Achilles Heel Molecular Vulnerabilities in Multiple Myeloma Identified From Genome-Scale RNA Interference Screening.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2801-2801
Author(s):  
Rodger E. Tiedemann ◽  
Yuan Xiao Zhu ◽  
Jessica Schmidt ◽  
Chang-Xin Shi ◽  
Hongwei Yin ◽  
...  

Abstract Abstract 2801 Poster Board II-777 To provide a rationale basis for targeted drug development for multiple myeloma patients, we have conducted high-throughput genome-scale RNA interference (RNAi) synthetic lethality studies in human myeloma cell lines (HMCL) to generate a comprehensive map of critical genes and molecular vulnerabilities in human myeloma tumor cells. KMS11 human myeloma cells were screened with a 13,982-oligo library targeting the ‘druggable' genome (6,991 genes) using optimized conditions that resulted in >95% transfection efficiency. Each gene was screened with 2 or more distinct oligos, in duplicate, using a single-siRNA-per-well format, testing >34,000 wells. Replicate high throughput experiments yielded highly reproducible results (R2=0.82). Viability was measured at 96h by ATP-dependent luminescence. Universally lethal siRNA and non-targeted siRNA were employed as controls. The specificity (FDR) of lethal RNAi was evaluated by custom-developed statistical methods based on RNAi result concordancy. From screening, 5.8% of druggable genome siRNA caused statistically relevant reductions in HMCL viability (greater than three standard deviations from control samples treated with non-silencing siRNA, compared with an anticipated rate due to chance of only 0.135%). Of these, two hundred and nineteen genes, targeted by the most lethal siRNA, were forwarded to validation studies. Validation high-throughput RNAi studies, using 4 oligos per gene, were conducted in order to verify target gene vulnerability. Ultimately, seventy two genes were validated as highly critical for myeloma cell survival (each with multiple concordant siRNA hits plus high reproducibility of R2 =0.94). Among top-ranked lethal molecular vulnerabilities in KMS11 myeloma cells we recurrently identified the proteasome (8 PSM subunits were independently identified as highly vulnerable); and BCL2 family member MCL1; both known therapeutic targets, validating a functional genomics approach to target discovery. In addition, a number of novel, equally lethal, molecular vulnerabilities were identified in KMS11 including WEE1, kinetochore complex component KNTC2, the aurora kinases, polo-like kinase 1, a previously uncharacterized DNA methyl transferase, ribonucleotide reductase, ribosomal protein L38, leptin receptor overlapping transcript LEPROT and SLC25A23 (a carrier responsible for mitochondrial adenine nucleotide flux). Various ubiquitous cellular proteins involved in RNA or protein processing (e.g. SF3a, SNW1, SNRPA1, EIF3s8, amongst others) were also identified as non redundant and critical for cellular viability. Thirty nine top-ranked molecular vulnerabilities in KMS11 were evaluated for comparative vulnerability in a second myeloma cell line, JJN3, and in A549 and 293 epithelial cells. A majority were vulnerable in JJN3. While 25 genes proved equally lethal on silencing in A549 and 293 epithelial cells, several, notably including MCL1 and three proteasome subunits, appear differentially susceptible in myeloma cells versus epithelial cells. From this genome scale study, MCL1 ranks third as a target capable of inducing cell death in myeloma cells, highlighting the potent vulnerability of myeloma cell viability to alterations in this anti-apoptosis regulator. Moreover, from active comparative studies of molecular vulnerability in myeloma versus epithelial cell lines, MCL1 as an RNAi target demonstrates perhaps the greatest cytotoxic selectivity between myeloma and epithelial cell lines of all targets examined. Gene expression studies indicate that MCL1 is highly expressed in myeloma tumor cells but is absent or only weakly expressed in human primary somatic tissues. Overall, therefore, from an unsupervised genome-scale screening approach, our data support MCL1 as an optimal Achilles heel molecular target in multiple myeloma, potentially offering greater specificity and deeper cytotoxic effect than proteasome inhibition. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1829-1837 ◽  
Author(s):  
Karène Mahtouk ◽  
Michel Jourdan ◽  
John De Vos ◽  
Catherine Hertogh ◽  
Geneviève Fiol ◽  
...  

