN1 required to inhibit myeloid differentiation. Consecutive stretches of 200 amino acids of MN1 were interrogated The deletion constructs were subsequently transduced into bone marrow cells immortalized by NUP98-HOXD13 (ND13). ND13 cells are very sensitive to ATRA-induced differentiation and cell cycle arrest with an IC50 of 0.1 μ M, whereas overexpression of MN1 increases resistance greater than 3000-fold. Interestingly, deletion of the 200 C-terminal amino acids of MN1 restored ATRA sensitivity of ND13 cells compared to full-length MN1, suggesting that the C-terminus of MN1 is required for inhibition of myeloid differentiation. To identify MN1-regulated genes important for the myeloid differentiation block we performed gene expression profiling of MN1- and MN1VP16-transduced bone marrow cells. To further identify genes that might be directly regulated by MN1 we performed ChIP-on-chip using anti-MN1 and anti-RARA antibodies. EGR2, CCL5, CMAH, among others, were identified as targets of both MN1 and RARA whose gene expression was low in MN1 but high in MN1VP16 cells. Overexpression of these genes in MN1-transduced leukemic cells was used to validate their function. Blast percentage of in vitro cultured bone marrow cells was 93, 58, 83, and 41 percent in MN1+CTL cells, MN1+EGR2, MN1+CCL5, and MN1+CMAH cells, respectively. MN1+EGR2 cell engraftment in peripheral blood of mice declined from 2.2 percent at 4 weeks to undetectable levels at 8 weeks (n=4), whereas MN1+CCL5 and MN1+CMAH cell engraftment was 23 (n=4) and 26 (n=4) percent at 4 weeks, and 14 and 30 percent at 8 weeks, respectively. At time of death, EGR2 was not detectable in mice whereas leukemias of mice receiving MN1+CCL5 or MN1+CMAH- transduced cells were positive for CCL5 or CMAH, respectively. In conclusion, our data suggest that MN1 inhibits myeloid differentiation by transcriptional repression of a subset of its target genes, and that re-expression of EGR2, a zinc-finger transcription factor, may prevent outgrowth of MN1 leukemias in mice. Pharmacologic activation of EGR2 may become a novel antileukemic strategy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document