Lenalidomide Alone and in Combination with Rituximab Enhances NK Cell Immune Synapse Formation in Chronic Lymphocytic Leukemia (CLL) Cells in Vitro through Activation of Rho and Rac1 GTPases.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3441-3441 ◽  
Author(s):  
Svetlana Gaidarova ◽  
JianWu Li ◽  
Laura G Corral ◽  
Emilia Glezer ◽  
Peter H Schafer ◽  
...  

Abstract Abstract 3441 Poster Board III-329 Background CLL is characterized by the progressive accumulation of monoclonal B lymphocytes. One theory to explain how CLL cells avoid elimination through immune surveillance mechanisms is through a defect in the ability of T-cells to form immunological synapses with antigen-presenting tumor B-cells (Ramsay et al JCI 2008). Lenalidomide is an immunomodulatory agent with clinical activity in the treatment of B-cell malignancies. Recent laboratory studies showed that lenalidomide not only stimulates T- and natural killer (NK)-cell-mediated ADCC, it also restores the T-cell-mediated ability to form immunological synapses with CLL tumor cells. Since NK cells also exert cytotoxicity through immune synapse formation, here we explore how lenalidomide affects NK-cell-mediated cytotoxicity mechanisms and whether this activity is altered in the presence of rituximab since published studies showed that lenalidomide-pretreated B-cells have a down-regulated surface CD20 expression. Further, we investigated the molecular events associated with immune synapse formation and the effect of lenalidomide. Methods Immune synapse formation was assessed in NK cells (from healthy donors PBMCs) co-cultured with either B-CLL cells derived from pts or with K562 cells (positive control). Cells were fixed and the ability to form synapses was assessed via immunohistochemisty co-staining for either F-actin and CD2, or F-actin and perforin (a cytolytic protein found in NK cells). Synapse formation was visualized by microscopy and measured via relative mean fluorescent intensity. Activity of RhoA, Rac1, Cdc42 were measured using Rho GTPases assay kits. Inhibition of lenalidomide-mediated immune synapse activity was assayed using the cell permeable Rho inhibitor C3 (0.5 mM). Flow cytometry was used to measure changes in surface CD20 and CD54 (ICAM-1) expression in B-CLL samples from 3 pts after treatment with lenalidomide. Results Lenalidomide induced the formation of immunological synapses between NK cells and primary B-CLL cells (p<.01) or the K562 cell line. Lenalidomide activated NK cells regardless of the presence of target cells, as measured by F-actin and perforin staining. RhoA and Rac1 were activated at the immunological synapse in the presence of lenalidomide. Inhibition of RhoA by the C3 inhibitor blocked F-actin localization, as well as perforin accumulation induced by lenalidomide at cell-cell contact sites, indicating inhibition of immune synapses and the associated cytolytic activity. This was also observed with Rac1 inhibition, but to a lesser degree than with RhoA inhibition. Functionality of formed synapses was confirmed by co-localization of F-actin and perforin at the synapse sites. 3 CLL pt samples treated ex vivo with lenalidomide demonstrated variable changes in CD20 expression: a 20-30% decrease in CD20 expression was observed in 2 B-CLL pt samples, whereas CD20 levels remained unchanged in the third. In the presence of rituximab, lenalidomide-induced synapse formation between NK cells and B-cells from CLL patients was further enhanced. This was accompanied by upregulation of costimulatory and adhesion molecule CD54 on B-CLL cells suggesting increased antigen presentation, which might contribute to the increased synapse formation. Conclusion Lenalidomide can directly activate NK-cell-mediated anti-tumor activity through enhanced formation of immune synapses via the regulation of Rho and Rac1 GTPases and the cytoskeleton. Despite some down-modulation of CD20 expression in lenalidomide-pretreated B-CLL cells, the immune synapse activity increases when lenalidomide is combined with rituximab suggesting that combining lenalidomide and anti-CD20 antibodies warrants exploration in the CLL clinical setting. Disclosures Gaidarova: Celgene: Employment, Equity Ownership. Li:Celgene: Employment. Corral:Celgene: Employment. Glezer:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment. Xie:Celgene: Employment. Lopez-Girona:Celgene: Employment.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2845-2845 ◽  
Author(s):  
Svetlana Gaidarova ◽  
Derek Mendy ◽  
Carla Heise ◽  
Sharon Lea Aukerman ◽  
Tom Daniel ◽  
...  

