Antibody-Deficiency and Acute Nephritic Syndrome in a Patient with Homozygous Disruption of the CD81 Gene

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 83-83
Author(s):  
Menno C van Zelm ◽  
Julie Smet ◽  
Françoise Mascart ◽  
Brigitte Adams ◽  
Liliane Schandené ◽  
...  

Abstract The tetraspan molecule CD81 is widely expressed on immune cells, such as B-, T-, NK-lymphocytes, monocytes and eosinophils, but also on most stromal and epithelial cells and on hepatocytes. In B-cells it is a member of the CD19 complex (CD19, CD21, CD81, CD225), which is required for signaling together with the B-cell antigen receptor upon antigen recognition. Its functions on other cells are unclear, but murine studies show an antiproliferative role for CD81. On hepatocytes, two different epitopes of CD81 act as a co-receptor for Hepatitis C virus and for Plasmodium infection. We evaluated a 4-year-old girl from consanguineous parents of Moroccan decent. She presented with recurrent infections and an acute nephrotic syndrome: >50% of glomeruli were affected due to focal mesangial hypercellularity. She showed poor weight gain (below 3rd percentile), but normal motor development. Her spleen and liver were enlarged, but function normally. Measurements of retina epithelium and CNS showed no signs of hypercellularity. Although serum IgG levels were strongly decreased (2.4 g/L) and IgM and IgA concentrations low within normal range, she tested positive for anti-platelet antibodies. Flow cytometric immunophenotyping of blood showed normal distribution and absolute numbers of granulocyte, monocyte and lymphocyte subsets; however, no CD19 expression was detected on the patient’s B-cells, whereas CD21 expression levels were normal. The patient carried no mutations in the CD19 and IFITM1 (CD225) genes. Additional immunophenotyping showed that all cells lacked CD81 expression. Sequencing of the CD81 gene showed a homozygous G>A substitution immediately downstream of exon 6 (c.561+1G>A). Spectratyping and quantitative PCR analysis showed clearly reduced total CD81 mRNA expression levels. Nearly all CD81 transcripts contained 13 additional nucleotides downstream of exon 6. This insertion results in a frame-shift and a premature stop (p.Glu188MetfsX13). The hypothetical protein lacks the fourth transmembrane domain. Similar to previously described CD19-deficient patients, our patient had reduced numbers CD5+ B-cells and Ig class switched and non-switched CD27+ memory-B cells. Whereas Vh-Cα and Vh-Cγ transcripts from Ig switched cells contained somatic hypermutations, the response of the patient’s B cells to in vitro stimulation through the B-cell receptor was impaired. The antibody response to rabies, tetanus and pneumococcal vaccinations is currently under investigation, as well as the potential impact of CD81 deficiency on the antigen-specific Th1 and Th2 cytokine production. In conclusion, the here presented CD81 deficiency is a new primary immunodeficiency, which leads to disruption of the CD19 complex and consequent hypogammaglobulinemia comparable to the CD19 deficiency. However, due to the broad tissue distribution, the clinical phenotype is not restricted to the B-cell system. Other organs are affected as well, most likely due to excessive proliferation and hypercellularity, with acute nephritic syndrome as dominant clinical problem. Currently, in vitro studies are being performed to identify whether the CD81 defect directly results in impaired B-cell and T-cell functions and abnormal proliferation of kidney and liver cells.

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 494-500
Author(s):  
O Ayanlar-Batuman ◽  
J Shevitz ◽  
UC Traub ◽  
S Murphy ◽  
D Sajewski

Immunoregulatory T and B cell functions in 15 patients with primary myelodysplastic syndrome (MDS) were studied by measuring the proliferative and the stimulatory capacity of T and B cells, respectively, in autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR). T cell proliferation in the auto MLR was 25% of the control (P less than .02), whereas proliferation in the allo MLR was normal. When control T cells were stimulated by MDS B cells, their proliferative response was only 57% of the control (P less than .01). The mechanism responsible for these abnormalities was studied by determining the capacity of MDS and normal T cells to produce interleukin 2 (IL 2) and to generate IL 2 receptors (IL 2R) following stimulation with control and MDS B cells. In the auto MLR of MDS patients, only 3% +/- 2% of T cells developed IL 2R positivity, whereas in control cultures 12% +/- 2% of T cells were positive, as determined by immunofluorescence, using a monoclonal antibody (MoAb) directed against the IL 2R, and FACS analysis. When MDS T cells were stimulated by control B cells, IL 2R generation and the production of IL 2 were within normal limits. In contrast, when control T cells were stimulated by MDS B cells or control B cells, the MDS B cells induced production of only 26% of IL 2 as compared with control B cells. In parallel experiments, IL 2R generation in control T cells stimulated by either MDS or control B cells was similar. We conclude that in the primary MDS, T and B cell interactions are impaired. Although MDS T cells develop normal quantities of IL 2R and produce normal amounts of IL 2 when stimulated by control B cells, they are markedly impaired when stimulated by self B cells. Similarly, MDS B cells can induce IL 2R generation in control T cells but not in MDS T cells. Myelodysplastic B cells are also defective in inducing IL 2 production by normal T cells in an allo MLR. These in vitro abnormalities strongly suggest that generation of lymphocytes with immunoregulatory functions is impaired in patients with MDS.