Abstract We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor–like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti–IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2240
Author(s):  
Marwa Zafarullah ◽  
Mittal Jasoliya ◽  
Flora Tassone

Fragile X syndrome (FXS) is an X-linked neurodevelopmental condition associated with intellectual disability and behavioral problems due to the lack of the Fragile X mental retardation protein (FMRP), which plays a crucial role in synaptic plasticity and memory. A desirable in vitro cell model to study FXS would be one that can be generated by simple isolation and culture method from a collection of a non-invasive donor specimen. Currently, the various donor-specific cells can be isolated mainly from peripheral blood and skin biopsy. However, they are somewhat invasive methods for establishing cell lines from the primary subject material. In this study, we characterized a cost-effective and straightforward method to derive epithelial cell lines from urine samples collected from participants with FXS and healthy controls (TD). The urine-derived cells expressed epithelial cell surface markers via fluorescence-activated cell sorting (FACS). We observed inter, and the intra-tissue CGG mosaicism in the PBMCs and the urine-derived cells from participants with FXS potentially related to the observed variations in the phenotypic and clinical presentation FXS. We characterized these urine-derived epithelial cells for FMR1 mRNA and FMRP expression and observed some expression in the lines derived from full mutation mosaic participants. Further, FMRP expression was localized in the cytoplasm of the urine-derived epithelial cells of healthy controls. Deficient FMRP expression was also observed in mosaic males, while, as expected, no expression was observed in cells derived from participants with a hypermethylated full mutation.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Inge Tinhofer ◽  
Ingrid Marschitz ◽  
Traudl Henn ◽  
Alexander Egle ◽  
Richard Greil

Interleukin-15 (IL-15) induces proliferation and promotes cell survival of human T and B lymphocytes, natural killer cells, and neutrophils. Here we report the constitutive expression of a functional IL-15 receptor (IL-15R) in 6 of 6 myeloma cell lines and in CD38high/CD45low plasma cells belonging to 14 of 14 patients with multiple myeloma. Furthermore, we detected IL-15 transcripts in all 6 myeloma cell lines, and IL-15 protein in 4/6 cell lines and also in the primary plasma cells of 8/14 multiple myeloma patients. Our observations confirm the existence of an autocrine IL-15 loop and point to the potential paracrine stimulation of myeloma cells by IL-15 released from the cellular microenvironment. Blocking autocrine IL-15 in cell lines increased the rate of spontaneous apoptosis, and the degree of this effect was comparable to the pro-apoptotic effect of depleting autocrine IL-6 by antibody targeting. IL-15 was also capable of substituting for autocrine IL-6 in order to promote cell survival and vice versa. In short-term cultures of primary myeloma cells, the addition of IL-15 reduced the percentage of tumor cells spontaneously undergoing apoptosis. Furthermore, IL-15 lowered the responsiveness to Fas-induced apoptosis and to cytotoxic treatment with vincristine and doxorubicin but not with dexamethasone. These data add IL-15 to the list of important factors promoting survival of multiple myeloma cells and demonstrate that it can be produced and be functionally active in an autocrine manner.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Philippa Hillyer ◽  
Rachel Shepard ◽  
Megan Uehling ◽  
Mina Krenz ◽  
Faruk Sheikh ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) infects small foci of respiratory epithelial cells via infected droplets. Infection induces expression of type I and III interferons (IFNs) and proinflammatory cytokines, the balance of which may restrict viral replication and affect disease severity. We explored this balance by infecting two respiratory epithelial cell lines with low doses of recombinant RSV expressing green fluorescent protein (rgRSV). A549 cells were highly permissive, whereas BEAS-2B cells restricted infection to individual cells or small foci. After infection, A549 cells expressed higher levels of IFN-β-, IFN-λ-, and NF-κB-inducible proinflammatory cytokines. In contrast, BEAS-2B cells expressed higher levels of antiviral interferon-stimulated genes, pattern recognition receptors, and other signaling intermediaries constitutively and after infection. Transcriptome analysis revealed that constitutive expression of antiviral and proinflammatory genes predicted responses by each cell line. These two cell lines provide a model for elucidating critical mediators of local control of viral infection in respiratory epithelial cells. IMPORTANCE Airway epithelium is both the primary target of and the first defense against respiratory syncytial virus (RSV). Whether RSV replicates and spreads to adjacent epithelial cells depends on the quality of their innate immune responses. A549 and BEAS-2B are alveolar and bronchial epithelial cell lines, respectively, that are often used to study RSV infection. We show that A549 cells are permissive to RSV infection and express genes characteristic of a proinflammatory response. In contrast, BEAS-2B cells restrict infection and express genes characteristic of an antiviral response associated with expression of type I and III interferons. Transcriptome analysis of constitutive gene expression revealed patterns that may predict the response of each cell line to infection. This study suggests that restrictive and permissive cell lines may provide a model for identifying critical mediators of local control of infection and stresses the importance of the constitutive antiviral state for the response to viral challenge.


