Unique Gain-of-Function of Mutated c-CBL Tumor Suppresor in Myeloid Neoplasms.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2970-2970
Author(s):  
Masashi Sanada ◽  
Takahiro Suzuki ◽  
Lee-Yung Shih ◽  
Makoto Otsu ◽  
Motohiro Kato ◽  
...  

Abstract Abstract 2970 Poster Board II-946 Acquired uniparental disomy (aUPD) is a common feature of myeloid neoplasms, especially myelodysplastic syndromes (MDS) / myeloploriferative neoplasms (MPN). aUPDs preferentially affected several chromosomal arms in distinct subsets of patients, and frequently associated with mutated oncogenes and tumour suppressor genes. Among these, the most common aUPDs are those involving 11q, which defined a unique subset of myeloid neoplasms that were clinically characterized by frequent diagnosis of chronic myelomonocytic leukaemia (CMML) with normal karyotypes. Recently, we and other groups reported that 11qUPD are genetically defined by the presence of homozygous mutations of C-CBL. C-CBL proto-oncogene is the cellular homolog of the v-Cbl transforming gene of the Cas NS-1 murine leukemia virus. C-CBL is thought to be involved in the negative modulation of tyrosine kinase signalling, primarily through their E3 ubiquitin ligase activity that is responsible for the down-regulation of activated tyrosine kinases. As expected from the latter function, we demonstrated that wild-type C-CBL has tumour suppressor functions; c-Cbl null mice showed expanded hematopoietic progenitor pools, promoted blastic crisis induced by a bcr/abl transgene, and spontaneous development of late-onset invasive cancers in complete penetrance. On the other hand, mutated C-CBL showed clear oncogenic potential; all tested mutants strongly transformed NIH3T3 fibroblasts, and prolonged replating capacity of hematopoietic progenitors. All reported C-CBL mutations involved the linker-RING finger domains that are central to the E3 ubiquitin ligase activity. We demonstrated that mutated C-CBL not only lost their E3 ubiquitin ligase activity, but also inhibited that of wild-type C-CBL, leading to prolonged activation of a broad spectrum of tyrosine kinases after ligand stimulations in fibroblasts and hematopoietic cells. In accordance with this, c-Cbl−/− hematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines, but unexpectedly, transduction of C-CBL mutants into c-Cbl−/− HSPCs further augmented the sensitivity to a broader spectrum of cytokines, indicating the presence of gain-of-function in mutated C-CBL that is not simply mediated by inhibition of wild-type C-CBL functions. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in the c-Cbl+/+ background or by co-transduction of wild-type C-CBL, which may suggest the pathogenic importance of loss of wild-type c-Cbl alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a novel insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some of myeloid cancer subsets. Currently, further functional studies regarding the molecular mechanism of the gain-of-function are ongoing. Disclosures: Omine: Alexion: Consultancy, Research Funding.

2005 ◽  
Vol 16 (11) ◽  
pp. 5433-5444 ◽  
Author(s):  
Yutaka Morita ◽  
Chie Kanei-Ishii ◽  
Teruaki Nomura ◽  
Shunsuke Ishii

Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to diverse proteins. The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. PIASy is the only known SUMO E3 ligase for c-Myb. Here, we report that TRAF7 binds to c-Myb and stimulates its sumoylation. TRAF7 bound to the DNA-binding domain of c-Myb via its WD40 repeats. TRAF7 has an E3 ubiquitin ligase activity for self-ubiquitination, but TRAF7 also stimulated the sumoylation of c-Myb at Lys-523 and Lys-499, which are the same sites as those used for PIASy-induced sumoylation. TRAF7 inhibited trans-activation induced by wild-type c-Myb, but not by the sumoylation site mutant of c-Myb. The expression of both c-myb and TRAF7 was down-regulated during differentiation of M1 cells. Endogenous TRAF7 localized to both the cytoplasm and nucleus of M1 cells. Consistent with this, significant amounts of sumoylated c-Myb were found in the cytoplasm of M1 cells, whereas nonsumoylated c-Myb was found predominantly in the nucleus. Overexpressed TRAF7 was localized in the cytoplasm of CV-1 cells, and sequestered c-Myb and SUMO1 in the cytosol, whereas PIASy was localized in the nucleus. Thus, TRAF7 negatively regulates c-Myb activity by sequestering c-Myb to the cytosol via sumoylation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1335-1335
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Brie R. Brown ◽  
Whitney D. Nelson ◽  
...  