Abstract Abstract 2845 Lenalidomide is an immunomodulatory agent that has both direct tumoricidal and immunomodulatory activities which are critical for its clinical activity in the treatment of various hematologic malignancies. This activity is at least in part mediated by enhanced T-cell and NK-cell effector function to eliminate tumor B cells, attributed to restoration of impaired T-cell activity and formation of immunologic synapses. Rituximab is an anti-CD20 monoclonal antibody that is active in the treatment of B-cell lymphomas through a variety of mechanisms, including antibody-dependent cellular cytotoxicity (ADCC). Preclinical studies and early clinical trials have shown an enhancement, and potentially synergy, in antitumor activity when lenalidomide is combined with rituximab. In order to further explore the mechanistic basis of this enhancement we investigated the impact of lenalidomide and rituximab on immune synapse formation and ADCC. We have previously shown that the combined use of lenalidomide and rituximab enhances NK cell-mediated immune synapse formation and the resultant cytotoxicity, versus each agent alone. Here we evaluate the molecular events that take place on the cell surface upon exposure of JeKo-1 cells (mantle cell lymphoma) and primary B-CLL cells to lenalidomide alone or lenalidomide plus rituximab. Change in CD20 expression resulting from exposure to vehicle control (0.1% DMSO) or 1 μM lenalidomide for 30 min or 24, 48, 72 hrs was assessed using immunocytochemistry, flow cytometry and isolation of cell membrane-associated proteins followed by Western blotting. At all time points evaluated, levels of cell surface and cell membrane-associated CD20 expression were unchanged in JeKo-1 cells. However, the distribution of CD20 was dramatically altered within 30 minutes after addition of lenalidomide. CD20 redistribution was accompanied by F-actin polymerization and lipid raft aggregation associated with the polarized localization (capping) of a number of proteins including CD20, CD19 and cytoskeleton signaling molecules Rac1 and Vav1, critical regulators of immune synapse formation in effector cells. Of note, other surface proteins involved in signaling such as CD45 were not part of this capping mechanism. By 48 hours of lenalidomide treatment, the majority of JeKo-1 cells (>80%) showed continued capping of CD20. These responses were also seen in primary B-CLL cells, although the effects were variable. In addition, CD20, F-actin and lipid rafts co-localized at the immune synapses formed between JeKo-1 and NK cells treated with either 1 μM lenalidomide for 24 hrs, 0.1% DMSO for 24 hrs followed by 10 μg/ml rituximab for 30 min, or treated sequentially with 1μM lenalidomide for 24 hrs followed by 10 ug/ml rituximab for 30 min. Lenalidomide and rituximab induced similar effects on B-CLL cells and the immune synapses formed between B-CLL and NK cells. We also determined whether formation of lipid rafts and actin cytoskeleton modifications were a prerequisite for CD20 capping. Cholesterol extraction from JeKo-1cells by 5 mM methyl-β-cyclodextrin (MCD) treatment for 30 min led to complete abrogation of lenalidomide-induced capping. The polymerization of the F-actin cytoskeleton and capping of CD20 was also affected, with no impact on cell viability. In addition, MCD treatment inhibited the formation of immunologic synapses between JeKo-1 cells and NK cells treated with 1 μM lenalidomide alone and in cells co-treated with 1 μM lenalidomide and 10 μg/ml rituximab. These data are consistent with a requirement for the integrity of lipid rafts to maintain the capping of CD20 and to potentially mediate lenalidomide enhancement of ADCC by rituximab. Our results further demonstrate that lenalidomide does not down-regulate CD20, but rather induces its polarized localization at the cell surface. The capping of CD20 is accompanied by redistribution of proteins such as Vav1 and Rac1 that become part of the immune synapse complex. Therefore the capping process induced by lenalidomide appears integral to immune synapse formation and may coordinately enhance the clustering of both the CD20 antigen and the attached rituximab, potentially further enhancing its activity, which would support the clinical combination of these agents. Ongoing studies are currently examining the role of the capping process and intracellular signaling cascades in the direct tumoricidal activity of lenalidomide. Disclosures: Gaidarova: Celgene Corporation: Employment, Equity Ownership. Mendy:Celgene Corporation: Employment. Heise:Celgene Corporation: Employment. Aukerman:Celgene Corporation: Employment. Daniel:Celgene Corporation: Employment. Chopra:Celgene Corporation: Employment. Lopez-Girona:Celgene Corporation: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1687-1687
Author(s):  
Svetlana Gaidarova ◽  
