Expression of Functional Toll-Like Receptor 2 on Mouse Embryonic Stem Cells

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4746-4746
Author(s):  
Tammi Taylor ◽  
Wilbert Derbigny ◽  
Young-June Kim ◽  
Hal E. Broxmeyer

Abstract Embryonic stem (ES) cells have the capacity to produce all cell types of the body. Understanding murine ES (mES) cell proliferation, survival, differentiation, and self renewal will enhance knowledge of developmental biology and essential use of ES cells. Recently, Toll Like Receptor (TLR) activation has been shown by others to play a role in influencing the differentiation of hematopoietic stem cells. Previous studies have also shown that TLR activation prevents mesenchymal stem cell differentiation into adipocytes, chondrocytes, and osteocytes and plays a role in bone repair. We hypothesized that certain TLR’s would be expressed on mES cells and that the ligands for these expressed TLR’s would induce functional activity in the mESC’s. Therefore, we wanted to determine if TLRs are expressed on mES cells and if so, are they functional. Three different mES cell lines (R1, CGR8, and E14) were used to determine if TLRs are expressed at the mRNA level using primers for murine TLR1-9 mRNA. We found that TLR’s 1, 2, 3, 6, and 9 were expressed at the mRNA level, but TLR’s 4, 5, 7, and 8 were not. Based on the availability of antibodies to TLR’s, and using flow cytometry, we found expression of TLR2 but not TLR 4 on the surface of all three mES cell lines. TLR ligands were used to treat mES cells in the presence of leukemia inhibitory factor (LIF) for an hour. Activation of TLR2 by its ligand Pam3Cys, a synthetic tri-acyl lipoprotein, on mES cells induced NF-κβ nuclear translocation when compared to ES cells not stimulated with TLR ligands. LPS, the ligand for TLR4 did not induce NF-κβ nuclear translocation on ES cells, consistent with lack of cell surface expression of TLR4 on mES cells. TLR expression and TLR ligand interaction were not associated with changes in the morphology of the mES cells or expression of Oct-4, SSEA-1, KLF-4, or Sox-2, markers for maintenance of the undifferentiated state of mES cells. This suggests that the cells remain in an undifferentiated state even after TLR activation by Pam3Cys in the presence of LIF. Thus our study has identified functionally active TLR2 on the surface of mES cells, information that may be of use to further defining a role for TLR’s on ES cells, and for manipulation of other ES cell functions.

2000 ◽  
Vol 113 (1) ◽  
pp. 5-10 ◽  
Author(s):  
M.F. Pera ◽  
B. Reubinoff ◽  
A. Trounson

Embryonic stem (ES) cells are cells derived from the early embryo that can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent; they share these properties with embryonic germ (EG) cells. Candidate ES and EG cell lines from the human blastocyst and embryonic gonad can differentiate into multiple types of somatic cell. The phenotype of the blastocyst-derived cell lines is very similar to that of monkey ES cells and pluripotent human embryonal carcinoma cells, but differs from that of mouse ES cells or the human germ-cell-derived stem cells. Although our understanding of the control of growth and differentiation of human ES cells is quite limited, it is clear that the development of these cell lines will have a widespread impact on biomedical research.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


1990 ◽  
Vol 10 (12) ◽  
pp. 6817-6820 ◽  
Author(s):  
N G Sharpe ◽  
D G Williams ◽  
D S Latchman

The SmN protein is a component of small nuclear ribonucleoprotein particles and is closely related to the ubiquitous SmB and B' splicing proteins. It is expressed in a limited range of tissues and cell types, including several undifferentiated embryonal carcinoma cell lines and undifferentiated embryonic stem cells. The protein declines to undetectable levels when embryonal carcinoma or embryonic stem cells are induced to differentiate, producing primitive endoderm or parietal endoderm or yielding embryonal bodies. This decline is due to a corresponding decrease in the level of the SmN mRNA. The potential role of SmN in the regulation of alternative splicing in embryonic cell lines and early embryos is discussed.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 771-784 ◽  
Author(s):  
Fariborz Izadyar ◽  
Francis Pau ◽  
Joel Marh ◽  
Natalia Slepko ◽  
Tracy Wang ◽  
...  