2006 ◽  
Vol 80 (8) ◽  
pp. 3923-3934 ◽  
Author(s):  
Vito Racanelli ◽  
Maria Antonia Frassanito ◽  
Patrizia Leone ◽  
Maria Galiano ◽  
Valli De Re ◽  
...  

ABSTRACT There is growing interest in the tendency of B cells to change their functional program in response to overwhelming antigen loading, perhaps by regulating specific parameters, such as efficiency of activation, proliferation rate, differentiation to antibody-secreting cells (ASC), and rate of cell death in culture. We show that individuals persistently infected with hepatitis C virus (HCV) carry high levels of circulating immunoglobulin G (IgG) and IgG-secreting cells (IgG-ASC). Thus, generalized polyclonal activation of B-cell functions may be supposed. While IgGs include virus-related and unrelated antibodies, IgG-ASC do not include HCV-specific plasma cells. Despite signs of widespread activation, B cells do not accumulate and memory B cells seem to be reduced in the blood of HCV-infected individuals. This apparent discrepancy may reflect the unconventional activation kinetics and functional responsiveness of the CD27+ B-cell subset in vitro. Following stimulation with T-cell-derived signals in the absence of B-cell receptor (BCR) engagement, CD27+ B cells do not expand but rapidly differentiate to secrete Ig and then undergo apoptosis. We propose that their enhanced sensitivity to BCR-independent noncognate T-cell help maintains a constant level of nonspecific serum antibodies and ASC and serves as a backup mechanism of feedback inhibition to prevent exaggerated B-cell responses that could be the cause of significant immunopathology.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sang-Hoon Lee ◽  
Jong-Hwan Park ◽  
Seok-Rae Park

Many studies have shown that Toll-like receptors (TLRs) and Nod-like receptors (NLRs) were expressed in B cells and their signaling affects B cell functions. Nonetheless, the roles played by these receptors in B cell antibody (Ab) production have not been completely elucidated. In the present study, we examined the effect of the Nod2 agonist muramyl dipeptide (MDP) in combination with the TLR4 agonist lipopolysaccharide (LPS), a well-known B cell mitogen, on B cell viability, proliferation, and activation, and Ab production by in vitro culture of purified mouse spleen resting B cells. MDP combined with LPS to reinforce B cell viability, proliferation, and activation. Moreover, MDP enhanced LPS-induced IgG2b production, germline γ2b transcript (GLTγ2b) expression, and surface IgG2b expression. In an experiment with Nod2- and TLR4-deficient mouse B cells, we observed that the combined effect of MDP and LPS is dependent on Nod2 and TLR4 receptors. Furthermore, the combined effect on B cell viability and IgG2b switching was not observed in Rip2-deficient mouse cells. Collectively, this study suggests that Nod2 signaling enhances TLR4-activated B cell proliferation, IgG2b switching, and IgG2b production.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009749
Author(s):  
Jérôme Kervevan ◽  
Aurélie Bouteau ◽  
Juliane S. Lanza ◽  
Adele Hammoudi ◽  
Sandra Zurawski ◽  
...  

The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 92-92 ◽  
Author(s):  
Xiaosheng Wu ◽  
Renee C. Tschumper ◽  
Albert Gutierrez ◽  
Stephen A. Mihalcik ◽  
Grzegorz S. Nowakowski ◽  
...  