Laura G Corral ◽  
Emilia Glezer ◽  
Peter H Schafer ◽  
Antonia Lopez-Girona

Abstract Abstract 1687 Poster Board I-713 Introduction Mantle cell lymphoma (MCL) is a subtype of aggressive B-cell non-Hodgkin's Lymphoma (NHL) characterized by poor prognosis and very few therapeutic options that improve survival. Lenalidomide is an immunomodulatory agent that has demonstrated significant clinical activity in the treatment of patients with MCL. A mechanism attributed to lenalidomide, which has also been demonstrated in B-CLL models, is the restoration of impaired T-cell activity to form immunological synapses, thus enhancing T-cell effector functions thereby eliminating aberrant tumor B cells. Natural killer (NK) cells are another cell type that eliminates aberrant cell types via a mechanism dependent on active formation of immunological synapses. By engaging in both direct killing and ADCC, NK cells are an important component of innate immunity eliminating transformed cell types. Here we assess the effect of lenalidomide on the ability of NK cells to form immune synapses with MCL cell lines and cell samples from MCL patients. We also evaluate whether lenalidomide-mediated immunologic activity is altered when lenalidomide is combined with rituximab, an anti-CD20 antibody shown to eliminate MCL cells through the ADCC mechanism. Methods To measure immune synapse formation, NK and JeKo-1 cells were pre-treated with DMSO or 1μM lenalidomide for 24 or 48 hrs. JeKo-1 cells (labeled with red PKH26) were incubated for 30 min with or without 10 μg/ml rituximab, and cell conjugates were fixed and stained with Phalloidin-FITC to measure mean fluorescent intensity and F-actin formation. Adenylate kinase (AK) release and 7AAD staining were used to measure NK-mediated cytotoxicity after NK and MCL cells were co-cultured at different target-to-effector ratios, and with and without rituximab. Flow cytometry was used to measure relative expression of cell surface markers CD56 (N-CAM), CD54 (I-CAM1), and NKG2D in both JeKo-1 cells and in B-cell samples from MCL patients. Results Addition of lenalidomide enhanced the formation of immunological synapses between JeKo-1 cells and NK cells, increasing the number of synapses approximately 3-fold after 24 hrs of treatment. When lenalidomide was combined with rituximab the number of synapses increased 3.5-fold. A significant increase in the number of synapses also occurred when NK cells co-cultured with MCL patient samples were treated with lenalidomide (2.5-fold increase) and lenalidomide plus rituximab (3-fold increase). Lenalidomide also augmented the intensity of F-actin at the synaptic site, which indicates more matured synapses rich with F-actin. The increased synapse-forming activity resulting from treatment with rituximab plus lenalidomide also translated into enhanced NK-mediated cytotoxicity. After 48 hours of concurrent treatment with lenalidomide and rituximab, approximately 80% of JeKo-1 cells released AK compared with approximately 45% after treatment with lenalidomide alone. Comparable cell killing data upon treatment with lenalidomide plus rituximab was obtained using a 7AAD assay. Finally, to understand the mechanism by which lenalidomide enhances the formation of immune synapses and augments the rituximab-dependent NK cell-mediated cytotoxicity in MCL cells, we studied the effect of lenalidomide on effector and target cells separately. In the NK cells, lenalidomide treatment induced F-actin polymerization and polarization, and the accumulation of perforin, which is evidence for effector cell activation. Previously we showed that lenalidomide treatment of tumor cells induces changes in actin structure and increases expression of cell surface markers, including CD54 and co-stimulatory molecules, which correlated with increased antigen presentation properties of tumor cells. Here we show that lenalidomide and rituximab induced F-actin polymerization and polarization in the JeKo-1 cells when administered individually and in combination, and resulted in slightly increased cytotoxicity. Conclusion Our results suggest that in MCL, combined use of lenalidomide and rituximab enhances NK-mediated immune synapse formation and the resultant cytotoxicity. Combining lenalidomide with rituximab may also enhance the anti-tumor immune response mediated through enhanced activity of NK cells. These studies suggest that lenalidomide plus rituximab may have clinical utility in the treatment of patients with MCL. Disclosures Gaidarova: Celgene: Employment, Equity Ownership. Corral:Celgene: Employment. Glezer:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment. Lopez-Girona:Celgene: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1794-1794 ◽  
Author(s):  
Dongxia Xing ◽  
Alan G. Ramsay ◽  
Simon Robinson ◽  
Catherine M. Bollard ◽  
Nina Shah ◽  
...  