Spermatogonial stem cells (SSCs) maintain spermatogenesis by self-renewal and generation of spermatogonia committed to differentiation. Under certain in vitro conditions, SSCs from both neonatal and adult mouse testis can reportedly generate multipotent germ cell (mGC) lines that have characteristics and differentiation potential similar to embryonic stem (ES) cells. However, mGCs generated in different laboratories showed different germ cell characteristics, i.e., some retain their SSC properties and some have lost them completely. This raises an important question: whether mGC lines have been generated from different subpopulations in the mouse testes. To unambiguously identify and track germ line stem cells, we utilized a transgenic mouse model expressing green fluorescence protein under the control of a germ cell-specific Pou5f1 (Oct4) promoter. We found two distinct populations among the germ line stem cells with regard to their expression of transcription factor Pou5f1 and c-Kit receptor. Only the POU5F1+/c-Kit+ subset of mouse germ line stem cells, when isolated from either neonatal or adult testes and cultured in a complex mixture of growth factors, generates cell lines that express pluripotent ES markers, i.e., Pou5f1, Nanog, Sox2, Rex1, Dppa5, SSEA-1, and alkaline phosphatase, exhibit high telomerase activity, and differentiate into multiple lineages, including beating cardiomyocytes, neural cells, and chondrocytes. These data clearly show the existence of two distinct populations within germ line stem cells: one destined to become SSC and the other with the ability to generate multipotent cell lines with some pluripotent characteristics. These findings raise interesting questions about the relativity of pluripotency and the plasticity of germ line stem cells.


2011 ◽  
Vol 17 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Yuya Kunisada ◽  
Masanobu Shoji ◽  
Masaki Hosoya

Low molecular weight compounds have been shown to be useful for controlling stem cells, and various high-throughput screening systems have been developed for identifying compounds that regulate the differentiation of stem cells. However, the effects of such compounds on stem cell differentiation are usually evaluated by assessing a single parameter, which is insufficient for proper monitoring of the cellular status. In this study, to classify a number of compounds, the authors established a gene expression–based screening system using mouse embryonic stem (ES) cells that monitored multiple parameters. ES cells were differentiated into three germ layers by embryoid body formation and then treated with the test compounds. Next, cellular changes were assessed by analyzing the expression of multiple genes with the multiplex quantitative reverse transcriptase polymerase chain reaction. By screening a library of pharmacologically active compounds with this system, the authors were able to classify 52 compounds that influenced the gene expression profile of ES cells. They also found that some compounds identified by screening could enhance osteogenic or adipogenic differentiation of human mesenchymal stem cells. These results indicate that the screening system is effective for identifying compounds involved in regulating the differentiation of both ES cells and adult stem cells.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21095-21095
Author(s):  
M. Valladares-Ayerbes ◽  
S. Díaz Prado ◽  
V. Medina ◽  
P. Iglesias ◽  
B. Rodríguez ◽  
...  

21095 Background: Cancer cells with stem cells (CSC) properties have been identified in different tumors. It is suggested that CSC are responsible for the continuous growth of tumors, metastasis and drug-resistance. Markers for stem cells have been described. Oct4 and Nanog are transcription factors required to maintain the pluripotency and self-renewal of embryonic stem (ES) cells. ABCG2 transporter (MDR1) gene expression has been described as surrogate for the side-population phenotype. PTTG1 has also been recently identified as a component of the molecular signature of human (hu) ES cell-lines. Methods: Using Digital Northern we have demonstrated a significant tag counts for PTTG1 and reticulocalbin 2 (RCN2) in 11 huES cell-lines of the CGAP. The objective of our work has been to assess gene expression of these SC markers in a panel of new gastrointestinal cancer (GC) cells lines (CL) developed in our laboratory. Quantitative assessment was obtained by real-time PCR relative to normal bone marrow (BM), colonic mucosa and established cell-lines. GCCLs have been developed from ascitic fluid obtained of pancreatic carcinoma (MBQ-OJC1) and colon cancer (JJPF-OJC4, LCM-OJC5 and JAC-OJC6). GCCLs had been fully characterized by cytomorphology, epithelial and tumor markers (keratins, EGFR, EpCAM, p53), karyotype and tumor spheroids cultures. Results: Expression for ABCG2, Nanog, Oct4, PTTG1 and RCN2 were clearly detected in all the GCCL. Relative levels for each mRNA shown wide variety. For example, ABCG2 mRNA was highly expressed (2–26 fold) in colon cancer CL relative to BM. RCN2 was overexpressed (more than 2 x 102 fold) in 3 GCCL. Conclusions: Our results show that expressions of different “stemness” genes are maintained in cultured cancer cells. These data suggest that CSC are present in metastatic sites and can be maintained in continuous culture. We hypothesized that PTTG1 and RCN2 could be tested as a new cancer stem cells markers. No significant financial relationships to disclose.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Eneda Hoxha ◽  
Erin Lambers ◽  
Veronica Ramirez ◽  
Prasanna Krishnamurthy ◽  
Suresh Verma ◽  
...  