Abstract Abstract 1335 Fanconi anemia (FA) is associated with a hereditary predisposition to bone marrow failure. The proteins encoded by the FANC genes are primarily involved in DNA repair responses through the formation of a large, multisubunit complex that has E3 ubiquitin ligase activity (Annual Review of Genetics 2009;43:223). FA hematopoietic stem cells display defective stem cell properties and limited replicative potential. However, the molecular basis for how a FA genetic background contributes to those defects remains poorly understood. Here we provide evidence that FANCL, which has E3 ubiquitin ligase activity, enhances beta-catenin activity (Figure A) and protein expression. Beta-catenin is a nuclear effector of canonical Wnt signaling. The Wnt/beta-catenin pathway is active in normal hematopoietic stem cells in the native bone marrow environment and disruption of this signaling pathway results in defective hematopoietic stem cells (Nature 2003;423:409). To test whether FANCL positively regulates beta-catenin through its ubiquitination activity, we performed cell-based ubiquitination assays. We show that FANCL functionally ubiquitinates beta-catenin (Figure B) and that ubiquitin chain extension can occur via non-lysine-48 ubiquitin linkages. Accumulating evidence reveal diverse, non-proteolytic biological roles for proteins modified by atypical ubiquitin chains (EMBO Reports 2008;9:536). Our data suggests that FANCL may enhance the protein function of beta-catenin via ubiquitination with atypical ubiquitin chains. Importantly, we demonstrate that suppression of FANCL expression in human CD34+ cord blood stem cells reduces beta-catenin expression (Figure C) and multilineage progenitor expansion. These results demonstrate a role for the FA pathway in regulating Wnt/beta-catenin signaling. Therefore, diminished Wnt/beta-catenin signaling may be an important underlying molecular defect in FA hematopoietic stem cells leading to their accelerated loss. A, LEF-TCF-luciferase reporter assay showing increasing beta-catenin activity in 293FT cells with increasing FANCL expression compared with vector-control (VC) (n=4). B, Immunoprecipitation of beta-catenin in cells transfected with vector-control or FANCL and probed for hemagglutinin (HA)-tagged ubiquitin shows increased ubiquitinated forms of beta-catenin with FANCL expression (n=4). C, shRNA suppression of FANCL expression in CD34+ cord blood stem cells results in decreased beta-catenin expression compared with a scramble control (Scr) by immunofluorescence analysis (three different shRNA constructs, n=3 for each construct). Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 24 (17) ◽  
pp. 7748-7757 ◽  
Author(s):  
Xiuli Wu ◽  
Lily Yen ◽  
Lisa Irwin ◽  
Colleen Sweeney ◽  
Kermit L. Carraway

ABSTRACT Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Stefanie Kaech ◽  
Whitney D. Nelson ◽  
...  

Abstract Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34+ stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.


Oncogene ◽  
2010 ◽  
Vol 29 (43) ◽  
pp. 5818-5827 ◽  
Author(s):  
T Qian ◽  
J-Y Lee ◽  
J-H Park ◽  
H-J Kim ◽  
G Kong

Plant Science ◽  
2007 ◽  
Vol 173 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Bong Soo Park ◽  
Wan Gyu Sang ◽  
Song Yion Yeu ◽  
Yang Do Choi ◽  
Nam-Chon Paek ◽  
...  