Abstract Abstract 1794 Immune dysfunction is a hallmark of chronic lymphocytic leukemia (CLL) including suppressed humoral and cell-mediated immune responses. The immunomodulatory agent lenalidomide has shown effective clinical activity against CLL, but its mechanism of action is poorly understood. Previous work has demonstrated that the T cell immunological synapse and functional defects in CLL can be reversed following lenalidomide treatment (J Clin Invest. 2008; 118). Polymerization of F-actin at the NK cell immunological synapse with tumor cells is required for signaling molecules to assemble and regulate NK cell activation and effector function. Confocal microscopy was used to visualize and analyze F-actin polymerization at the immune synapse between NK cells and CLL cells. The impaired immune synapse defect identified in CLL could result from not only the defects of CLL B cells but also defects in the CLL NK cells or a combination of both factors. To investigate the contribution of each factor, we examined synapse formation in experiments using CLL B cells with autologous CLL NK cells or healthy allogeneic NK cells. Conjugates formed with healthy NK cells and CLL B cells exhibited a strong band of F-actin at the immune synapse. In contrast, significantly less actin polymerization at the synapse was observed in autologous CLL NK cells and CLL B cells (P < 0.01). These results indicate CLL B cells, together with CLL NK cells contributed to the immune dysfunction in CLL. As autologous NK cell function in CLL is suppressed, we investigated the utility of CB as a potential functional source of NK cells for CLL immunotherapy. We examined the effect of lenalidomide on NK cell immune synapse function with CLL B cells acting as APCs. We demonstrated that ex vivo treatment of CLL cells with lenalidomide (500 ng/ml) for 48 hours caused a significant increase in the ability of autologous CLL NK cells to form F-actin immune synapses with CLL B cells. The same treatment of CLL B cells also significantly increased the ability of CB-NK cells to form F-actin immunological synapses with these treated CLL B cells compared to untreated CLL B cells (33.6% to 67.3%, P < 0.01, n=6). Our results also show that lenalidomide treatment of autologous NK cells from CLL patients enhanced synapse formation with treated CLL cells compared to experiments using untreated NK cells, but with reduced function compared to CB NK cells. Of note, lenalidomide treatment was shown to increase the recruitment of the signaling molecule Lck to NK cell:CLL cell synapse site, that is known to regulate lytic synapse function. Importantly, lenalidomide treatment significantly increased CB-NK killing of CLL B cells compared to untreated CLL B cells (20.5% versus 48.2%, E:T ratio of 10:1, n = 6, p < 0.001). These results provide insight into the potential mechanism of action of lenalidomide's anti-leukemic function – priming CLL tumor cells for enhanced NK cell lytic synapse formation and effector function. In addition, the data suggests that immunotherapeutic strategies utilizing a combination of CB-NK cells and lenalidomide has an enhanced clinical efficacy in CLL. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2663-2663
Author(s):  
Dongxia Xing ◽  
Alan G. Ramsay ◽  
William Decker ◽  
Sufang Li ◽  
Simon Robinson ◽  
...  

Abstract Abstract 2663 Poster Board II-639 Natural killer (NK) cells are an important component of the innate immune surveillance of tumor cells. Defective NK cell function has been correlated with poor prognosis in acute myeloid leukemia (AML). It is well established that NK cell-mediated cytolytic activity is significantly diminished in AML patients; the mechanisms of this hypo-function are not well understood. Identifying mechanisms of tumor-induced immune suppression of lymphocytes function will aid the development of effective immunotherapeutic strategies. In the present study we examined the molecular basis for impaired NK cell responses in AML and demonstrate impaired NK cell immunological synapse formation. Confocal microscopy was used to visualize F-actin polymerization at the immune synapse between CD56+ CD3- NK cells and autologous AML blasts. We identified a significant reduction in formation of the NK cell immune synapse (NKIS) (p<0.001) from AML patients compared healthy donors (> 70% reduction). This defect was induced by direct tumor contact since NK cell defects were induced in healthy NK cells when they were co-cultured (in direct contact) for 48 hr with allogeneic AML blasts, but not with healthy allogeneic monocytes (P < 0.01). In control transwell co-culture experiments, where the NK cells and AML blast were not in direct contact, we did not observe the induced defect. We examined the molecular nature of the AML blast induced defect by quantifying recruitment of a number of these NK cell adhesion and cytoskeletal signaling proteins to the immune synapse. Following primary co-culture with AML blasts, healthy NK cells showed significantly reduced recruitment of integrin LFA-1, CD2, Lck, WASP, and tyrosine-phosphorylated protein to the NK-AML target interactions synapse (P < 0.001). These studies demonstrate a role for the tumor induced immune suppression of NK cells and will aid in the development of immunotherapeutic approaches targeting AML. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 207 (9) ◽  
pp. 1923-1938 ◽  
Author(s):  
Aradhana Awasthi ◽  
Asanga Samarakoon ◽  
Haiyan Chu ◽  
Rajasekaran Kamalakannan ◽  
Lawrence A. Quilliam ◽  
...  