2002 ◽  
Vol 70 (5) ◽  
pp. 2670-2675 ◽  
Author(s):  
T. E. Secott ◽  
T. L. Lin ◽  
C. C. Wu

ABSTRACT Attachment and ingestion of Mycobacterium avium subsp. paratuberculosis by two epithelial cell lines were enhanced by soluble fibronectin (FN). Peptide blocking of the FN attachment protein (FAP-P) inhibited the internalization of M. avium subsp. paratuberculosis. Disruption of FAP-P expression significantly reduced attachment and ingestion of M. avium subsp. paratuberculosis by T-24 and Caco-2 cells. The results indicate that the interaction between FN and FAP-P facilitates attachment and internalization of M. avium subsp. paratuberculosis by epithelial cells.


1998 ◽  
Vol 46 (5) ◽  
pp. 661-668 ◽  
Author(s):  
Alfredo Martínez ◽  
Andrew Farr ◽  
Michele D. Vos ◽  
Frank Cuttitta ◽  
Anthony M. Treston

C-terminal amidation is a post-translational processing step necessary to convey biological activity to a large number of regulatory peptides. In this study we have demonstrated that the peptidyl-glycine α-amidating monooxygenase enzyme complex (PAM) responsible for this activity is located in the medullary stellate epithelial cells of the thymus and in cultured epithelial cells bearing a medullary phenotype, using Northern blot, immunocytochemistry, in situ hybridization, and enzyme assays. Immunocytochemical localization revealed a granular pattern in the cytoplasm of the stellate cells, which were also positive for cytokeratins and a B-lymphocyte-associated antigen. The presence of PAM activity in medium conditioned by thymic epithelial cell lines suggests that PAM is a secreted product of these cells. Among the four epithelial cell lines examined, there was a direct correlation between PAM activity and content of oxytocin, an amidated peptide. Taken together, these data provide convincing evidence that thymic epithelial cells have the capacity to generate amidated peptides that may influence T-cell differentiation and suggest that the amidating enzymes could play an important role in the regulation of thymic physiology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2477-2477
Author(s):  
Jooeun Bae ◽  
Jeff A. Martinson ◽  
Hans G. Klingemann ◽  
Steven Treon ◽  
Kenneth C. Anderson ◽  
...  