Despite advancements in the treatment of myocardial infarction (MI), the majority of patients are at increased risk for developing heart failure due to the loss of cardiomyocytes and microvasculature. Some of the main obstacles in the realization of the full potential of iPS/ES cells arise from incomplete and poorly understood molecular mechanisms and epigenetic modifications that govern their pluripotency and directed differentiation. Real-time array experiments revealed that HDAC1 is highly expressed in pluripotent cells. Additionally the lack of this molecule is embryonic lethal, suggesting it plays a key role in development. Thus, we hypothesized that HDAC1 plays a critical role in directing cardiovascular differentiation of mES and iPS cells in vitro. HDAC1 was knocked down in mES cells (C57BL/6) and iPS cells using a shRNA vector. Differentiation through embryoid body (EB) was induced in wild type mES cells and iPS cells and in their HDAC1-null counterparts and the ability of these cells to differentiate into three early embryonic lineages and more specifically cardiovascular lineage was monitored. EBs lacking HDAC1 differentiated slower and showed delayed suppression of pluripotent genes such as Oct4 and Sox2. ChiP experiments revealed high histone acetylation levels at the promoter regions of these genes during early differentiation. In addition cells lacking HDAC1 showed reduced expression of early markers for all three germ layers. HDAC1-null EBs also showed delayed and reduced spontaneous beating. Expression of cardiomyocite markers as well as markers of other cardiovascular lineages was repressed in HDAC1 -null cells. However, supplementation with BMP2 during early differentiation recovered the ability in the HDAC1-null cells to differentiate into endodermal and mesodermal lineages, but not ectodermal. We propose that HDAC1 plays a critical role in early development and cardiovascular differentiation of mES and iPS cells by repressing pluripotent genes and allowing for expression of early developmental genes such as SOX17 and BMP2. Further research in the molecular mechanisms involved in this process will greatly aid our understanding of the epigenetic circuitry of pluripotency and differentiation in ES and iPS cells.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758 ◽  
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


1990 ◽  
Vol 10 (12) ◽  
pp. 6817-6820
Author(s):  
N G Sharpe ◽  
D G Williams ◽  
D S Latchman

The SmN protein is a component of small nuclear ribonucleoprotein particles and is closely related to the ubiquitous SmB and B' splicing proteins. It is expressed in a limited range of tissues and cell types, including several undifferentiated embryonal carcinoma cell lines and undifferentiated embryonic stem cells. The protein declines to undetectable levels when embryonal carcinoma or embryonic stem cells are induced to differentiate, producing primitive endoderm or parietal endoderm or yielding embryonal bodies. This decline is due to a corresponding decrease in the level of the SmN mRNA. The potential role of SmN in the regulation of alternative splicing in embryonic cell lines and early embryos is discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Stefan Liebau ◽  
Michael Tischendorf ◽  
Daniel Ansorge ◽  
Leonhard Linta ◽  
Marianne Stockmann ◽  
...  

Rationale. The family of calcium-activated potassium channels consists of four members with varying biological functions and conductances. Besides membrane potential modulation, SK channels have been found to be involved in cardiac pacemaker cell development from ES cells and morphological shaping of neural stem cells.Objective. Distinct SK channel subtype expression in ES cells might elucidate their precise impact during cardiac development. We chose SK channel subtype 4 as a potential candidate influencing embryonic stem cell differentiation.Methods. We generated a doxycycline inducible mouse ES cell line via targeted homologous recombination of a cassette expressing a bicistronic construct encoding SK4 and a fluorophore from the murine HPRT locus.Conclusion. We characterized the mouse ES cell line iSK4-AcGFP. The cassette is readily expressed under the control of doxycycline, and the overexpression of SK4 led to an increase in cardiac and pacemaker cell differentiation thereby serving as a unique tool to characterize the cell biological variances due to specific SK channel overexpression.


Sign in / Sign up

Export Citation Format

Share Document