Rap1 GTPases control immune synapse formation and signaling in lymphocytes. However, the precise molecular mechanism by which Rap1 regulates natural killer (NK) cell activation is not known. Using Rap1a or Rap1b knockout mice, we identify Rap1b as the major isoform in NK cells. Its absence significantly impaired LFA1 polarization, spreading, and microtubule organizing center (MTOC) formation in NK cells. Neither Rap1 isoform was essential for NK cytotoxicity. However, absence of Rap1b impaired NKG2D, Ly49D, and NCR1-mediated cytokine and chemokine production. Upon activation, Rap1b colocalized with the scaffolding protein IQGAP1. This interaction facilitated sequential phosphorylation of B-Raf, C-Raf, and ERK1/2 and helped IQGAP1 to form a large signalosome in the perinuclear region. These results reveal a previously unrecognized role for Rap1b in NK cell signaling and effector functions.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 756-756
Author(s):  
Simmy Thomas ◽  
Chris E Lawrence ◽  
Vernon Mar ◽  
Hue Kha ◽  
Lena A Basile

Abstract Interleukin-12 (IL-12) has potent immunoregulatory and hematopoietic properties, and exerts significant biological effects on natural killer (NK) cells, inducing IFNγ production and enhancing cytotoxicity. Two distinct NK cell populations correlate with their immunoregulatory functions. Mature CD56dimCD16bright NK cells represent 90% of the NK cells resident in the blood and can exert cytotoxic effects on transformed cells. Cytokine producing immature CD56brightCD16+/- NK cells exist in the blood (10% of total circulating NK cells) but are most prominently located in secondary lymphoid tissues. In the continued clinical development of recombinant human IL-12 (HemaMax™, rHuIL-12), to be used in combination with radiotherapy or chemotherapy for the treatment of cancer patients, we have performed a clinical safety study in healthy human subjects. A single subcutaneous (sc) dose of rHuIL-12 (12μg) was administered to 17 healthy human subjects. Placebo was administered to 5 healthy subjects. Peripheral blood samples were collected before rHuIL-12 administration, and up to Day 14 post administration. Immunophenotyping of blood cell populations was conducted by FACS. rHuIL-12 caused a transient decrease in peripheral blood CD56dimCD16bright NK cells, with a nadir (60% reduction from baseline) reached on Day 2 following rHuIL-12 administration. CD56dimCD16bright NK cell levels returned almost to baseline levels on Day 5. Placebo was without effect. Conversely rHuIL-12 caused an elevation in peripheral blood CD56brightCD16+/- NK cells, particularly between Days 2 and 3 after rHuIL-12 administration, which was sustained until a peak was reached on Day 5 (265% above baseline). Levels returned to baseline by Day 11, while placebo was without effect. rHuIL-12 did not impact the less functional CD56-CD16bright NK cell subset. CD56dimCD16bright NK cells expressing the IL-12 receptor β2 subunit (IL-12Rβ2+) showed a substantial, and transient, decrease in levels on Day 2. The plasma concentration of IFNγ was elevated to a peak over 35 fold above baseline level at 10hr. after rHuIL-12 administration. Human NK cells were negatively selected from highly enriched leukapheresis-derived blood and stimulated in vitro with 10 pM rHuIL-12. After 16hr. incubation these predominantly CD56dimCD16brightNK cells showed enhanced release of IFNγ and the increased killing of K562 cells, a human erythroleukemic cell line, when compared with vehicle controls. qPCR analysis of the human NK cell lysates showed rHuIL-12-induced elevation of CD56 (302%) and IL-12Rβ2 (587%) mRNA, when compared with vehicle controls. rHuIL-12 did not influence CD16 mRNA expression, but did increase the level of CD62L (L selectin, 206%) mRNA. The rapid 60% fall in circulating mature CD56dimCD16bright NK cells after rHuIL-12 administration to healthy human subjects suggests their immediate exit from peripheral blood into the tissue compartments. This could be mediated by the observed increase in NK cell CD62L mRNA expression seen in vitro. The sustained increase in immature CD56brightCD16+/- NK cell levels between Day 3 and 6 suggests their IL-12-induced development from CD34+ hematopoietic progenitor cells. In summary rHuIL-12 administration to healthy human subjects demonstrates differential effects on the two key NK cell populations in peripheral blood, increasing CD56brightCD16+/- NK cell numbers, potentially stimulating IFNγ release from and enhancing the cytotoxicity of the CD56dimCD16bright NK cells, and preparing this population for migration into tissues. rHuIL-12 thus shows excellent potential as an immunotherapeutic and hematopoietic agent for the treatment of cancer patients, by impacting the maturation, activation, immunoregulation, and cytolytic properties of NK cells. Disclosures Thomas: Neumedicines: Employment, Equity Ownership. Lawrence:Neumedicines: Employment, Equity Ownership. Mar:Neumedicines: Employment, Equity Ownership. Kha:Neumedicines: Employment, Equity Ownership. Basile:Neumedicines: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1820-1820
Author(s):  
Anna Bunin ◽  
Katy McGrath ◽  
Ann Marie Rossi ◽  
Matthew Welsch ◽  
Christian Vidal ◽  
...  