2021 ◽  
Author(s):  
◽  
Carla Coppola

In this study, I focused on a new family of receptors, called RMRs (Receptor-like Membrane RING-H2) and I tried to investigate their role in the moss Physcomitrium patens Mitten (previously Physcomitrella patens). There is some evidence that in Angiosperms, RMRs are vacuolar receptors for the neutral/storage vacuole that is a compartment where storage proteins and metabolites are accumulated during seeds development or in somatic tissues. It is distinguished from lytic vacuole which has the same functions as animal lysosomes. The five PpRMR genes have been knocked-out, yielding viable material without visible phenotype (Ayachi, 2012). A trafficking phenotype was described by Fahr (2017) who generated the construct Citrine-Cardosin (Ci-Card) composed of the fluorescent protein Citrine fused to the C-terminal vacuolar sorting determinant (ctVSD) from cardosin A (cardosin is addressed to the vacuole in higher plants —Pereira et al., 2013). The fusion protein was delivered to the central vacuole of PpWT but mistargeted in PpRMR-KO lines, indicating that the targeting of this protein to the vacuole depends on PpRMRs. The introduction of this thesis presents the plant endomembrane system, with particular attention to vacuolar transport and ubiquitylation. In the second chapter, I show the techniques used to attempt to detect PpRMRs by Western Blot: our failure may be due to a rapid degradation of these proteins, which could prevent their detection. In the third chapter, I focused on PpRMR2 involvement in ubiquitylation. We hypothesize that PpRMRs are E3 ligases because they are members of the PA-TM-RING protein family. Most of these proteins have an E3 ubiquitin ligase activity in animals (Seroogy et al., 2004; Borchers et al., 2002), for this reason, we think that plant PpRMRs could have this function as well, which could contribute to vacuolar targeting. Indeed, I could confirm that PpRMR2 has an E3 ubiquitin ligase activity. PpRMRs substrates are still unknown in moss thus we have analysed putative candidates supposing that they could be ubiquitylated by PpRMRs. We have tested this hypothesis through in vitro ubiquitylation assays, obtaining ambiguous results. In the fourth chapter, I show preliminary results about the visible phenotype of PpRMR-KO mutants: PpWT and PpRMR-KO lines displayed phenotypic differences in leafy gametophores, which were accentuated upon salt stress exposure. Lastly, I transformed the transgenic lines PpWT/Ci-Card and Pp5KO/Ci-Card with mutated versions of PpRMR2 and analysed their effect on vacuolar transport by confocal microscopy. For most of the constructions tested, the trafficking was perturbed in both lines. Only PpWT/Ci-Card expressing PpRMR2ΔSer (lacking the Serine-Rich motif) displayed a typical vacuolar pattern.


2022 ◽  
Author(s):  
Grant Dewson ◽  
Alan Shuai Huang ◽  
Hui San Chin ◽  
Boris Reljic ◽  
Tirta M Djajawi ◽  
...  

Intrinsic apoptosis is principally governed by the BCL-2 family of proteins, but some non-BCL-2 proteins are also critical to control this process. To identify novel apoptosis regulators, we performed a genome-wide CRISPR-Cas9 library screen, and identified the mitochondrial E3 ubiquitin ligase MARCHF5/MITOL/RNF153 as an important regulator of BAK apoptotic function. Deleting MARCHF5 in diverse cell lines dependent on BAK conferred profound resistance to BH3-mimetic drugs. The loss of MARCHF5 or its E3 ubiquitin ligase activity surprisingly drove BAK to adopt an activated conformation, with resistance to BH3-mimetics afforded by the formation of inhibitory complexes with pro-survival proteins MCL-1 and BCL-XL. Importantly, these changes to BAK conformation and pro-survival association occurred independently of BH3-only proteins and influence on pro-survival proteins. This study identifies a new mechanism by which MARCHF5 regulates apoptotic cell death and provides new insight into how cancer cells respond to BH3-mimetic drugs. These data also highlight the emerging role of ubiquitin signalling in apoptosis that may be exploited therapeutically.


2018 ◽  
Vol 115 (40) ◽  
pp. E9317-E9324 ◽  
Author(s):  
Haoyan Li ◽  
Yanjia Fang ◽  
Chunyi Niu ◽  
Hengyi Cao ◽  
Ting Mi ◽  
...  

Protooncogenec-MYC, a master transcription factor, is a major driver of human tumorigenesis. Development of pharmacological agents for inhibiting c-MYC as an anticancer therapy has been a longstanding but elusive goal in the cancer field. E3 ubiquitin ligase cIAP1 has been shown to mediate the activation of c-MYC by destabilizing MAD1, a key antagonist of c-MYC. Here we developed a high-throughput assay for cIAP1 ubiquitination and identified D19, a small-molecule inhibitor of E3 ligase activity of cIAP1. We show that D19 binds to the RING domain of cIAP1 and inhibits the E3 ligase activity of cIAP1 by interfering with the dynamics of its interaction with E2. Blocking cIAP1 with D19 antagonizes c-MYC by stabilizing MAD1 protein in cells. Furthermore, we show that D19 and an improved analog (D19-14) promote c-MYC degradation and inhibit the oncogenic function of c-MYC in cells and xenograft animal models. In contrast, we show that activating E3 ubiquitin ligase activity of cIAP1 by Smac mimetics destabilizes MAD1, the antagonist of MYC, and increases the protein levels of c-MYC. Our study provides an interesting example using chemical biological approaches for determining distinct biological consequences from inhibiting vs. activating an E3 ubiquitin ligase and suggests a potential broad therapeutic strategy for targeting c-MYC in cancer treatment by pharmacologically modulating cIAP1 E3 ligase activity.


Sign in / Sign up

Export Citation Format

Share Document