Abstract We have identified novel CD19 and CD20 antigen-derived HLA-A2.1-specific immunogenic peptides, CD19150–158 (KLMSPKLYV) and CD20188–196 (SLFLGILSV), for generating cytotoxic T lymphocytes (CTLs) against malignant B-cell diseases. Initial testing showed that the CTLs displayed antigen-specific and HLA-A2.1-restriced cytotoxic activity against both Burkitt’s lymphoma and chronic lymphoid leukemia cell lines. The observed cytotoxic activity of the CTLs was shown to be specific to the CD19150–158 or the CD20188–196 peptides. Additionally, the CTLs displayed a distinct phenotype (majority CD69+/CD45RO+) along with a significant (p<0.05) increase in cell proliferation and IFN-γ release following re-stimulation with HLA-A2.1+/CD19+/CD20+ tumor cell lines. Based on emerging information that clonogenic myeloma cells express CD19 and/or CD20, we evaluated the activity of the CD19 and CD20 peptide specific-CTLs against several multiple myeloma cell lines. Five of 10 myeloma cell lines evaluated were HLA-A2.1-positive and expressed both CD19 and CD20 antigens. CD19 peptide specific-CTLs generated from normal donors were able to specifically lyse CD19+/HLA-A2.1+ MM cell lines (30% lysis; 10:1 E:T ratio) but did not lyse CD19−/HLA-A2.1+ or CD19+/HLA-A2.1− cell lines. Similarly, the CD20-specific CTLs generated from normal donors lysed CD20+/HLA-A2.1+ MM cell lines (25% lysis; 10:1 E:T ratio), in a manner restricted to HLA-A2.1 and specific to antigens. We next showed IFN-γ production by the CTLs after exposure to CD19+/HLA-A2.1+ or CD20+/HLA-A2.1+ MM cells. Moreover, we have demonstrated the ability to expand CD20-CTLs under serum-free culture conditions while maintaining their cytotoxic activity (28–49%). In ongoing studies, we are evaluating the ability of CD19- and CD20-specific CTLs to eliminate clonogenic myeloma cells in vitro and in vivo in a SCID mouse model of myeloma. These preclinical studies strongly suggest that immunogenic CD19 and CD20 peptide-based vaccines represent a promising immunotherapeutic approach in myeloma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3417-3417
Author(s):  
Yutaka Okuno ◽  
Hiro Tatetsu ◽  
Shikiko Ueno ◽  
Hiroyuki Hata ◽  
Yasuhiro Yamada ◽  
...  

Abstract It has been reported that disruption of transcription factors critical for hematopoiesis, such as C/EBPa and AML1, is involved in leukemogenesis. PU.1 is a transcription factor important for both myeloid and lymphoid development. We reported that mice in which the levels of PU.1 were 20% of that of wild-type developed acute myeloid leukemia, T cell lymphoma, and a CLL-like disease. These findings strongly suggest that PU.1 has tumor suppressive activity in multiple hematopoietic lineages. Last year, we reported that PU.1 is downregulated in a majority of multiple myeloma cell lines and and freshly isolated CD138 positive myeloma cells from certain number of myeloma patients, and that tet-off inducible exogenous expression of PU.1 in PU.1 negative myeloma cell lines induced cell growth arrest and apoptosis. Based on their PU.1 expression levels, we divided the myeloma patients into two groups, namely PU.1 high and PU.1 low-to-negative, (cutoff index of 25th percentile of the PU.1 expression level distribution among all patients). The PU.1 low-to-negative patients had a significantly poorer prognosis than the PU.1 high patients. To elucidate the mechanisms of downregulation of PU.1, we performed sequence and epigenetic analysis of the promoter region and the -17 kb upstream region that is conserved among mammalians and important for proper expression of PU.1. There are no mutations in these regions of all five myeloma cell lines. In contrast, the -17 kb upstream region was highly methylated in 3 of 4 PU.1 negative myeloma cell lines, while the promoter region was also methylated to various levels in all five myeloma cell lines including one PU.1 positive cell line. These data suggested that the downregulation of PU.1 in myeloma cell lines might be dependent on the methylation of both regulatory regions of PU.1 gene, especially the -17 kb upstream region. We also evaluated the mechanisms of cell growth arrest and apoptosis of myeloma cell lines induced by PU.1. Among apoptosis-related genes, we identified that TRAIL was upregulated after PU.1 induction. To evaluate the effect of upregulation of TRAIL, we stably introduced siRNA for TRAIL into myeloma cell lines expressing PU.1, and we found that apoptosis of these cells was partially suppressed by siRNA for TRAIL, suggesting that apoptosis of myeloma cells induced by PU.1 might be at least partially due to TRAIL upregulation. We are currently performing DNA microarray analysis to compare the expression levels of genes between before and after PU.1 induction, in order to further elucidate the mechanisms of cell growth arrest and apoptosis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2856-2856 ◽  
Author(s):  
Dirk Hose ◽  
Anja Seckinger ◽  
Hartmut Goldschmidt ◽  
Tobias Meiβner ◽  
Blanka Rebacz ◽  
...  