Background: Antibody recruiting molecules (ARM) represent a new modality in immunotherapy of cancer. These are bifunctional molecules composed of two active termini connected by a linker. One of the termini binds to a target molecule on a cancer cell. The other terminus can recruit endogenous IgG antibodies independent of their antigen binding specificity representing a breakthrough improvement to previous approaches (Murelli et al.J Am Chem Soc. 2009). We named this active moiety a universal antibody binding terminus (uABT). As a result of antibody recruitment to the cell surface, the target cell is "opsonized" by antibodies which then bring in the immune effector cells to eliminate the target through various antibody-dependent destruction mechanisms. Multiple myeloma is a neoplasm that arises from terminally differentiated immunoglobulin producing long-lived plasma cells with 32,000 new cases diagnosed each year. Kleo Pharmaceuticals has developed a series of compounds, CD38-ARM which target human CD38 highly expressed by multiple myeloma cells. CD38 -ARM compounds are therapeutically active in three distinct in vivo models without depleting CD38 expressing immune effector cells like existing therapeutic antibodies such as Daratumumab. Methods: CD38-ARM compounds were tested in three independent in vivo models. In the first model, intraperitoneal Daudi xenograft in SCID mice, 20x106 fluorescently labelled Burkitt lymphoma CD38-expressing Daudi cells were injected into SCID mice and treated with 3 mg/kg of compounds. Peritoneal exudates were examined 24 hours later for percentages and absolute numbers of Daudi cells recovered. Activity of compounds was further tested in a MOLP-8 multiple myeloma cell xenograft model in nude mice. Animals received 106 MOLP8 cells subcutaneously, and were treated with a daily dose of 10 mg/kg after tumor volumes of 150 mm3 were reached. Finally, CD38-ARM efficacy was examined in hu IL-15 transgenic NOG mice that have been preconditioned with busulfan and reconstituted i.p. with 2x106human NK cells. Three weeks after reconstitution, 5x106RAJI cells expressing CD38 were implanted s.c. and treatment commenced a week later with 10 mg/kg QDx14. Mice were monitored for NK cell levels and activation status in the blood during the whole study duration by flow cytometry. Results: CD38-uAbt compounds are able to induce clearance of Burkitt's lymphoma Daudi cells expressing high levels of CD38 in a SCID mouse intraperitoneal model. In addition, we show efficacy of one of these compounds in a multiple myeloma xenograft model in nude mice. Using the MOLP8 subcutaneously implanted tumor model we show that administration of our lead molecule is able to induce 50% tumor growth inhibition (TGI) after a daily dosing schedule against this tumor. This activity is comparable to a pharmacologically relevant dose of Daratumumab. Finally, we demonstrate that CD38-ARM treatment shows significant efficacy in humanized mouse model, where IL-15 Tg NOG mice have been reconstituted with human NK cells prior to tumor implantation. In this model daily dosing with the CD38-ARM resulted in up to 70% TGI when compared to untreated control groups. Using this dose/schedule, the molecule did not elicit NK cell depletion as noted in the Daratumumab group. Conclusions: We demonstrated that CD38-ARM compounds are therapeutically active in three distinct in vivo models. Depletion of Daudi cells in a peritoneal SCID model provides strong evidence for the CD38-ARM's capacity to engage macrophage effector functions. Profound inhibition of tumor growth in the NK cell centered humanized hIL-15 Tg NOG mouse model indicates that killing of target cells is executed by human NK cells and provides a foundation to advancing our compounds towards the clinic. Overall, our results demonstrate value of CD38-ARM molecules both as stand-alone therapeutic as well as a platform to develop compounds tailored to a specific indication, by varying target binding moiety of the molecule. Our results also indicate that CD38-ARM compounds engage a variety of effector mechanisms involved in tumor clearance and tumor growth delay, indicating therapeutic potential across a wide range of clinical settings. Disclosures Bunin: Kleo pharmaceuticals: Employment, Equity Ownership. McGrath:Kleo pharmaceuticals: Employment, Equity Ownership. Rossi:Kleo pharmaceuticals: Employment, Equity Ownership. Welsch:Kleo pharmaceuticals: Employment, Equity Ownership. Vidal:Kleo pharmaceuticals: Employment, Equity Ownership. Trinh:Kleo pharmaceuticals: Employment, Equity Ownership. Spiegel:Kleo pharmaceuticals: Equity Ownership. Rastelli:Kleo pharmaceuticals: Employment, Equity Ownership. Alvarez:Kleo pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1118-1118 ◽  
Author(s):  
Elisabeth A Lasater ◽  
An D Do ◽  
Luciana Burton ◽  
Yijin Li ◽  
Erin Williams ◽  
...  