Abstract Abstract 92 BACKGROUND: All somatic cell types, including all B lineage cells, constitutively express a number of DNA repair proteins to maintain genomic stability and thwart tumorigenesis in the face of ongoing constitutive levels of DNA damage. Compromises in expression of these essential DNA repair factors have been shown to readily induce the development of various cancers including B cell lymphomas, suggesting expression levels are tightly regulated and limited in quantity. In germinal center (GC) B cells, however, additional DNA repair capacity is likely required to counterbalance the heightened level of mutagenic activity owing to the induced expression of activation-induced cytidine deaminase (AID) during somatic hypermutation (SHM). AID is a DNA editing enzyme which introduces somatic mutations into immunoglobulin (Ig) V regions at an estimated rate which is almost a million-fold higher than the spontaneous rate in somatic cells. HYPOTHESIS: We hypothesize that to maintain the genomic wellness of GC B cells which are undergoing SHM, there is a need for induction of an accompanying robust DNA repair system. We further hypothesize that inefficient induction of these repair genes may predispose to malignant transformation. METHODS: Using tonsillar tissue sections and purified tonsillar B cell subpopulations, we compared expression levels of various DNA repair genes and related these levels to AID expression across the subsets using immunohistochemistry, real-time RT-PCR, and Western blot analysis. To characterize the nature of signals capable of inducing expression levels of AID and/or DNA repair proteins, peripheral blood B cells were activated in vitro using a panel of stimuli, including coculture with activated CD4 T cells. As a surrogate measure of mismatch repair (MMR) activity in the relative absence of T cell help, we quantitated the number of somatic hypermutations at A/T sites in the Ig heavy chain variable (IGHV) region genes in a collection of IGHV sequences obtained from normal B cells and HIV-related lymphoma cells. RESULTS: Using immunohistochemistry, we observed that, similar to the expression of AID, DNA MMR genes are significantly induced in tonsillar GC B cells. These results were further validated using a more sensitive real-time RT-PCR assay and analysis by Western blotting. By expanding our DNA repair gene panel, we observed that proteins of homologous recombination, base excision repair and DNA single strand break signalling pathway are also similarly induced in GC B cells at RNA, protein, and functional levels compared to their expression in naïve and memory B cells. By contrast, expression of non-homologous end joining and DNA double strand break signalling molecules are unchanged. We have termed this selective induction of repair mechanisms in GC B cells as somatic hyperrepair (SHR). To identify pathways that lead to the activation of AID and SHR, we used an in vitro system and a variety of stimuli and we discovered that multiple B cell stimuli including CpG, CD40L, and anti-BCR could each independently induce the expression of AID while SHR induction strictly required the engagement of CD4+ T cells. This provocative observation suggests a novel role for CD4+ T cells in mitigating tumorigenesis of post-GC B cells through their ability to induce the SHR pathway in cells that have been induced to undergo SHM. To demonstrate the possible role of SHR in lymphomagenesis, we analysed the mutation pattern of IGHV genes from a panel of B cell lymphomas obtained from HIV infected (CD4+ T cell suppressed) patients. We found that HIV-related lymphoma cells displayed a significantly lower frequency of SHM at A/T positions relative to normal memory B cells, indicative of compromised MMR of their precursor cells during GC transit. Our findings resolve the lingering paradox that B cell malignancies are overwhelmingly prevalent under T cell suppression conditions such as HIV infection, post-organ transplant, and aging. Finally, our results also suggest for the first time that mounting efficient tumor suppression for some cells may depend on signals transmitted by neighboring cells and the specific microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 494-500 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
J Shevitz ◽  
UC Traub ◽  
S Murphy ◽  
D Sajewski

Abstract Immunoregulatory T and B cell functions in 15 patients with primary myelodysplastic syndrome (MDS) were studied by measuring the proliferative and the stimulatory capacity of T and B cells, respectively, in autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR). T cell proliferation in the auto MLR was 25% of the control (P less than .02), whereas proliferation in the allo MLR was normal. When control T cells were stimulated by MDS B cells, their proliferative response was only 57% of the control (P less than .01). The mechanism responsible for these abnormalities was studied by determining the capacity of MDS and normal T cells to produce interleukin 2 (IL 2) and to generate IL 2 receptors (IL 2R) following stimulation with control and MDS B cells. In the auto MLR of MDS patients, only 3% +/- 2% of T cells developed IL 2R positivity, whereas in control cultures 12% +/- 2% of T cells were positive, as determined by immunofluorescence, using a monoclonal antibody (MoAb) directed against the IL 2R, and FACS analysis. When MDS T cells were stimulated by control B cells, IL 2R generation and the production of IL 2 were within normal limits. In contrast, when control T cells were stimulated by MDS B cells or control B cells, the MDS B cells induced production of only 26% of IL 2 as compared with control B cells. In parallel experiments, IL 2R generation in control T cells stimulated by either MDS or control B cells was similar. We conclude that in the primary MDS, T and B cell interactions are impaired. Although MDS T cells develop normal quantities of IL 2R and produce normal amounts of IL 2 when stimulated by control B cells, they are markedly impaired when stimulated by self B cells. Similarly, MDS B cells can induce IL 2R generation in control T cells but not in MDS T cells. Myelodysplastic B cells are also defective in inducing IL 2 production by normal T cells in an allo MLR. These in vitro abnormalities strongly suggest that generation of lymphocytes with immunoregulatory functions is impaired in patients with MDS.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Vassilios Lougaris ◽  
Manuela Baronio ◽  
Massimiliano Vitali ◽  
Giacomo Tampella ◽  
Annarosa Soresina ◽  
...  

Broad Toll-like receptor 9 (TLR9) signalling defects after CpGin vitrostimulation have been described in common variable immunodeficiency (CVID). CXCL16, a surface receptor, was recently shown to influence cell responses to CpG. We evaluated the expression and function of CXCL16 on B cells from healthy controls and CVID patients. We report that CXCL16 is normally expressed on B cells throughout peripheral maturation. Decreased B cell expression of CXCL16 was observed in a subgroup of CVID patients that correlated with defectivein vitroresponses to CpG (such as upregulation of CD69, CD86, AICDA, IL-6, and TLR9). Our data suggest that expression levels of a surface receptor, namely, CXCL16, correlate with B cell responses mediated by TLR9 in common variable immunodeficiency.


2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document