Abstract Abstract 2856 Poster Board II-832 BACKGROUND. Molecular profiling of multiple myeloma allows the identification of novel targets, including HIF1A, and evaluation of their expression within large cohorts of patients. We report here the expression of HIF1A in myeloma and for the first time the preclinical testing of 4 members of a novel class of sulfonanilide HIF1A signaling inhibitors. PATIENTS AND METHODS. Expression of HIF1A was assessed using Affymetrix DNA-microarrays in 329 samples of CD138-purified myeloma cells from previously untreated patients. Chromosomal aberrations were assessed by comprehensive iFISH using a set of probes for the chromosomal regions 1q21, 6q21, 8p21, 9q34, 11q23, 11q13, 13q14.3, 14q32, 15q22, 17p13, 19q13, 22q11, as well as the translocations t(4;14)(p16.3;q32.3) and t(11;14)(q13;q32.3). Proliferation of primary myeloma cells (n=67) was determined by propidium iodine staining. The effect of the novel HIF1A signaling inhibitors ELR510490, ELR510454, ELR510444 and ELR105813 on the proliferation of 12 human myeloma cell lines and the first three on the survival of 5 primary myeloma cell-samples cultured within their microenvironment was tested, and their ability to inhibit HIF1A signaling was examined using a cell-based reporter assay. Studies were also conducted to determine in vitro stability (in plasma and microsomes), as well as single-dose PK (SDPK) parameters and maximum tolerated dose (MTD) levels after dosing in mice. RESULTS. We found (i) HIF1A to be expressed by 95.4% of CD138-purified primary myeloma cell samples from previously untreated patients. (ii) HIF1A expression shows a weak but significant correlation (r=0.3, p<0.001) with a gene expression based proliferation index. (iii) Of the chromosomal aberrations tested, myeloma cells of patients with presence of a translocation t(4,14) show a significantly higher expression of HIF1A (p<0.001) vs. patients without. Myeloma cells of hyperdiploid patients show a significantly lower expression of HIF1A (p=0.02) vs. non hyperdiploid patients. (iii) HIF1A expression does not show a correlation with event-free or overall survival. (iv) The sulfonanilides ELR510490, ELR510444, ELR510454 and ELR105813 completely inhibit proliferation of all tested myeloma cell lines at nM concentrations. (v) The compounds tested, i.e. ELR510490, ELR510444, ELR510454, are active on all primary myeloma cell-samples tested. (vi) The compounds show a pronounced effect on the HIF1A signaling pathway at EC50s of 1-25nM. (vii) Pre-clinical pharmacology data for the compounds ELR510444 and ELR510490 in mice indicate favorable absorption, distribution, metabolism, and excretion (ADME) profiles as well as exposure levels upon dosing at well-tolerated levels that are significantly above the in vitro EC50 in all the cell lines tested. CONCLUSION. HIF1A is expressed in almost all primary myeloma cells. The novel HIF1A signaling inhibitors tested are very active on myeloma cell lines as well as primary myeloma cells and show favorable in vivo profiles with exposure levels in mice significantly higher than the concentrations required for the inhibition of cell proliferation or apoptosis induction in vitro. This class of compounds thus represents a promising weapon in the therapeutic arsenal against multiple myeloma. Disclosures: Rebacz: ELARA Pharmaceuticals: Employment. Lewis:ELARA Pharmaceuticals: Employment. Schultes:ELARA Pharmaceuticals: Employment.


Sign in / Sign up

Export Citation Format

Share Document