Abstract Introduction: Intrinsic apoptosis is regulated by the BCL-2 family of proteins, which consists of both anti-apoptotic (BCL-2, BCL-XL, MCL-1) and pro-apoptotic (BIM, BAX, BAK, BAD) proteins. Interaction between these proteins, as well as stringent regulation of their expression, mediates cell survival and can rapidly induce cell death. A shift in balance and overexpression of anti-apoptotic proteins is a hallmark of cancer. Venetoclax (ABT-199/GDC-0199) is a potent, selective small molecule BCL-2 inhibitor that has shown preclinical and clinical activity across hematologic malignancies and is approved for the treatment of chronic lymphocytic leukemia with 17p deletion as monotherapy and in combination with rituximab. Objective: To investigate the effects of BCL-2 inhibition by venetoclax on viability and function of immune-cell subsets to inform combinability with cancer immunotherapies, such as anti-PD-L1. Methods and Results: B cells, natural killer (NK) cells, CD4+ T cells, and CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (n=3) were exposed to increasing concentrations of venetoclax that are clinically achievable in patients, and percentage of live cells was assessed by flow-cytometry using Near-IR cell staining. B cells were more sensitive to venetoclax (IC50 of ~1nM) than CD8+ T cells (IC50 ~100nM), NK cells (IC50 ~200nM), and CD4+ T cells (IC50 ~500nM) (Figure A). CD8+ T-cell subset analysis showed that unstimulated naive, but not memory cells, were sensitive to venetoclax treatment (IC50 ~30nM and 240nM, respectively). Resistance to venetoclax frequently involves compensation by other BCL-2 family proteins (BCL-XL and MCL-1). As assessed by western blot in PBMCs isolated from healthy donors (n=6), BCL-XL expression was higher in NK cells (~8-fold) and CD4+ and CD8+ T cells (~2.5-fold) than in B cells (1X). MCL-1 protein expression was higher only in CD4+ T cells (1.8-fold) relative to B cells. To evaluate the effect of venetoclax on T-cell function, CD8+ T cells were stimulated ex vivo with CD3/CD28 beads, and cytokine production and proliferation were assessed. Venetoclax treatment with 400nM drug had minimal impact on cytokine production, including interferon gamma (IFNg), tumor necrosis factor alpha (TNFa), and IL-2, in CD8+ effector, effector memory, central memory, and naïve subsets (Figure B). CD8+ T-cell proliferation was similarly resistant to venetoclax, as subsets demonstrated an IC50 >1000nM for venetoclax. Taken together, these data suggest that survival of resting NK and T cells in not impaired by venetoclax, possibly due to increased levels of BCL-XL and MCL-1, and that T-cell activation is largely independent of BCL-2 inhibition. To evaluate dual BCL-2 inhibition and PD-L1 blockade, the syngeneic A20 murine lymphoma model that is responsive to anti-PD-L1 treatment was used. Immune-competent mice bearing A20 subcutaneous tumors were treated with clinically relevant doses of venetoclax, murine specific anti-PD-L1, or both agents. Single-agent anti-PD-L1 therapy resulted in robust tumor regression, while single-agent venetoclax had no effect. The combination of venetoclax and anti-PD-L1 resulted in efficacy comparable with single-agent anti-PD-L1 (Figure C), suggesting that BCL-2 inhibition does not impact immune-cell responses to checkpoint inhibition in vivo. These data support that venetoclax does not antagonize immune-cell function and can be combined with immunotherapy targets. Conclusions: Our data demonstrate that significant venetoclax-induced cell death at clinically relevant drug concentrations is limited to the B-cell subset and that BCL-2 inhibition is not detrimental to survival or activation of NK- or T-cell subsets. Importantly, preclinical mouse models confirm the combinability of BCL-2 and PD-L1 inhibitors. These data support the combined use of venetoclax and cancer immunotherapy agents in the treatment of patients with hematologic and solid tumor malignancies. Figure Figure. Disclosures Lasater: Genentech Inc: Employment. Do:Genentech Inc: Employment. Burton:Genentech Inc: Employment. Li:Genentech Inc: Employment. Oeh:Genentech Inc: Employment. Molinero:Genentech Inc: Employment, Equity Ownership, Patents & Royalties: Genentech Inc. Penuel:Genentech Inc: Employment. Sampath:Genentech Inc: Employment. Dail:Genentech: Employment, Equity Ownership. Belvin:CytomX Therapeutics: Equity Ownership. Sumiyoshi:Genentech Inc: Employment, Equity Ownership. Punnoose:Roche: Equity Ownership; Genentech Inc: Employment. Venstrom:Genentech Inc: Employment. Raval:Genentech Inc: Consultancy, Employment, Equity Ownership.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 657-657 ◽  
Author(s):  
Tony Peled ◽  
Guy Brachya ◽  
Nurit Persi ◽  
Chana Lador ◽  
Esti Olesinski ◽  
...  

Abstract Adoptive transfer of cytolitic Natural Killer (NK) cells is a promising immunotherapeutic modality for hematologic and other malignancies. However, limited NK cell in vivo persistence and proliferation have been challenging clinical success of this therapeutic modality. Here we present a reliable, scalable and GMP-compliant culture method for the expansion of highly functional donor NK cells for clinical use. Nicotinamide (NAM), a form of vitamin B-3, serves as a precursor of nicotinamide adenine dinucleotide (NAD) and is a potent inhibitor of enzymes that require NAD including ADP ribosyltransferases and cyclic ADP ribose/NADase. As such, NAM is implicated in the regulation of cell adhesion, polarity, migration, proliferation, and differentiation. We have previously reported that NAM augments tumor cytotoxicity and cytokine (TNFα and IFN-γ) secretion of NK cells expanded in feeder-free culture conditions stimulated with IL-2 or IL-15. Immunophenotype studies demonstrated NK cells expanded with NAM underwent typical changes observed with cytokine only-induced NK cell activation with no significant differences in the expression of activating and inhibitory receptors. CD200R and PD-1 receptors were expressed at low levels in resting NK cells, but their expression was up-regulated following activation in typical cytokine expansion cultures. Interestingly, the increase in CD200R and PD-1 was reduced by NAM, suggesting these NK cells to be less susceptible to cancer immunoevasion mechanisms (Fig 1). In vivo retention and proliferation is a pre-requisite for the success of NK therapy. We have reported that NK expanded with NAM displayed substantially better retention in the bone marrow, spleen and peripheral blood of irradiated NSG mice. Using a carboxyfluorescein succinimidyl ester (CFSE) dilution assay, we demonstrated increased in vivo proliferation of NAM-cultured NK cells compared with cells cultured without NAM. These results were recently confirmed using a BrdU incorporation assay in irradiated NSG mice (Fig.2). These findings were mechanistically supported by a substantial increase in CD62L (L-selectin) expression in cultures treated with NAM. CD62L is pivotal for NK cell trafficking and homeostatic proliferation and its expression is down regulated in IL-2 or IL-15 stimulated cultures (Fig. 3). These data provided the foundation for the development of a feeder cell-free scalable culture method for clinical therapy using apheresis units obtained from healthy volunteers. CD3+ cells were depleted using a CliniMACS T cell depletion set. Following depletion, the CD3- fraction was analyzed for phenotypic markers and cultured in closed-system flasks (G-Rex100 MCS, Wilson Wolf) supplemented with 20ng/ml IL-15 or 50ng/ml IL-2 GMP, 10% human serum, minimum essential medium-α and NAM USP for two weeks. While at seeding, NK cells comprised 5-20% of total culture seeded cells, at harvest, NK cells comprised more than 97% of the culture. Although overall contamination of the NK cultures was low with either IL-15 or IL-2, a lower fraction of CD3+ and CD19+ cells was observed with IL-15 vs IL-2 (0.2±0.1% vs. 0.4±0.2% and 1.3±0.4% vs. 2.4±0.6%, respectively). Consequently, we decided to use IL-15 for clinical manufacturing. Optimization of NAM concentration studies showed similar expansion with 2.5 and 5 mM and a decrease in expansion with 7.5 mM NAM. Since NAM at 5 mM had a stronger impact on CD62L expression and on the release of IFNγ and TNFα than NAM at 2.5 mM, we selected 5mM NAM for clinical manufacturing. Overall median NK expansion after two weeks in closed G-Rex flasks supplemented with IL-15 and 5mM NAM was 50-fold (range 37-87). An additional and significant increase in expansion was obtained after doubling the culture medium one week post seeding. While there was a marked advantage for single culture feeding, more feedings had less impact on NK expansion and had a negative effect on the in vivo retention potential. Our optimized expansion protocol therefore involved one feeding during the two weeks expansion duration resulting in 162±30.7-fold expansion of NK cells relative to their input number in culture. Based on these data, we have initiated a clinical trial at University of Minnesota, to test the safety and efficacy of escalating doses (2 x 107/kg - 2 x 108/kg) of our novel NAM NK cell product in patients with refractory non-Hodgkins lymphoma and multiple myeloma (NCT03019666). Disclosures Peled: Gamida Cell: Employment, Equity Ownership. Brachya: Gamida Cell: Employment. Persi: Gamida Cell: Employment. Lador: gamida Cell: Employment, Equity Ownership. Olesinski: gamida cell: Employment. Landau: gamida cell: Employment, Equity Ownership. Galamidi: gamida cell: Employment. Peled: Biokine: Consultancy; Biosight: Consultancy. Miller: Celegene: Consultancy; Oxis Biotech: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Bachanova: Oxis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Zymogen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle-Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document